summaryrefslogtreecommitdiff
path: root/src/compiler/nir/nir_opcodes.py
blob: f7e9df073f7a508e7b31eeba0854c75b57a6da1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
#
# Copyright (C) 2014 Connor Abbott
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# Authors:
#    Connor Abbott (cwabbott0@gmail.com)

import re

# Class that represents all the information we have about the opcode
# NOTE: this must be kept in sync with nir_op_info

class Opcode(object):
   """Class that represents all the information we have about the opcode
   NOTE: this must be kept in sync with nir_op_info
   """
   def __init__(self, name, output_size, output_type, input_sizes,
                input_types, is_conversion, algebraic_properties, const_expr,
                description):
      """Parameters:

      - name is the name of the opcode (prepend nir_op_ for the enum name)
      - all types are strings that get nir_type_ prepended to them
      - input_types is a list of types
      - is_conversion is true if this opcode represents a type conversion
      - algebraic_properties is a space-seperated string, where nir_op_is_ is
        prepended before each entry
      - const_expr is an expression or series of statements that computes the
        constant value of the opcode given the constant values of its inputs.
      - Optional description of the opcode for documentation.

      Constant expressions are formed from the variables src0, src1, ...,
      src(N-1), where N is the number of arguments.  The output of the
      expression should be stored in the dst variable.  Per-component input
      and output variables will be scalars and non-per-component input and
      output variables will be a struct with fields named x, y, z, and w
      all of the correct type.  Input and output variables can be assumed
      to already be of the correct type and need no conversion.  In
      particular, the conversion from the C bool type to/from  NIR_TRUE and
      NIR_FALSE happens automatically.

      For per-component instructions, the entire expression will be
      executed once for each component.  For non-per-component
      instructions, the expression is expected to store the correct values
      in dst.x, dst.y, etc.  If "dst" does not exist anywhere in the
      constant expression, an assignment to dst will happen automatically
      and the result will be equivalent to "dst = <expression>" for
      per-component instructions and "dst.x = dst.y = ... = <expression>"
      for non-per-component instructions.
      """
      assert isinstance(name, str)
      assert isinstance(output_size, int)
      assert isinstance(output_type, str)
      assert isinstance(input_sizes, list)
      assert isinstance(input_sizes[0], int)
      assert isinstance(input_types, list)
      assert isinstance(input_types[0], str)
      assert isinstance(is_conversion, bool)
      assert isinstance(algebraic_properties, str)
      assert isinstance(const_expr, str)
      assert len(input_sizes) == len(input_types)
      assert 0 <= output_size <= 5 or (output_size == 8) or (output_size == 16)
      for size in input_sizes:
         assert 0 <= size <= 5 or (size == 8) or (size == 16)
         if output_size != 0:
            assert size != 0
      self.name = name
      self.num_inputs = len(input_sizes)
      self.output_size = output_size
      self.output_type = output_type
      self.input_sizes = input_sizes
      self.input_types = input_types
      self.is_conversion = is_conversion
      self.algebraic_properties = algebraic_properties
      self.const_expr = const_expr
      self.description = description

# helper variables for strings
tfloat = "float"
tint = "int"
tbool = "bool"
tbool1 = "bool1"
tbool8 = "bool8"
tbool16 = "bool16"
tbool32 = "bool32"
tuint = "uint"
tuint8 = "uint8"
tint16 = "int16"
tuint16 = "uint16"
tfloat16 = "float16"
tfloat32 = "float32"
tint32 = "int32"
tuint32 = "uint32"
tint64 = "int64"
tuint64 = "uint64"
tfloat64 = "float64"

_TYPE_SPLIT_RE = re.compile(r'(?P<type>int|uint|float|bool)(?P<bits>\d+)?')

def type_has_size(type_):
    m = _TYPE_SPLIT_RE.match(type_)
    assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
    return m.group('bits') is not None

def type_size(type_):
    m = _TYPE_SPLIT_RE.match(type_)
    assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
    assert m.group('bits') is not None, \
           'NIR type string has no bit size: "{}"'.format(type_)
    return int(m.group('bits'))

def type_sizes(type_):
    if type_has_size(type_):
        return [type_size(type_)]
    elif type_ == 'bool':
        return [1, 8, 16, 32]
    elif type_ == 'float':
        return [16, 32, 64]
    else:
        return [1, 8, 16, 32, 64]

def type_base_type(type_):
    m = _TYPE_SPLIT_RE.match(type_)
    assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
    return m.group('type')

# Operation where the first two sources are commutative.
#
# For 2-source operations, this just mathematical commutativity.  Some
# 3-source operations, like ffma, are only commutative in the first two
# sources.
_2src_commutative = "2src_commutative "
associative = "associative "
selection = "selection "

# global dictionary of opcodes
opcodes = {}

def opcode(name, output_size, output_type, input_sizes, input_types,
           is_conversion, algebraic_properties, const_expr, description = ""):
   assert name not in opcodes
   opcodes[name] = Opcode(name, output_size, output_type, input_sizes,
                          input_types, is_conversion, algebraic_properties,
                          const_expr, description)

def unop_convert(name, out_type, in_type, const_expr, description = ""):
   opcode(name, 0, out_type, [0], [in_type], False, "", const_expr, description)

def unop(name, ty, const_expr, description = ""):
   opcode(name, 0, ty, [0], [ty], False, "", const_expr, description)

def unop_horiz(name, output_size, output_type, input_size, input_type,
               const_expr, description = ""):
   opcode(name, output_size, output_type, [input_size], [input_type],
          False, "", const_expr, description)

def unop_reduce(name, output_size, output_type, input_type, prereduce_expr,
                reduce_expr, final_expr, description = ""):
   def prereduce(src):
      return "(" + prereduce_expr.format(src=src) + ")"
   def final(src):
      return final_expr.format(src="(" + src + ")")
   def reduce_(src0, src1):
      return reduce_expr.format(src0=src0, src1=src1)
   src0 = prereduce("src0.x")
   src1 = prereduce("src0.y")
   src2 = prereduce("src0.z")
   src3 = prereduce("src0.w")
   unop_horiz(name + "2", output_size, output_type, 2, input_type,
              final(reduce_(src0, src1)), description)
   unop_horiz(name + "3", output_size, output_type, 3, input_type,
              final(reduce_(reduce_(src0, src1), src2)), description)
   unop_horiz(name + "4", output_size, output_type, 4, input_type,
              final(reduce_(reduce_(src0, src1), reduce_(src2, src3))),
              description)

def unop_numeric_convert(name, out_type, in_type, const_expr, description = ""):
   opcode(name, 0, out_type, [0], [in_type], True, "", const_expr, description)

unop("mov", tuint, "src0")

unop("ineg", tint, "-src0")
unop("fneg", tfloat, "-src0")
unop("inot", tint, "~src0", description = "Invert every bit of the integer")

unop("fsign", tfloat, ("bit_size == 64 ? " +
                       "(isnan(src0) ? 0.0  : ((src0 == 0.0 ) ? src0 : (src0 > 0.0 ) ? 1.0  : -1.0 )) : " +
                       "(isnan(src0) ? 0.0f : ((src0 == 0.0f) ? src0 : (src0 > 0.0f) ? 1.0f : -1.0f))"),
     description = """
Roughly implements the OpenGL / Vulkan rules for ``sign(float)``.
The ``GLSL.std.450 FSign`` instruction is defined as:

    Result is 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0.

If the source is equal to zero, there is a preference for the result to have
the same sign, but this is not required (it is required by OpenCL).  If the
source is not a number, there is a preference for the result to be +0.0, but
this is not required (it is required by OpenCL).  If the source is not a
number, and the result is not +0.0, the result should definitely **not** be
NaN.

