summaryrefslogtreecommitdiff
path: root/firmware/2lib/2sha1.c
blob: 68ee4fd58a0f49c533ca18ad31a5137298408117 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 * SHA-1 implementation largely based on libmincrypt in the the Android
 * Open Source Project (platorm/system/core.git/libmincrypt/sha.c
 */

#include "2common.h"
#include "2sha.h"
#include "2sysincludes.h"

/*
 * Some machines lack byteswap.h and endian.h. These have to use the
 * slower code, even if they're little-endian.
 */

#if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN)

/*
 * This version is about 28% faster than the generic version below,
 * but assumes little-endianness.
 */
static uint32_t ror27(uint32_t val)
{
	return (val >> 27) | (val << 5);
}

static uint32_t ror2(uint32_t val)
{
	return (val >> 2) | (val << 30);
}

static uint32_t ror31(uint32_t val)
{
	return (val >> 31) | (val << 1);
}

static void sha1_transform(struct vb2_sha1_context *ctx)
{
	/* Note that this array uses 80*4=320 bytes of stack */
	uint32_t W[80];
	register uint32_t A, B, C, D, E;
	int t;

	A = ctx->state[0];
	B = ctx->state[1];
	C = ctx->state[2];
	D = ctx->state[3];
	E = ctx->state[4];

#define SHA_F1(A,B,C,D,E,t)				\
	E += ror27(A) +					\
		(W[t] = bswap_32(ctx->buf.w[t])) +	\
		(D^(B&(C^D))) + 0x5A827999;		\
	B = ror2(B);

	for (t = 0; t < 15; t += 5) {
		SHA_F1(A,B,C,D,E,t + 0);
		SHA_F1(E,A,B,C,D,t + 1);
		SHA_F1(D,E,A,B,C,t + 2);
		SHA_F1(C,D,E,A,B,t + 3);
		SHA_F1(B,C,D,E,A,t + 4);
	}
	SHA_F1(A,B,C,D,E,t + 0);  /* 16th one, t == 15 */

#undef SHA_F1

#define SHA_F1(A,B,C,D,E,t)						\
	E += ror27(A) +							\
		(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +	\
		(D^(B&(C^D))) + 0x5A827999;				\
	B = ror2(B);

	SHA_F1(E,A,B,C,D,t + 1);
	SHA_F1(D,E,A,B,C,t + 2);
	SHA_F1(C,D,E,A,B,t + 3);
	SHA_F1(B,C,D,E,A,t + 4);

#undef SHA_F1

#define SHA_F2(A,B,C,D,E,t)						\
	E += ror27(A) +							\
		(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +	\
		(B^C^D) + 0x6ED9EBA1;					\
	B = ror2(B);

	for (t = 20; t < 40; t += 5) {
		SHA_F2(A,B,C,D,E,t + 0);
		SHA_F2(E,A,B,C,D,t + 1);
		SHA_F2(D,E,A,B,C,t + 2);
		SHA_F2(C,D,E,A,B,t + 3);
		SHA_F2(B,C,D,E,A,t + 4);
	}

#undef SHA_F2

#define SHA_F3(A,B,C,D,E,t)						\
	E += ror27(A) +							\
		(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +	\
		((B&C)|(D&(B|C))) + 0x8F1BBCDC;				\
	B = ror2(B);

	for (; t < 60; t += 5) {
		SHA_F3(A,B,C,D,E,t + 0);
		SHA_F3(E,A,B,C,D,t + 1);
		SHA_F3(D,E,A,B,C,t + 2);
		SHA_F3(C,D,E,A,B,t + 3);
		SHA_F3(B,C,D,E,A,t + 4);
	}

#undef SHA_F3

#define SHA_F4(A,B,C,D,E,t)						\
	E += ror27(A) +							\
		(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +	\
		(B^C^D) + 0xCA62C1D6;					\
	B = ror2(B);

	for (; t < 80; t += 5) {
		SHA_F4(A,B,C,D,E,t + 0);
		SHA_F4(E,A,B,C,D,t + 1);
		SHA_F4(D,E,A,B,C,t + 2);
		SHA_F4(C,D,E,A,B,t + 3);
		SHA_F4(B,C,D,E,A,t + 4);
	}

