/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * SHA-1 implementation largely based on libmincrypt in the the Android * Open Source Project (platorm/system/core.git/libmincrypt/sha.c */ #include "2common.h" #include "2sha.h" #include "2sysincludes.h" /* * Some machines lack byteswap.h and endian.h. These have to use the * slower code, even if they're little-endian. */ #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) /* * This version is about 28% faster than the generic version below, * but assumes little-endianness. */ static uint32_t ror27(uint32_t val) { return (val >> 27) | (val << 5); } static uint32_t ror2(uint32_t val) { return (val >> 2) | (val << 30); } static uint32_t ror31(uint32_t val) { return (val >> 31) | (val << 1); } static void sha1_transform(struct vb2_sha1_context *ctx) { /* Note that this array uses 80*4=320 bytes of stack */ uint32_t W[80]; register uint32_t A, B, C, D, E; int t; A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; #define SHA_F1(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = bswap_32(ctx->buf.w[t])) + \ (D^(B&(C^D))) + 0x5A827999; \ B = ror2(B); for (t = 0; t < 15; t += 5) { SHA_F1(A,B,C,D,E,t + 0); SHA_F1(E,A,B,C,D,t + 1); SHA_F1(D,E,A,B,C,t + 2); SHA_F1(C,D,E,A,B,t + 3); SHA_F1(B,C,D,E,A,t + 4); } SHA_F1(A,B,C,D,E,t + 0); /* 16th one, t == 15 */ #undef SHA_F1 #define SHA_F1(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ (D^(B&(C^D))) + 0x5A827999; \ B = ror2(B); SHA_F1(E,A,B,C,D,t + 1); SHA_F1(D,E,A,B,C,t + 2); SHA_F1(C,D,E,A,B,t + 3); SHA_F1(B,C,D,E,A,t + 4); #undef SHA_F1 #define SHA_F2(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ (B^C^D) + 0x6ED9EBA1; \ B = ror2(B); for (t = 20; t < 40; t += 5) { SHA_F2(A,B,C,D,E,t + 0); SHA_F2(E,A,B,C,D,t + 1); SHA_F2(D,E,A,B,C,t + 2); SHA_F2(C,D,E,A,B,t + 3); SHA_F2(B,C,D,E,A,t + 4); } #undef SHA_F2 #define SHA_F3(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ ((B&C)|(D&(B|C))) + 0x8F1BBCDC; \ B = ror2(B); for (; t < 60; t += 5) { SHA_F3(A,B,C,D,E,t + 0); SHA_F3(E,A,B,C,D,t + 1); SHA_F3(D,E,A,B,C,t + 2); SHA_F3(C,D,E,A,B,t + 3); SHA_F3(B,C,D,E,A,t + 4); } #undef SHA_F3 #define SHA_F4(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ (B^C^D) + 0xCA62C1D6; \ B = ror2(B); for (; t < 80; t += 5) { SHA_F4(A,B,C,D,E,t + 0); SHA_F4(E,A,B,C,D,t + 1); SHA_F4(D,E,A,B,C,t + 2); SHA_F4(C,D,E,A,B,t + 3); SHA_F4(B,C,D,E,A,t + 4); } #undef SHA_F4 ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; } void vb2_sha1_update(struct vb2_sha1_context *ctx, const uint8_t *data, uint32_t size) { int i = ctx->count % sizeof(ctx->buf); const uint8_t *p = (const uint8_t*)data; ctx->count += size; while (size > sizeof(ctx->buf) - i) { memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i); size -= sizeof(ctx->buf) - i; p += sizeof(ctx->buf) - i; sha1_transform(ctx); i = 0; } while (size--) { ctx->buf.b[i++] = *p++; if (i == sizeof(ctx->buf)) { sha1_transform(ctx); i = 0; } } } uint8_t *vb2_sha1_finalize(struct vb2_sha1_context *ctx) { uint32_t cnt = ctx->count * 8; int i; vb2_sha1_update(ctx, (uint8_t*)"\x80", 1); while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { vb2_sha1_update(ctx, (uint8_t*)"\0", 1); } for (i = 0; i < 8; ++i) { uint8_t tmp = cnt >> ((7 - i) * 8); vb2_sha1_update(ctx, &tmp, 1); } for (i = 0; i < 5; i++) { ctx->buf.w[i] = bswap_32(ctx->state[i]); } return ctx->buf.b; } #else /* #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) */ #define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits)))) static void sha1_transform(struct vb2_sha1_context *ctx) { /* Note that this array uses 80*4=320 bytes of stack */ uint32_t W[80]; uint32_t A, B, C, D, E; uint8_t *p = ctx->buf; int t; for(t = 0; t < 16; ++t) { uint32_t tmp = (uint32_t)*p++ << 24; tmp |= *p++ << 16; tmp |= *p++ << 8; tmp |= *p++; W[t] = tmp; } for(; t < 80; t++) { W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; for(t = 0; t < 80; t++) { uint32_t tmp = rol(5,A) + E + W[t]; if (t < 20) tmp += (D^(B&(C^D))) + 0x5A827999; else if ( t < 40) tmp += (B^C^D) + 0x6ED9EBA1; else if ( t < 60) tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC; else tmp += (B^C^D) + 0xCA62C1D6; E = D; D = C; C = rol(30,B); B = A; A = tmp; } ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; } void vb2_sha1_update(struct vb2_sha1_context *ctx, const uint8_t *data, uint32_t size) { int i = (int)(ctx->count % sizeof(ctx->buf)); const uint8_t* p = (const uint8_t*) data; ctx->count += size; while (size--) { ctx->buf[i++] = *p++; if (i == sizeof(ctx->buf)) { sha1_transform(ctx); i = 0; } } } void vb2_sha1_finalize(struct vb2_sha1_context *ctx, uint8_t *digest) { uint32_t cnt = ctx->count << 3; int i; vb2_sha1_update(ctx, (uint8_t*)"\x80", 1); while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { vb2_sha1_update(ctx, (uint8_t*)"\0", 1); } for (i = 0; i < 8; ++i) { uint8_t tmp = (uint8_t)((uint64_t)cnt >> ((7 - i) * 8)); vb2_sha1_update(ctx, &tmp, 1); } for (i = 0; i < 5; i++) { uint32_t tmp = ctx->state[i]; *digest++ = (uint8_t)(tmp >> 24); *digest++ = (uint8_t)(tmp >> 16); *digest++ = (uint8_t)(tmp >> 8); *digest++ = (uint8_t)(tmp >> 0); } } #endif /* endianness */ void vb2_sha1_init(struct vb2_sha1_context *ctx) { ctx->state[0] = 0x67452301; ctx->state[1] = 0xefcdab89; ctx->state[2] = 0x98badcfe; ctx->state[3] = 0x10325476; ctx->state[4] = 0xc3d2e1f0; ctx->count = 0; }