The values returned for constant folding match the behavior required by
OpenCL.
     """)

unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)")
unop("iabs", tint, "(src0 < 0) ? -src0 : src0")
unop("fabs", tfloat, "fabs(src0)")
unop("fsat", tfloat, ("fmin(fmax(src0, 0.0), 1.0)"))
unop("frcp", tfloat, "bit_size == 64 ? 1.0 / src0 : 1.0f / src0")
unop("frsq", tfloat, "bit_size == 64 ? 1.0 / sqrt(src0) : 1.0f / sqrtf(src0)")
unop("fsqrt", tfloat, "bit_size == 64 ? sqrt(src0) : sqrtf(src0)")
unop("fexp2", tfloat, "exp2f(src0)")
unop("flog2", tfloat, "log2f(src0)")

# Generate all of the numeric conversion opcodes
for src_t in [tint, tuint, tfloat, tbool]:
   if src_t == tbool:
      dst_types = [tfloat, tint, tbool]
   elif src_t == tint:
      dst_types = [tfloat, tint]
   elif src_t == tuint:
      dst_types = [tfloat, tuint]
   elif src_t == tfloat:
      dst_types = [tint, tuint, tfloat]

   for dst_t in dst_types:
      for dst_bit_size in type_sizes(dst_t):
          if dst_bit_size == 16 and dst_t == tfloat and src_t == tfloat:
              rnd_modes = ['_rtne', '_rtz', '']
              for rnd_mode in rnd_modes:
                  if rnd_mode == '_rtne':
                      conv_expr = """
                      if (bit_size > 16) {
                         dst = _mesa_half_to_float(_mesa_float_to_float16_rtne(src0));
                      } else {
                         dst = src0;
                      }
                      """
                  elif rnd_mode == '_rtz':
                      conv_expr = """
                      if (bit_size > 16) {
                         dst = _mesa_half_to_float(_mesa_float_to_float16_rtz(src0));
                      } else {
                         dst = src0;
                      }
                      """
                  else:
                      conv_expr = "src0"

                  unop_numeric_convert("{0}2{1}{2}{3}".format(src_t[0],
                                                              dst_t[0],
                                                              dst_bit_size,
                                                              rnd_mode),
                                       dst_t + str(dst_bit_size),
                                       src_t, conv_expr)
          elif dst_bit_size == 32 and dst_t == tfloat and src_t == tfloat:
              conv_expr = """
              if (bit_size > 32 && nir_is_rounding_mode_rtz(execution_mode, 32)) {
                 dst = _mesa_double_to_float_rtz(src0);
              } else {
                 dst = src0;
              }
              """
              unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0],
                                                       dst_bit_size),
                                   dst_t + str(dst_bit_size), src_t, conv_expr)
          else:
              conv_expr = "src0 != 0" if dst_t == tbool else "src0"
              unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0],
                                                       dst_bit_size),
                                   dst_t + str(dst_bit_size), src_t, conv_expr)

def unop_numeric_convert_mp(base, src_t, dst_t):
    op_like = base + "16"
    unop_numeric_convert(base + "mp", src_t, dst_t, opcodes[op_like].const_expr,
                         description = """
Special opcode that is the same as :nir:alu-op:`{}` except that it is safe to
remove it if the result is immediately converted back to 32 bits again. This is
generated as part of the precision lowering pass. ``mp`` stands for medium
precision.
                         """.format(op_like))

unop_numeric_convert_mp("f2f", tfloat16, tfloat32)
unop_numeric_convert_mp("i2i", tint16, tint32)
# u2ump isn't defined, because the behavior is equal to i2imp
unop_numeric_convert_mp("f2i", tint16, tfloat32)
unop_numeric_convert_mp("f2u", tuint16, tfloat32)
unop_numeric_convert_mp("i2f", tfloat16, tint32)
unop_numeric_convert_mp("u2f", tfloat16, tuint32)

# Unary floating-point rounding operations.


unop("ftrunc", tfloat, "bit_size == 64 ? trunc(src0) : truncf(src0)")
unop("fceil", tfloat, "bit_size == 64 ? ceil(src0) : ceilf(src0)")
unop("ffloor", tfloat, "bit_size == 64 ? floor(src0) : floorf(src0)")
unop("ffract", tfloat, "src0 - (bit_size == 64 ? floor(src0) : floorf(src0))")
unop("fround_even", tfloat, "bit_size == 64 ? _mesa_roundeven(src0) : _mesa_roundevenf(src0)")

unop("fquantize2f16", tfloat, "(fabs(src0) < ldexpf(1.0, -14)) ? copysignf(0.0f, src0) : _mesa_half_to_float(_mesa_float_to_half(src0))")

# Trigonometric operations.


unop("fsin", tfloat, "bit_size == 64 ? sin(src0) : sinf(src0)")
unop("fcos", tfloat, "bit_size == 64 ? cos(src0) : cosf(src0)")

# dfrexp
unop_convert("frexp_exp", tint32, tfloat, "frexp(src0, &dst);")
unop_convert("frexp_sig", tfloat, tfloat, "int n; dst = frexp(src0, &n);")

# Partial derivatives.
deriv_template = """
Calculate the screen-space partial derivative using {} derivatives of the input
with respect to the {}-axis. The constant folding is trivial as the derivative
of a constant is 0.
"""

for mode, suffix in [("either fine or coarse", ""), ("fine", "_fine"), ("coarse", "_coarse")]:
    for axis in ["x", "y"]:
        unop(f"fdd{axis}{suffix}", tfloat, "0.0",
             description = deriv_template.format(mode, axis.upper()))

# Floating point pack and unpack operations.

def pack_2x16(fmt, in_type):
   unop_horiz("pack_" + fmt + "_2x16", 1, tuint32, 2, in_type, """
dst.x = (uint32_t) pack_fmt_1x16(src0.x);
dst.x |= ((uint32_t) pack_fmt_1x16(src0.y)) << 16;
""".replace("fmt", fmt))

def pack_4x8(fmt):
   unop_horiz("pack_" + fmt + "_4x8", 1, tuint32, 4, tfloat32, """
dst.x = (uint32_t) pack_fmt_1x8(src0.x);
dst.x |= ((uint32_t) pack_fmt_1x8(src0.y)) << 8;
dst.x |= ((uint32_t) pack_fmt_1x8(src0.z)) << 16;
dst.x |= ((uint32_t) pack_fmt_1x8(src0.w)) << 24;
""".replace("fmt", fmt))

def unpack_2x16(fmt):
   unop_horiz("unpack_" + fmt + "_2x16", 2, tfloat32, 1, tuint32, """
dst.x = unpack_fmt_1x16((uint16_t)(src0.x & 0xffff));
dst.y = unpack_fmt_1x16((uint16_t)(src0.x << 16));
""".replace("fmt", fmt))

def unpack_4x8(fmt):
   unop_horiz("unpack_" + fmt + "_4x8", 4, tfloat32, 1, tuint32, """
dst.x = unpack_fmt_1x8((uint8_t)(src0.x & 0xff));
dst.y = unpack_fmt_1x8((uint8_t)((src0.x >> 8) & 0xff));
dst.z = unpack_fmt_1x8((uint8_t)((src0.x >> 16) & 0xff));
dst.w = unpack_fmt_1x8((uint8_t)(src0.x >> 24));
""".replace("fmt", fmt))


pack_2x16("snorm", tfloat)
pack_4x8("snorm")
pack_2x16("unorm", tfloat)
pack_4x8("unorm")
pack_2x16("half", tfloat32)
unpack_2x16("snorm")
unpack_4x8("snorm")
unpack_2x16("unorm")
unpack_4x8("unorm")
unpack_2x16("half")

unop_horiz("pack_uint_2x16", 1, tuint32, 2, tuint32, """
dst.x = _mesa_unsigned_to_unsigned(src0.x, 16);
dst.x |= _mesa_unsigned_to_unsigned(src0.y, 16) << 16;
""", description = """
Convert two unsigned integers into a packed unsigned short (clamp is applied).
""")

unop_horiz("pack_sint_2x16", 1, tint32, 2, tint32, """
dst.x = _mesa_signed_to_signed(src0.x, 16) & 0xffff;
dst.x |= _mesa_signed_to_signed(src0.y, 16) << 16;
""", description = """
Convert two signed integers into a packed signed short (clamp is applied).
""")

unop_horiz("pack_uvec2_to_uint", 1, tuint32, 2, tuint32, """
dst.x = (src0.x & 0xffff) | (src0.y << 16);
""")

unop_horiz("pack_uvec4_to_uint", 1, tuint32, 4, tuint32, """
dst.x = (src0.x <<  0) |
        (src0.y <<  8) |
        (src0.z << 16) |
        (src0.w << 24);
""")

unop_horiz("pack_32_4x8", 1, tuint32, 4, tuint8,
           "dst.x = src0.x | ((uint32_t)src0.y << 8) | ((uint32_t)src0.z << 16) | ((uint32_t)src0.w << 24);")

unop_horiz("pack_32_2x16", 1, tuint32, 2, tuint16,
           "dst.x = src0.x | ((uint32_t)src0.y << 16);")

unop_horiz("pack_64_2x32", 1, tuint64, 2, tuint32,
           "dst.x = src0.x | ((uint64_t)src0.y << 32);")

unop_horiz("pack_64_4x16", 1, tuint64, 4, tuint16,
           "dst.x = src0.x | ((uint64_t)src0.y << 16) | ((uint64_t)src0.z << 32) | ((uint64_t)src0.w << 48);")

unop_horiz("unpack_64_2x32", 2, tuint32, 1, tuint64,
           "dst.x = src0.x; dst.y = src0.x >> 32;")

unop_horiz("unpack_64_4x16", 4, tuint16, 1, tuint64,
           "dst.x = src0.x; dst.y = src0.x >> 16; dst.z = src0.x >> 32; dst.w = src0.w >> 48;")

unop_horiz("unpack_32_2x16", 2, tuint16, 1, tuint32,
           "dst.x = src0.x; dst.y = src0.x >> 16;")

unop_horiz("unpack_32_4x8", 4, tuint8, 1, tuint32,
           "dst.x = src0.x; dst.y = src0.x >> 8; dst.z = src0.x >> 16; dst.w = src0.x >> 24;")

unop_horiz("unpack_half_2x16_flush_to_zero", 2, tfloat32, 1, tuint32, """
dst.x = unpack_half_1x16_flush_to_zero((uint16_t)(src0.x & 0xffff));
dst.y = unpack_half_1x16_flush_to_zero((uint16_t)(src0.x << 16));
""")