#undef SHA_F4

	ctx->state[0] += A;
	ctx->state[1] += B;
	ctx->state[2] += C;
	ctx->state[3] += D;
	ctx->state[4] += E;
}

void vb2_sha1_update(struct vb2_sha1_context *ctx,
		     const uint8_t *data,
		     uint32_t size)
{
	int i = ctx->count % sizeof(ctx->buf);
	const uint8_t *p = (const uint8_t*)data;

	ctx->count += size;

	while (size > sizeof(ctx->buf) - i) {
		memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i);
		size -= sizeof(ctx->buf) - i;
		p += sizeof(ctx->buf) - i;
		sha1_transform(ctx);
		i = 0;
	}

	while (size--) {
		ctx->buf.b[i++] = *p++;
		if (i == sizeof(ctx->buf)) {
			sha1_transform(ctx);
			i = 0;
		}
	}
}

uint8_t *vb2_sha1_finalize(struct vb2_sha1_context *ctx)
{
	uint32_t cnt = ctx->count * 8;
	int i;

	vb2_sha1_update(ctx, (uint8_t*)"\x80", 1);
	while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
		vb2_sha1_update(ctx, (uint8_t*)"\0", 1);
	}

	for (i = 0; i < 8; ++i) {
		uint8_t tmp = cnt >> ((7 - i) * 8);
		vb2_sha1_update(ctx, &tmp, 1);
	}

	for (i = 0; i < 5; i++) {
		ctx->buf.w[i] = bswap_32(ctx->state[i]);
	}

	return ctx->buf.b;
}

#else   /* #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) */

#define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits))))

static void sha1_transform(struct vb2_sha1_context *ctx)
{
	/* Note that this array uses 80*4=320 bytes of stack */
	uint32_t W[80];
	uint32_t A, B, C, D, E;
	uint8_t *p = ctx->buf;
	int t;

	for(t = 0; t < 16; ++t) {
		uint32_t tmp = (uint32_t)*p++ << 24;
		tmp |= *p++ << 16;
		tmp |= *p++ << 8;
		tmp |= *p++;
		W[t] = tmp;
	}

	for(; t < 80; t++) {
		W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
	}

	A = ctx->state[0];
	B = ctx->state[1];
	C = ctx->state[2];
	D = ctx->state[3];
	E = ctx->state[4];

	for(t = 0; t < 80; t++) {
		uint32_t tmp = rol(5,A) + E + W[t];

		if (t < 20)
			tmp += (D^(B&(C^D))) + 0x5A827999;
		else if ( t < 40)
			tmp += (B^C^D) + 0x6ED9EBA1;
		else if ( t < 60)
			tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC;
		else
			tmp += (B^C^D) + 0xCA62C1D6;

		E = D;
		D = C;
		C = rol(30,B);
		B = A;
		A = tmp;
	}

	ctx->state[0] += A;
	ctx->state[1] += B;
	ctx->state[2] += C;
	ctx->state[3] += D;
	ctx->state[4] += E;
}

void vb2_sha1_update(struct vb2_sha1_context *ctx,
		     const uint8_t *data,
		     uint32_t size)
{
	int i = (int)(ctx->count % sizeof(ctx->buf));
	const uint8_t* p = (const uint8_t*) data;

	ctx->count += size;

	while (size--) {
		ctx->buf[i++] = *p++;
		if (i == sizeof(ctx->buf)) {
			sha1_transform(ctx);
			i = 0;
		}
	}
}

void vb2_sha1_finalize(struct vb2_sha1_context *ctx, uint8_t *digest)
{
	uint32_t cnt = ctx->count << 3;
	int i;

	vb2_sha1_update(ctx, (uint8_t*)"\x80", 1);
	while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
		vb2_sha1_update(ctx, (uint8_t*)"\0", 1);
	}
	for (i = 0; i < 8; ++i) {
		uint8_t tmp = (uint8_t)((uint64_t)cnt >> ((7 - i) * 8));
		vb2_sha1_update(ctx, &tmp, 1);
	}

	for (i = 0; i < 5; i++) {
		uint32_t tmp = ctx->state[i];
		*digest++ = (uint8_t)(tmp >> 24);
		*digest++ = (uint8_t)(tmp >> 16);
		*digest++ = (uint8_t)(tmp >> 8);
		*digest++ = (uint8_t)(tmp >> 0);
	}
}

#endif /* endianness */

void vb2_sha1_init(struct vb2_sha1_context *ctx)
{
	ctx->state[0] = 0x67452301;
	ctx->state[1] = 0xefcdab89;
	ctx->state[2] = 0x98badcfe;
	ctx->state[3] = 0x10325476;
	ctx->state[4] = 0xc3d2e1f0;
	ctx->count = 0;
}