# Lowered floating point unpacking operations.

unop_convert("unpack_half_2x16_split_x", tfloat32, tuint32,
             "unpack_half_1x16((uint16_t)(src0 & 0xffff))")
unop_convert("unpack_half_2x16_split_y", tfloat32, tuint32,
             "unpack_half_1x16((uint16_t)(src0 >> 16))")

unop_convert("unpack_half_2x16_split_x_flush_to_zero", tfloat32, tuint32,
             "unpack_half_1x16_flush_to_zero((uint16_t)(src0 & 0xffff))")
unop_convert("unpack_half_2x16_split_y_flush_to_zero", tfloat32, tuint32,
             "unpack_half_1x16_flush_to_zero((uint16_t)(src0 >> 16))")

unop_convert("unpack_32_2x16_split_x", tuint16, tuint32, "src0")
unop_convert("unpack_32_2x16_split_y", tuint16, tuint32, "src0 >> 16")

unop_convert("unpack_64_2x32_split_x", tuint32, tuint64, "src0")
unop_convert("unpack_64_2x32_split_y", tuint32, tuint64, "src0 >> 32")

# Bit operations, part of ARB_gpu_shader5.


unop("bitfield_reverse", tuint32, """
/* we're not winning any awards for speed here, but that's ok */
dst = 0;
for (unsigned bit = 0; bit < 32; bit++)
   dst |= ((src0 >> bit) & 1) << (31 - bit);
""")
unop_convert("bit_count", tuint32, tuint, """
dst = 0;
for (unsigned bit = 0; bit < bit_size; bit++) {
   if ((src0 >> bit) & 1)
      dst++;
}
""")

unop_convert("ufind_msb", tint32, tuint, """
dst = -1;
for (int bit = bit_size - 1; bit >= 0; bit--) {
   if ((src0 >> bit) & 1) {
      dst = bit;
      break;
   }
}
""")

unop_convert("ufind_msb_rev", tint32, tuint, """
dst = -1;
for (int bit = 0; bit < bit_size; bit++) {
   if ((src0 << bit) & 0x80000000) {
      dst = bit;
      break;
   }
}
""")

unop("uclz", tuint32, """
int bit;
for (bit = bit_size - 1; bit >= 0; bit--) {
   if ((src0 & (1u << bit)) != 0)
      break;
}
dst = (unsigned)(bit_size - bit - 1);
""")

unop("ifind_msb", tint32, """
dst = -1;
for (int bit = bit_size - 1; bit >= 0; bit--) {
   /* If src0 < 0, we're looking for the first 0 bit.
    * if src0 >= 0, we're looking for the first 1 bit.
    */
   if ((((src0 >> bit) & 1) && (src0 >= 0)) ||
      (!((src0 >> bit) & 1) && (src0 < 0))) {
      dst = bit;
      break;
   }
}
""")

unop("ifind_msb_rev", tint32, """
dst = -1;
/* We are looking for the highest bit that's not the same as the sign bit. */
uint32_t sign = src0 & 0x80000000u;
for (int bit = 0; bit < 32; bit++) {
   if (((src0 << bit) & 0x80000000u) != sign) {
      dst = bit;
      break;
   }
}
""")

unop_convert("find_lsb", tint32, tint, """
dst = -1;
for (unsigned bit = 0; bit < bit_size; bit++) {
   if ((src0 >> bit) & 1) {
      dst = bit;
      break;
   }
}
""")

# AMD_gcn_shader extended instructions
unop_horiz("cube_face_coord_amd", 2, tfloat32, 3, tfloat32, """
dst.x = dst.y = 0.0;
float absX = fabsf(src0.x);
float absY = fabsf(src0.y);
float absZ = fabsf(src0.z);

float ma = 0.0;
if (absX >= absY && absX >= absZ) { ma = 2 * src0.x; }
if (absY >= absX && absY >= absZ) { ma = 2 * src0.y; }
if (absZ >= absX && absZ >= absY) { ma = 2 * src0.z; }

if (src0.x >= 0 && absX >= absY && absX >= absZ) { dst.x = -src0.z; dst.y = -src0.y; }
if (src0.x < 0 && absX >= absY && absX >= absZ) { dst.x = src0.z; dst.y = -src0.y; }
if (src0.y >= 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = src0.z; }
if (src0.y < 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = -src0.z; }
if (src0.z >= 0 && absZ >= absX && absZ >= absY) { dst.x = src0.x; dst.y = -src0.y; }
if (src0.z < 0 && absZ >= absX && absZ >= absY) { dst.x = -src0.x; dst.y = -src0.y; }

dst.x = dst.x * (1.0f / ma) + 0.5f;
dst.y = dst.y * (1.0f / ma) + 0.5f;
""")

unop_horiz("cube_face_index_amd", 1, tfloat32, 3, tfloat32, """
dst.x = 0.0;
float absX = fabsf(src0.x);
float absY = fabsf(src0.y);
float absZ = fabsf(src0.z);
if (src0.x >= 0 && absX >= absY && absX >= absZ) dst.x = 0;
if (src0.x < 0 && absX >= absY && absX >= absZ) dst.x = 1;
if (src0.y >= 0 && absY >= absX && absY >= absZ) dst.x = 2;
if (src0.y < 0 && absY >= absX && absY >= absZ) dst.x = 3;
if (src0.z >= 0 && absZ >= absX && absZ >= absY) dst.x = 4;
if (src0.z < 0 && absZ >= absX && absZ >= absY) dst.x = 5;
""")

unop_reduce("fsum", 1, tfloat, tfloat, "{src}", "{src0} + {src1}", "{src}",
            description = "Sum of vector components")

def binop_convert(name, out_type, in_type, alg_props, const_expr, description=""):
   opcode(name, 0, out_type, [0, 0], [in_type, in_type],
          False, alg_props, const_expr, description)

def binop(name, ty, alg_props, const_expr, description = ""):
   binop_convert(name, ty, ty, alg_props, const_expr, description)

def binop_compare(name, ty, alg_props, const_expr, description = ""):
   binop_convert(name, tbool1, ty, alg_props, const_expr, description)

def binop_compare8(name, ty, alg_props, const_expr, description = ""):
   binop_convert(name, tbool8, ty, alg_props, const_expr, description)

def binop_compare16(name, ty, alg_props, const_expr, description = ""):
   binop_convert(name, tbool16, ty, alg_props, const_expr, description)

def binop_compare32(name, ty, alg_props, const_expr, description = ""):
   binop_convert(name, tbool32, ty, alg_props, const_expr, description)

def binop_compare_all_sizes(name, ty, alg_props, const_expr, description = ""):
   binop_compare(name, ty, alg_props, const_expr, description)
   binop_compare8(name + "8", ty, alg_props, const_expr, description)
   binop_compare16(name + "16", ty, alg_props, const_expr, description)
   binop_compare32(name + "32", ty, alg_props, const_expr, description)

def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size,
                src2_type, const_expr, description = ""):
   opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type],
          False, "", const_expr, description)

def binop_reduce(name, output_size, output_type, src_type, prereduce_expr,
                 reduce_expr, final_expr, suffix="", description = ""):
   def final(src):
      return final_expr.format(src= "(" + src + ")")
   def reduce_(src0, src1):
      return reduce_expr.format(src0=src0, src1=src1)
   def prereduce(src0, src1):
      return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")"
   srcs = [prereduce("src0." + letter, "src1." + letter) for letter in "xyzwefghijklmnop"]
   def pairwise_reduce(start, size):
      if (size == 1):
         return srcs[start]
      return reduce_(pairwise_reduce(start + size // 2, size // 2), pairwise_reduce(start, size // 2))
   for size in [2, 4, 8, 16]:
      opcode(name + str(size) + suffix, output_size, output_type,
             [size, size], [src_type, src_type], False, _2src_commutative,
             final(pairwise_reduce(0, size)), description)
   opcode(name + "3" + suffix, output_size, output_type,
          [3, 3], [src_type, src_type], False, _2src_commutative,
          final(reduce_(reduce_(srcs[2], srcs[1]), srcs[0])), description)
   opcode(name + "5" + suffix, output_size, output_type,
          [5, 5], [src_type, src_type], False, _2src_commutative,
          final(reduce_(srcs[4], reduce_(reduce_(srcs[3], srcs[2]),
                                         reduce_(srcs[1], srcs[0])))),
          description)

def binop_reduce_all_sizes(name, output_size, src_type, prereduce_expr,
                           reduce_expr, final_expr, description = ""):
   binop_reduce(name, output_size, tbool1, src_type,
                prereduce_expr, reduce_expr, final_expr, description)
   binop_reduce("b8" + name[1:], output_size, tbool8, src_type,
                prereduce_expr, reduce_expr, final_expr, description)
   binop_reduce("b16" + name[1:], output_size, tbool16, src_type,
                prereduce_expr, reduce_expr, final_expr, description)
   binop_reduce("b32" + name[1:], output_size, tbool32, src_type,
                prereduce_expr, reduce_expr, final_expr, description)

binop("fadd", tfloat, _2src_commutative + associative,"""
if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) {
   if (bit_size == 64)
      dst = _mesa_double_add_rtz(src0, src1);
   else
      dst = _mesa_double_to_float_rtz((double)src0 + (double)src1);
} else {
   dst = src0 + src1;
}
""")
binop("iadd", tint, _2src_commutative + associative, "(uint64_t)src0 + (uint64_t)src1")
binop("iadd_sat", tint, _2src_commutative, """
      src1 > 0 ?
         (src0 + src1 < src0 ? u_intN_max(bit_size) : src0 + src1) :
         (src0 < src0 + src1 ? u_intN_min(bit_size) : src0 + src1)
""")
binop("uadd_sat", tuint, _2src_commutative,
      "(src0 + src1) < src0 ? u_uintN_max(sizeof(src0) * 8) : (src0 + src1)")
binop("isub_sat", tint, "", """
      src1 < 0 ?
         (src0 - src1 < src0 ? u_intN_max(bit_size) : src0 - src1) :
         (src0 < src0 - src1 ? u_intN_min(bit_size) : src0 - src1)
""")
binop("usub_sat", tuint, "", "src0 < src1 ? 0 : src0 - src1")

binop("fsub", tfloat, "", """
if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) {
   if (bit_size == 64)
      dst = _mesa_double_sub_rtz(src0, src1);
   else
      dst = _mesa_double_to_float_rtz((double)src0 - (double)src1);
} else {
   dst = src0 - src1;
}
""")
binop("isub", tint, "", "src0 - src1")
binop_convert("uabs_isub", tuint, tint, "", """
              src1 > src0 ? (uint64_t) src1 - (uint64_t) src0
                          : (uint64_t) src0 - (uint64_t) src1
""")
binop("uabs_usub", tuint, "", "(src1 > src0) ? (src1 - src0) : (src0 - src1)")

binop("fmul", tfloat, _2src_commutative + associative, """
if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) {
   if (bit_size == 64)
      dst = _mesa_double_mul_rtz(src0, src1);
   else
      dst = _mesa_double_to_float_rtz((double)src0 * (double)src1);
} else {
   dst = src0 * src1;
}
""")

binop("fmulz", tfloat32, _2src_commutative + associative, """
if (src0 == 0.0 || src1 == 0.0)
   dst = 0.0;
else if (nir_is_rounding_mode_rtz(execution_mode, 32))
   dst = _mesa_double_to_float_rtz((double)src0 * (double)src1);
else
   dst = src0 * src1;
""", description = """
Unlike :nir:alu-op:`fmul`, anything (even infinity or NaN) multiplied by zero is
always zero. ``fmulz(0.0, inf)`` and ``fmulz(0.0, nan)`` must be +/-0.0, even
if ``SIGNED_ZERO_INF_NAN_PRESERVE`` is not used. If
``SIGNED_ZERO_INF_NAN_PRESERVE`` is used, then the result must be a positive
zero if either operand is zero.
""")


binop("imul", tint, _2src_commutative + associative, """
   /* Use 64-bit multiplies to prevent overflow of signed arithmetic */
   dst = (uint64_t)src0 * (uint64_t)src1;
""", description = "Low 32-bits of signed/unsigned integer multiply")

binop_convert("imul_2x32_64", tint64, tint32, _2src_commutative,
              "(int64_t)src0 * (int64_t)src1",
              description = "Multiply signed 32-bit integers, 64-bit result")
binop_convert("umul_2x32_64", tuint64, tuint32, _2src_commutative,
              "(uint64_t)src0 * (uint64_t)src1",
              description = "Multiply unsigned 32-bit integers, 64-bit result")

binop("imul_high", tint, _2src_commutative, """
if (bit_size == 64) {
   /* We need to do a full 128-bit x 128-bit multiply in order for the sign
    * extension to work properly.  The casts are kind-of annoying but needed
    * to prevent compiler warnings.
    */
   uint32_t src0_u32[4] = {
      src0,
      (int64_t)src0 >> 32,
      (int64_t)src0 >> 63,
      (int64_t)src0 >> 63,
   };
   uint32_t src1_u32[4] = {
      src1,
      (int64_t)src1 >> 32,
      (int64_t)src1 >> 63,
      (int64_t)src1 >> 63,
   };
   uint32_t prod_u32[4];
   ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
   dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
} else {
   /* First, sign-extend to 64-bit, then convert to unsigned to prevent
    * potential overflow of signed multiply */
   dst = ((uint64_t)(int64_t)src0 * (uint64_t)(int64_t)src1) >> bit_size;
}
""", description = "High 32-bits of signed integer multiply")

binop("umul_high", tuint, _2src_commutative, """
if (bit_size == 64) {
   /* The casts are kind-of annoying but needed to prevent compiler warnings. */
   uint32_t src0_u32[2] = { src0, (uint64_t)src0 >> 32 };
   uint32_t src1_u32[2] = { src1, (uint64_t)src1 >> 32 };
   uint32_t prod_u32[4];
   ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
   dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
} else {
   dst = ((uint64_t)src0 * (uint64_t)src1) >> bit_size;
}
""", description = "High 32-bits of unsigned integer multiply")

binop("umul_low", tuint32, _2src_commutative, """
uint64_t mask = (1 << (bit_size / 2)) - 1;
dst = ((uint64_t)src0 & mask) * ((uint64_t)src1 & mask);
""", description = "Low 32-bits of unsigned integer multiply")

binop("imul_32x16", tint32, "", "src0 * (int16_t) src1",
      description = "Multiply 32-bits with low 16-bits, with sign extension")
binop("umul_32x16", tuint32, "", "src0 * (uint16_t) src1",
      description = "Multiply 32-bits with low 16-bits, with zero extension")

binop("fdiv", tfloat, "", "src0 / src1")
binop("idiv", tint, "", "src1 == 0 ? 0 : (src0 / src1)")
binop("udiv", tuint, "", "src1 == 0 ? 0 : (src0 / src1)")

binop_convert("uadd_carry", tuint, tuint, _2src_commutative,
              "src0 + src1 < src0",
              description = """
Return an integer (1 or 0) representing the carry resulting from the
addition of the two unsigned arguments.
              """)

binop_convert("usub_borrow", tuint, tuint, "", "src0 < src1", description = """
Return an integer (1 or 0) representing the borrow resulting from the
subtraction of the two unsigned arguments.
              """)

# hadd: (a + b) >> 1 (without overflow)
# x + y = x - (x & ~y) + (x & ~y) + y - (~x & y) + (~x & y)
#       =      (x & y) + (x & ~y) +      (x & y) + (~x & y)
#       = 2 *  (x & y) + (x & ~y) +                (~x & y)
#       =     ((x & y) << 1) + (x ^ y)
#
# Since we know that the bottom bit of (x & y) << 1 is zero,
#
# (x + y) >> 1 = (((x & y) << 1) + (x ^ y)) >> 1
#              =   (x & y) +      ((x ^ y)  >> 1)
binop("ihadd", tint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
binop("uhadd", tuint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")

# rhadd: (a + b + 1) >> 1 (without overflow)
# x + y + 1 = x + (~x & y) - (~x & y) + y + (x & ~y) - (x & ~y) + 1
#           =      (x | y) - (~x & y) +      (x | y) - (x & ~y) + 1
#           = 2 *  (x | y) - ((~x & y) +               (x & ~y)) + 1
#           =     ((x | y) << 1) - (x ^ y) + 1
#
# Since we know that the bottom bit of (x & y) << 1 is zero,
#
# (x + y + 1) >> 1 = (x | y) + (-(x ^ y) + 1) >> 1)
#                  = (x | y) -  ((x ^ y)      >> 1)
binop("irhadd", tint, _2src_commutative, "(src0 | src1) - ((src0 ^ src1) >> 1)")
binop("urhadd", tuint, _2src_commutative, "(src0 | src1) - ((src0 ^ src1) >> 1)")

binop("umod", tuint, "", "src1 == 0 ? 0 : src0 % src1")

# For signed integers, there are several different possible definitions of
# "modulus" or "remainder".  We follow the conventions used by LLVM and
# SPIR-V.  The irem opcode implements the standard C/C++ signed "%"
# operation while the imod opcode implements the more mathematical
# "modulus" operation.  For details on the difference, see
#
# http://mathforum.org/library/drmath/view/52343.html

binop("irem", tint, "", "src1 == 0 ? 0 : src0 % src1")
binop("imod", tint, "",
      "src1 == 0 ? 0 : ((src0 % src1 == 0 || (src0 >= 0) == (src1 >= 0)) ?"
      "                 src0 % src1 : src0 % src1 + src1)")
binop("fmod", tfloat, "", "src0 - src1 * floorf(src0 / src1)")
binop("frem", tfloat, "", "src0 - src1 * truncf(src0 / src1)")

#
# Comparisons
#


# these integer-aware comparisons return a boolean (0 or ~0)

binop_compare_all_sizes("flt", tfloat, "", "src0 < src1")
binop_compare_all_sizes("fge", tfloat, "", "src0 >= src1")
binop_compare_all_sizes("feq", tfloat, _2src_commutative, "src0 == src1")
binop_compare_all_sizes("fneu", tfloat, _2src_commutative, "src0 != src1")
binop_compare_all_sizes("ilt", tint, "", "src0 < src1")
binop_compare_all_sizes("ige", tint, "", "src0 >= src1")
binop_compare_all_sizes("ieq", tint, _2src_commutative, "src0 == src1")
binop_compare_all_sizes("ine", tint, _2src_commutative, "src0 != src1")
binop_compare_all_sizes("ult", tuint, "", "src0 < src1")
binop_compare_all_sizes("uge", tuint, "", "src0 >= src1")

# integer-aware GLSL-style comparisons that compare floats and ints

binop_reduce_all_sizes("ball_fequal",  1, tfloat, "{src0} == {src1}",
                       "{src0} && {src1}", "{src}")
binop_reduce_all_sizes("bany_fnequal", 1, tfloat, "{src0} != {src1}",
                       "{src0} || {src1}", "{src}")
binop_reduce_all_sizes("ball_iequal",  1, tint, "{src0} == {src1}",
                       "{src0} && {src1}", "{src}")
binop_reduce_all_sizes("bany_inequal", 1, tint, "{src0} != {src1}",
                       "{src0} || {src1}", "{src}")

# non-integer-aware GLSL-style comparisons that return 0.0 or 1.0

binop_reduce("fall_equal",  1, tfloat32, tfloat32, "{src0} == {src1}",
             "{src0} && {src1}", "{src} ? 1.0f : 0.0f")
binop_reduce("fany_nequal", 1, tfloat32, tfloat32, "{src0} != {src1}",
             "{src0} || {src1}", "{src} ? 1.0f : 0.0f")

# These comparisons for integer-less hardware return 1.0 and 0.0 for true
# and false respectively

binop("slt", tfloat, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than
binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal
binop("seq", tfloat, _2src_commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal
binop("sne", tfloat, _2src_commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal

shift_note = """
SPIRV shifts are undefined for shift-operands >= bitsize,
but SM5 shifts are defined to use only the least significant bits.
The NIR definition is according to the SM5 specification.
"""

opcode("ishl", 0, tint, [0, 0], [tint, tuint32], False, "",
       "(uint64_t)src0 << (src1 & (sizeof(src0) * 8 - 1))",
       description = "Left shift." + shift_note)
opcode("ishr", 0, tint, [0, 0], [tint, tuint32], False, "",
       "src0 >> (src1 & (sizeof(src0) * 8 - 1))",
       description = "Signed right-shift." + shift_note)
opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], False, "",
       "src0 >> (src1 & (sizeof(src0) * 8 - 1))",
       description = "Unsigned right-shift." + shift_note)

opcode("urol", 0, tuint, [0, 0], [tuint, tuint32], False, "", """
   uint32_t rotate_mask = sizeof(src0) * 8 - 1;
   dst = (src0 << (src1 & rotate_mask)) |
         (src0 >> (-src1 & rotate_mask));
""")
opcode("uror", 0, tuint, [0, 0], [tuint, tuint32], False, "", """
   uint32_t rotate_mask = sizeof(src0) * 8 - 1;
   dst = (src0 >> (src1 & rotate_mask)) |
         (src0 << (-src1 & rotate_mask));
""")

bitwise_description = """
Bitwise {0}, also used as a boolean {0} for hardware supporting integers.
"""

binop("iand", tuint, _2src_commutative + associative, "src0 & src1",
      description = bitwise_description.format("AND"))
binop("ior", tuint, _2src_commutative + associative, "src0 | src1",
      description = bitwise_description.format("OR"))
binop("ixor", tuint, _2src_commutative + associative, "src0 ^ src1",
      description = bitwise_description.format("XOR"))


binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}",
             "{src}")

binop_reduce("fdot", 0, tfloat, tfloat,
             "{src0} * {src1}", "{src0} + {src1}", "{src}",
             suffix="_replicated")

opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], False, "",
       "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
opcode("fdph_replicated", 0, tfloat, [3, 4], [tfloat, tfloat], False, "",
       "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")

binop("fmin", tfloat, _2src_commutative + associative, "fmin(src0, src1)")
binop("imin", tint, _2src_commutative + associative, "src1 > src0 ? src0 : src1")
binop("umin", tuint, _2src_commutative + associative, "src1 > src0 ? src0 : src1")
binop("fmax", tfloat, _2src_commutative + associative, "fmax(src0, src1)")
binop("imax", tint, _2src_commutative + associative, "src1 > src0 ? src1 : src0")
binop("umax", tuint, _2src_commutative + associative, "src1 > src0 ? src1 : src0")

binop("fpow", tfloat, "", "bit_size == 64 ? pow(src0, src1) : powf(src0, src1)")

binop_horiz("pack_half_2x16_split", 1, tuint32, 1, tfloat32, 1, tfloat32,
            "pack_half_1x16(src0.x) | (pack_half_1x16(src1.x) << 16)")

binop_horiz("pack_half_2x16_rtz_split", 1, tuint32, 1, tfloat32, 1, tfloat32,
            "pack_half_1x16_rtz(src0.x) | (pack_half_1x16_rtz(src1.x) << 16)")

binop_convert("pack_64_2x32_split", tuint64, tuint32, "",
              "src0 | ((uint64_t)src1 << 32)")

binop_convert("pack_32_2x16_split", tuint32, tuint16, "",
              "src0 | ((uint32_t)src1 << 16)")

opcode("pack_32_4x8_split", 0, tuint32, [0, 0, 0, 0], [tuint8, tuint8, tuint8, tuint8],
       False, "",
       "src0 | ((uint32_t)src1 << 8) | ((uint32_t)src2 << 16) | ((uint32_t)src3 << 24)")

binop_convert("bfm", tuint32, tint32, "", """
int bits = src0 & 0x1F;
int offset = src1 & 0x1F;
dst = ((1u << bits) - 1) << offset;
""", description = """
Implements the behavior of the first operation of the SM5 "bfi" assembly
and that of the "bfi1" i965 instruction. That is, the bits and offset values
are from the low five bits of src0 and src1, respectively.
""")

opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], False, "", """
dst = (bit_size == 64) ? ldexp(src0, src1) : ldexpf(src0, src1);
/* flush denormals to zero. */
if (!isnormal(dst))
   dst = copysignf(0.0f, src0);
""")

binop_horiz("vec2", 2, tuint, 1, tuint, 1, tuint, """
dst.x = src0.x;
dst.y = src1.x;
""", description = """
Combines the first component of each input to make a 2-component vector.
""")

# Byte extraction
binop("extract_u8", tuint, "", "(uint8_t)(src0 >> (src1 * 8))")
binop("extract_i8", tint, "", "(int8_t)(src0 >> (src1 * 8))")

# Word extraction
binop("extract_u16", tuint, "", "(uint16_t)(src0 >> (src1 * 16))")
binop("extract_i16", tint, "", "(int16_t)(src0 >> (src1 * 16))")

# Byte/word insertion
binop("insert_u8", tuint, "", "(src0 & 0xff) << (src1 * 8)")
binop("insert_u16", tuint, "", "(src0 & 0xffff) << (src1 * 16)")


def triop(name, ty, alg_props, const_expr, description = ""):
   opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], False, alg_props, const_expr,
          description)
def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr,
                description = ""):
   opcode(name, output_size, tuint,
   [src1_size, src2_size, src3_size],
   [tuint, tuint, tuint], False, "", const_expr, description)

triop("ffma", tfloat, _2src_commutative, """
if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) {
   if (bit_size == 64)
      dst = _mesa_double_fma_rtz(src0, src1, src2);
   else if (bit_size == 32)
      dst = _mesa_float_fma_rtz(src0, src1, src2);
   else
      dst = _mesa_double_to_float_rtz(_mesa_double_fma_rtz(src0, src1, src2));
} else {
   if (bit_size == 32)
      dst = fmaf(src0, src1, src2);
   else
      dst = fma(src0, src1, src2);
}
""")

triop("ffmaz", tfloat32, _2src_commutative, """
if (src0 == 0.0 || src1 == 0.0)
   dst = 0.0 + src2;
else if (nir_is_rounding_mode_rtz(execution_mode, 32))
   dst = _mesa_float_fma_rtz(src0, src1, src2);
else
   dst = fmaf(src0, src1, src2);
""", description = """
Floating-point multiply-add with modified zero handling.

Unlike :nir:alu-op:`ffma`, anything (even infinity or NaN) multiplied by zero is
always zero. ``ffmaz(0.0, inf, src2)`` and ``ffmaz(0.0, nan, src2)`` must be
``+/-0.0 + src2``, even if ``SIGNED_ZERO_INF_NAN_PRESERVE`` is not used. If
``SIGNED_ZERO_INF_NAN_PRESERVE`` is used, then the result must be a positive
zero plus src2 if either src0 or src1 is zero.
""")

triop("flrp", tfloat, "", "src0 * (1 - src2) + src1 * src2")

triop("iadd3", tint, _2src_commutative + associative, "src0 + src1 + src2",
      description = "Ternary addition")

csel_description = """
A vector conditional select instruction (like ?:, but operating per-
component on vectors). The condition is {} bool ({}).
"""

triop("fcsel", tfloat32, selection, "(src0 != 0.0f) ? src1 : src2",
      description = csel_description.format("a floating point", "0.0 vs 1.0"))
opcode("bcsel", 0, tuint, [0, 0, 0],
       [tbool1, tuint, tuint], False, selection, "src0 ? src1 : src2",
       description = csel_description.format("a 1-bit", "0 vs 1"))
opcode("b8csel", 0, tuint, [0, 0, 0],
       [tbool8, tuint, tuint], False, selection, "src0 ? src1 : src2",
       description = csel_description.format("an 8-bit", "0 vs ~0"))
opcode("b16csel", 0, tuint, [0, 0, 0],
       [tbool16, tuint, tuint], False, selection, "src0 ? src1 : src2",
       description = csel_description.format("a 16-bit", "0 vs ~0"))
opcode("b32csel", 0, tuint, [0, 0, 0],
       [tbool32, tuint, tuint], False, selection, "src0 ? src1 : src2",
       description = csel_description.format("a 32-bit", "0 vs ~0"))

triop("i32csel_gt", tint32, selection, "(src0 > 0) ? src1 : src2")
triop("i32csel_ge", tint32, selection, "(src0 >= 0) ? src1 : src2")

triop("fcsel_gt", tfloat32, selection, "(src0 > 0.0f) ? src1 : src2")
triop("fcsel_ge", tfloat32, selection, "(src0 >= 0.0f) ? src1 : src2")

triop("bfi", tuint32, "", """
unsigned mask = src0, insert = src1, base = src2;
if (mask == 0) {
   dst = base;
} else {
   unsigned tmp = mask;
   while (!(tmp & 1)) {
      tmp >>= 1;
      insert <<= 1;
   }
   dst = (base & ~mask) | (insert & mask);
}
""", description = "SM5 bfi assembly")


triop("bitfield_select", tuint, "", "(src0 & src1) | (~src0 & src2)")

# SM5 ubfe/ibfe assembly: only the 5 least significant bits of offset and bits are used.
opcode("ubfe", 0, tuint32,
       [0, 0, 0], [tuint32, tuint32, tuint32], False, "", """
unsigned base = src0;
unsigned offset = src1 & 0x1F;
unsigned bits = src2 & 0x1F;
if (bits == 0) {
   dst = 0;
} else if (offset + bits < 32) {
   dst = (base << (32 - bits - offset)) >> (32 - bits);
} else {
   dst = base >> offset;
}
""")
opcode("ibfe", 0, tint32,
       [0, 0, 0], [tint32, tuint32, tuint32], False, "", """
int base = src0;
unsigned offset = src1 & 0x1F;
unsigned bits = src2 & 0x1F;
if (bits == 0) {
   dst = 0;
} else if (offset + bits < 32) {
   dst = (base << (32 - bits - offset)) >> (32 - bits);
} else {
   dst = base >> offset;
}
""")

# GLSL bitfieldExtract()
opcode("ubitfield_extract", 0, tuint32,
       [0, 0, 0], [tuint32, tint32, tint32], False, "", """
unsigned base = src0;
int offset = src1, bits = src2;
if (bits == 0) {
   dst = 0;
} else if (bits < 0 || offset < 0 || offset + bits > 32) {
   dst = 0; /* undefined per the spec */
} else {
   dst = (base >> offset) & ((1ull << bits) - 1);
}
""")
opcode("ibitfield_extract", 0, tint32,
       [0, 0, 0], [tint32, tint32, tint32], False, "", """
int base = src0;
int offset = src1, bits = src2;
if (bits == 0) {
   dst = 0;
} else if (offset < 0 || bits < 0 || offset + bits > 32) {
   dst = 0;
} else {
   dst = (base << (32 - offset - bits)) >> (32 - bits); /* use sign-extending shift */
}
""")

# Sum of absolute differences with accumulation.
# (Equivalent to AMD's v_sad_u8 instruction.)
# The first two sources contain packed 8-bit unsigned integers, the instruction
# will calculate the absolute difference of these, and then add them together.
# There is also a third source which is a 32-bit unsigned integer and added to the result.
triop_horiz("sad_u8x4", 1, 1, 1, 1, """
uint8_t s0_b0 = (src0.x & 0x000000ff) >> 0;
uint8_t s0_b1 = (src0.x & 0x0000ff00) >> 8;
uint8_t s0_b2 = (src0.x & 0x00ff0000) >> 16;
uint8_t s0_b3 = (src0.x & 0xff000000) >> 24;

uint8_t s1_b0 = (src1.x & 0x000000ff) >> 0;
uint8_t s1_b1 = (src1.x & 0x0000ff00) >> 8;
uint8_t s1_b2 = (src1.x & 0x00ff0000) >> 16;
uint8_t s1_b3 = (src1.x & 0xff000000) >> 24;

dst.x = src2.x +
        (s0_b0 > s1_b0 ? (s0_b0 - s1_b0) : (s1_b0 - s0_b0)) +
        (s0_b1 > s1_b1 ? (s0_b1 - s1_b1) : (s1_b1 - s0_b1)) +
        (s0_b2 > s1_b2 ? (s0_b2 - s1_b2) : (s1_b2 - s0_b2)) +
        (s0_b3 > s1_b3 ? (s0_b3 - s1_b3) : (s1_b3 - s0_b3));
""")

# Combines the first component of each input to make a 3-component vector.

triop_horiz("vec3", 3, 1, 1, 1, """
dst.x = src0.x;
dst.y = src1.x;
dst.z = src2.x;
""")

def quadop_horiz(name, output_size, src1_size, src2_size, src3_size,
                 src4_size, const_expr):
   opcode(name, output_size, tuint,
          [src1_size, src2_size, src3_size, src4_size],
          [tuint, tuint, tuint, tuint],
          False, "", const_expr)

opcode("bitfield_insert", 0, tuint32, [0, 0, 0, 0],
       [tuint32, tuint32, tint32, tint32], False, "", """
unsigned base = src0, insert = src1;
int offset = src2, bits = src3;
if (bits == 0) {
   dst = base;
} else if (offset < 0 || bits < 0 || bits + offset > 32) {
   dst = 0;
} else {
   unsigned mask = ((1ull << bits) - 1) << offset;
   dst = (base & ~mask) | ((insert << offset) & mask);
}
""")

quadop_horiz("vec4", 4, 1, 1, 1, 1, """
dst.x = src0.x;
dst.y = src1.x;
dst.z = src2.x;
dst.w = src3.x;
""")

opcode("vec5", 5, tuint,
       [1] * 5, [tuint] * 5,
       False, "", """
dst.x = src0.x;
dst.y = src1.x;
dst.z = src2.x;
dst.w = src3.x;
dst.e = src4.x;
""")

opcode("vec8", 8, tuint,
       [1] * 8, [tuint] * 8,
       False, "", """
dst.x = src0.x;
dst.y = src1.x;
dst.z = src2.x;
dst.w = src3.x;
dst.e = src4.x;
dst.f = src5.x;
dst.g = src6.x;
dst.h = src7.x;
""")

opcode("vec16", 16, tuint,
       [1] * 16, [tuint] * 16,
       False, "", """
dst.x = src0.x;
dst.y = src1.x;
dst.z = src2.x;
dst.w = src3.x;
dst.e = src4.x;
dst.f = src5.x;
dst.g = src6.x;
dst.h = src7.x;
dst.i = src8.x;
dst.j = src9.x;
dst.k = src10.x;
dst.l = src11.x;
dst.m = src12.x;
dst.n = src13.x;
dst.o = src14.x;
dst.p = src15.x;
""")

# An integer multiply instruction for address calculation.  This is
# similar to imul, except that the results are undefined in case of
# overflow.  Overflow is defined according to the size of the variable
# being dereferenced.
#
# This relaxed definition, compared to imul, allows an optimization
# pass to propagate bounds (ie, from an load/store intrinsic) to the
# sources, such that lower precision integer multiplies can be used.
# This is useful on hw that has 24b or perhaps 16b integer multiply
# instructions.
binop("amul", tint, _2src_commutative + associative, "src0 * src1")

# ir3-specific instruction that maps directly to mul-add shift high mix,
# (IMADSH_MIX16 i.e. ah * bl << 16 + c). It is used for lowering integer
# multiplication (imul) on Freedreno backend..
opcode("imadsh_mix16", 0, tint32,
       [0, 0, 0], [tint32, tint32, tint32], False, "", """
dst = ((((src0 & 0xffff0000) >> 16) * (src1 & 0x0000ffff)) << 16) + src2;
""")

# ir3-specific instruction that maps directly to ir3 mad.s24.
#
# 24b multiply into 32b result (with sign extension) plus 32b int
triop("imad24_ir3", tint32, _2src_commutative,
      "(((int32_t)src0 << 8) >> 8) * (((int32_t)src1 << 8) >> 8) + src2")

# r600-specific instruction that evaluates unnormalized cube texture coordinates
# and face index
# The actual texture coordinates are evaluated from this according to
#    dst.yx / abs(dst.z) + 1.5
unop_horiz("cube_r600", 4, tfloat32, 3, tfloat32, """
   dst.x = dst.y = dst.z = 0.0;
   float absX = fabsf(src0.x);
   float absY = fabsf(src0.y);
   float absZ = fabsf(src0.z);

   if (absX >= absY && absX >= absZ) { dst.z = 2 * src0.x; }
   if (absY >= absX && absY >= absZ) { dst.z = 2 * src0.y; }
   if (absZ >= absX && absZ >= absY) { dst.z = 2 * src0.z; }

   if (src0.x >= 0 && absX >= absY && absX >= absZ) {
      dst.y = -src0.z; dst.x = -src0.y; dst.w = 0;
   }
   if (src0.x < 0 && absX >= absY && absX >= absZ) {
      dst.y = src0.z; dst.x = -src0.y; dst.w = 1;
   }
   if (src0.y >= 0 && absY >= absX && absY >= absZ) {
      dst.y = src0.x; dst.x = src0.z; dst.w = 2;
   }
   if (src0.y < 0 && absY >= absX && absY >= absZ) {
      dst.y = src0.x; dst.x = -src0.z; dst.w = 3;
   }
   if (src0.z >= 0 && absZ >= absX && absZ >= absY) {
      dst.y = src0.x; dst.x = -src0.y; dst.w = 4;
   }
   if (src0.z < 0 && absZ >= absX && absZ >= absY) {
      dst.y = -src0.x; dst.x = -src0.y; dst.w = 5;
   }
""")

# r600/gcn specific sin and cos
# these trigeometric functions need some lowering because the supported
# input values are expected to be normalized by dividing by (2 * pi)
unop("fsin_amd", tfloat, "sinf(6.2831853 * src0)")
unop("fcos_amd", tfloat, "cosf(6.2831853 * src0)")

# Midgard specific sin and cos
# These expect their inputs to be divided by pi.
unop("fsin_mdg", tfloat, "sinf(3.141592653589793 * src0)")
unop("fcos_mdg", tfloat, "cosf(3.141592653589793 * src0)")

# AGX specific sin with input expressed in quadrants. Used in the lowering for
# fsin/fcos. This corresponds to a sequence of 3 ALU ops in the backend (where
# the angle is further decomposed by quadrant, sinc is computed, and the angle
# is multiplied back for sin). Lowering fsin/fcos to fsin_agx requires some
# additional ALU that NIR may be able to optimize.
unop("fsin_agx", tfloat, "sinf(src0 * (6.2831853/4.0))")

# AGX specific bitfield extraction from a pair of 32bit registers.
# src0,src1: the two registers
# src2: bit position of the LSB of the bitfield
# src3: number of bits in the bitfield if src3 > 0
#       src3 = 0 is equivalent to src3 = 32
# NOTE: src3 is a nir constant by contract
opcode("extr_agx", 0, tuint32,
       [0, 0, 0, 0], [tuint32, tuint32, tuint32, tuint32], False, "", """
    uint32_t mask = 0xFFFFFFFF;
    uint8_t shift = src2 & 0x7F;
    if (src3 != 0) {
       mask = (1 << src3) - 1;
    }
    if (shift >= 64) {
        dst = 0;
    } else {
        dst = (((((uint64_t) src1) << 32) | (uint64_t) src0) >> shift) & mask;
    }
""");

# AGX multiply-shift-add. Corresponds to iadd/isub/imad/imsub instructions.
# The shift must be <= 4 (domain restriction). For performance, it should be
# constant.
opcode("imadshl_agx", 0, tint, [0, 0, 0, 0], [tint, tint, tint, tint], False,
       "", f"(src0 * src1) + (src2 << src3)")
opcode("imsubshl_agx", 0, tint, [0, 0, 0, 0], [tint, tint, tint, tint], False,
       "", f"(src0 * src1) - (src2 << src3)")

# 24b multiply into 32b result (with sign extension)
binop("imul24", tint32, _2src_commutative + associative,
      "(((int32_t)src0 << 8) >> 8) * (((int32_t)src1 << 8) >> 8)")

# unsigned 24b multiply into 32b result plus 32b int
triop("umad24", tuint32, _2src_commutative,
      "(((uint32_t)src0 << 8) >> 8) * (((uint32_t)src1 << 8) >> 8) + src2")

# unsigned 24b multiply into 32b result uint
binop("umul24", tint32, _2src_commutative + associative,
      "(((uint32_t)src0 << 8) >> 8) * (((uint32_t)src1 << 8) >> 8)")

# relaxed versions of the above, which assume input is in the 24bit range (no clamping)
binop("imul24_relaxed", tint32, _2src_commutative + associative, "src0 * src1")
triop("umad24_relaxed", tuint32, _2src_commutative, "src0 * src1 + src2")
binop("umul24_relaxed", tuint32, _2src_commutative + associative, "src0 * src1")

unop_convert("fisnormal", tbool1, tfloat, "isnormal(src0)")
unop_convert("fisfinite", tbool1, tfloat, "isfinite(src0)")
unop_convert("fisfinite32", tbool32, tfloat, "isfinite(src0)")

# vc4-specific opcodes

# Saturated vector add for 4 8bit ints.
binop("usadd_4x8_vc4", tint32, _2src_commutative + associative, """
dst = 0;
for (int i = 0; i < 32; i += 8) {
   dst |= MIN2(((src0 >> i) & 0xff) + ((src1 >> i) & 0xff), 0xff) << i;
}
""")

# Saturated vector subtract for 4 8bit ints.
binop("ussub_4x8_vc4", tint32, "", """
dst = 0;
for (int i = 0; i < 32; i += 8) {
   int src0_chan = (src0 >> i) & 0xff;
   int src1_chan = (src1 >> i) & 0xff;
   if (src0_chan > src1_chan)
      dst |= (src0_chan - src1_chan) << i;
}
""")

# vector min for 4 8bit ints.
binop("umin_4x8_vc4", tint32, _2src_commutative + associative, """
dst = 0;
for (int i = 0; i < 32; i += 8) {
   dst |= MIN2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
}
""")

# vector max for 4 8bit ints.
binop("umax_4x8_vc4", tint32, _2src_commutative + associative, """
dst = 0;
for (int i = 0; i < 32; i += 8) {
   dst |= MAX2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
}
""")

# unorm multiply: (a * b) / 255.
binop("umul_unorm_4x8_vc4", tint32, _2src_commutative + associative, """
dst = 0;
for (int i = 0; i < 32; i += 8) {
   int src0_chan = (src0 >> i) & 0xff;
   int src1_chan = (src1 >> i) & 0xff;
   dst |= ((src0_chan * src1_chan) / 255) << i;
}
""")

# Mali-specific opcodes
unop("fsat_signed_mali", tfloat, ("fmin(fmax(src0, -1.0), 1.0)"))
unop("fclamp_pos_mali", tfloat, ("fmax(src0, 0.0)"))

# Magnitude equal to fddx/y, sign undefined. Derivative of a constant is zero.
unop("fddx_must_abs_mali", tfloat, "0.0")
unop("fddy_must_abs_mali", tfloat, "0.0")

# DXIL specific double [un]pack
# DXIL doesn't support generic [un]pack instructions, so we want those
# lowered to bit ops. HLSL doesn't support 64bit bitcasts to/from
# double, only [un]pack. Technically DXIL does, but considering they
# can't be generated from HLSL, we want to match what would be coming from DXC.
# This is essentially just the standard [un]pack, except that it doesn't get
# lowered so we can handle it in the backend and turn it into MakeDouble/SplitDouble
unop_horiz("pack_double_2x32_dxil", 1, tuint64, 2, tuint32,
           "dst.x = src0.x | ((uint64_t)src0.y << 32);")
unop_horiz("unpack_double_2x32_dxil", 2, tuint32, 1, tuint64,
           "dst.x = src0.x; dst.y = src0.x >> 32;")

# src0 and src1 are i8vec4 packed in an int32, and src2 is an int32.  The int8
# components are sign-extended to 32-bits, and a dot-product is performed on
# the resulting vectors.  src2 is added to the result of the dot-product.
opcode("sdot_4x8_iadd", 0, tint32, [0, 0, 0], [tuint32, tuint32, tint32],
       False, _2src_commutative, """
   const int32_t v0x = (int8_t)(src0      );
   const int32_t v0y = (int8_t)(src0 >>  8);
   const int32_t v0z = (int8_t)(src0 >> 16);
   const int32_t v0w = (int8_t)(src0 >> 24);
   const int32_t v1x = (int8_t)(src1      );
   const int32_t v1y = (int8_t)(src1 >>  8);
   const int32_t v1z = (int8_t)(src1 >> 16);
   const int32_t v1w = (int8_t)(src1 >> 24);

   dst = (v0x * v1x) + (v0y * v1y) + (v0z * v1z) + (v0w * v1w) + src2;
""")

# Like sdot_4x8_iadd, but unsigned.
opcode("udot_4x8_uadd", 0, tuint32, [0, 0, 0], [tuint32, tuint32, tuint32],
       False, _2src_commutative, """
   const uint32_t v0x = (uint8_t)(src0      );
   const uint32_t v0y = (uint8_t)(src0 >>  8);
   const uint32_t v0z = (uint8_t)(src0 >> 16);
   const uint32_t v0w = (uint8_t)(src0 >> 24);
   const uint32_t v1x = (uint8_t)(src1      );
   const uint32_t v1y = (uint8_t)(src1 >>  8);
   const uint32_t v1z = (uint8_t)(src1 >> 16);
   const uint32_t v1w = (uint8_t)(src1 >> 24);

   dst = (v0x * v1x) + (v0y * v1y) + (v0z * v1z) + (v0w * v1w) + src2;
""")

# src0 is i8vec4 packed in an int32, src1 is u8vec4 packed in an int32, and
# src2 is an int32.  The 8-bit components are extended to 32-bits, and a
# dot-product is performed on the resulting vectors.  src2 is added to the
# result of the dot-product.
#
# NOTE: Unlike many of the other dp4a opcodes, this mixed signs of source 0
# and source 1 mean that this opcode is not 2-source commutative
opcode("sudot_4x8_iadd", 0, tint32, [0, 0, 0], [tuint32, tuint32, tint32],
       False, "", """
   const int32_t v0x = (int8_t)(src0      );
   const int32_t v0y = (int8_t)(src0 >>  8);
   const int32_t v0z = (int8_t)(src0 >> 16);
   const int32_t v0w = (int8_t)(src0 >> 24);
   const uint32_t v1x = (uint8_t)(src1      );
   const uint32_t v1y = (uint8_t)(src1 >>  8);
   const uint32_t v1z = (uint8_t)(src1 >> 16);
   const uint32_t v1w = (uint8_t)(src1 >> 24);

   dst = (v0x * v1x) + (v0y * v1y) + (v0z * v1z) + (v0w * v1w) + src2;
""")

# Like sdot_4x8_iadd, but the result is clampled to the range [-0x80000000, 0x7ffffffff].
opcode("sdot_4x8_iadd_sat", 0, tint32, [0, 0, 0], [tuint32, tuint32, tint32],
       False, _2src_commutative, """
   const int64_t v0x = (int8_t)(src0      );
   const int64_t v0y = (int8_t)(src0 >>  8);
   const int64_t v0z = (int8_t)(src0 >> 16);
   const int64_t v0w = (int8_t)(src0 >> 24);
   const int64_t v1x = (int8_t)(src1      );
   const int64_t v1y = (int8_t)(src1 >>  8);
   const int64_t v1z = (int8_t)(src1 >> 16);
   const int64_t v1w = (int8_t)(src1 >> 24);

   const int64_t tmp = (v0x * v1x) + (v0y * v1y) + (v0z * v1z) + (v0w * v1w) + src2;

   dst = tmp >= INT32_MAX ? INT32_MAX : (tmp <= INT32_MIN ? INT32_MIN : tmp);
""")

# Like udot_4x8_uadd, but the result is clampled to the range [0, 0xfffffffff].
opcode("udot_4x8_uadd_sat", 0, tint32, [0, 0, 0], [tuint32, tuint32, tint32],
       False, _2src_commutative, """
   const uint64_t v0x = (uint8_t)(src0      );
   const uint64_t v0y = (uint8_t)(src0 >>  8);
   const uint64_t v0z = (uint8_t)(src0 >> 16);
   const uint64_t v0w = (uint8_t)(src0 >> 24);
   const uint64_t v1x = (uint8_t)(src1      );
   const uint64_t v1y = (uint8_t)(src1 >>  8);
   const uint64_t v1z = (uint8_t)(src1 >> 16);
   const uint64_t v1w = (uint8_t)(src1 >> 24);

   const uint64_t tmp = (v0x * v1x) + (v0y * v1y) + (v0z * v1z) + (v0w * v1w) + src2;

   dst = tmp >= UINT32_MAX ? UINT32_MAX : tmp;
""")

# Like sudot_4x8_iadd, but the result is clampled to the range [-0x80000000, 0x7ffffffff].
#
# NOTE: Unlike many of the other dp4a opcodes, this mixed signs of source 0
# and source 1 mean that this opcode is not 2-source commutative
opcode("sudot_4x8_iadd_sat", 0, tint32, [0, 0, 0], [tuint32, tuint32, tint32],
       False, "", """
   const int64_t v0x = (int8_t)(src0      );
   const int64_t v0y = (int8_t)(src0 >>  8);
   const int64_t v0z = (int8_t)(src0 >> 16);
   const int64_t v0w = (int8_t)(src0 >> 24);
   const uint64_t v1x = (uint8_t)(src1      );
   const uint64_t v1y = (uint8_t)(src1 >>  8);
   const uint64_t v1z = (uint8_t)(src1 >> 16);
   const uint64_t v1w = (uint8_t)(src1 >> 24);

   const int64_t tmp = (v0x * v1x) + (v0y * v1y) + (v0z * v1z) + (v0w * v1w) + src2;

   dst = tmp >= INT32_MAX ? INT32_MAX : (tmp <= INT32_MIN ? INT32_MIN : tmp);
""")

# src0 and src1 are i16vec2 packed in an int32, and src2 is an int32.  The int16
# components are sign-extended to 32-bits, and a dot-product is performed on
# the resulting vectors.  src2 is added to the result of the dot-product.
opcode("sdot_2x16_iadd", 0, tint32, [0, 0, 0], [tuint32, tuint32, tint32],
       False, _2src_commutative, """
   const int32_t v0x = (int16_t)(src0      );
   const int32_t v0y = (int16_t)(src0 >> 16);
   const int32_t v1x = (int16_t)(src1      );
   const int32_t v1y = (int16_t)(src1 >> 16);

   dst = (v0x * v1x) + (v0y * v1y) + src2;
""")

# Like sdot_2x16_iadd, but unsigned.
opcode("udot_2x16_uadd", 0, tuint32, [0, 0, 0], [tuint32, tuint32, tuint32],
       False, _2src_commutative, """
   const uint32_t v0x = (uint16_t)(src0      );
   const uint32_t v0y = (uint16_t)(src0 >> 16);
   const uint32_t v1x = (uint16_t)(src1      );
   const uint32_t v1y = (uint16_t)(src1 >> 16);

   dst = (v0x * v1x) + (v0y * v1y) + src2;
""")

# Like sdot_2x16_iadd, but the result is clampled to the range [-0x80000000, 0x7ffffffff].
opcode("sdot_2x16_iadd_sat", 0, tint32, [0, 0, 0], [tuint32, tuint32, tint32],
       False, _2src_commutative, """
   const int64_t v0x = (int16_t)(src0      );
   const int64_t v0y = (int16_t)(src0 >> 16);
   const int64_t v1x = (int16_t)(src1      );
   const int64_t v1y = (int16_t)(src1 >> 16);

   const int64_t tmp = (v0x * v1x) + (v0y * v1y) + src2;

   dst = tmp >= INT32_MAX ? INT32_MAX : (tmp <= INT32_MIN ? INT32_MIN : tmp);
""")

# Like udot_2x16_uadd, but the result is clampled to the range [0, 0xfffffffff].
opcode("udot_2x16_uadd_sat", 0, tint32, [0, 0, 0], [tuint32, tuint32, tint32],
       False, _2src_commutative, """
   const uint64_t v0x = (uint16_t)(src0      );
   const uint64_t v0y = (uint16_t)(src0 >> 16);
   const uint64_t v1x = (uint16_t)(src1      );
   const uint64_t v1y = (uint16_t)(src1 >> 16);

   const uint64_t tmp = (v0x * v1x) + (v0y * v1y) + src2;

   dst = tmp >= UINT32_MAX ? UINT32_MAX : tmp;
""")