1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/timer/timer.h"
#include <stddef.h>
#include <utility>
#include "base/check.h"
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted.h"
#include "base/metrics/histogram_macros.h"
#include "base/threading/platform_thread.h"
#include "base/threading/sequenced_task_runner_handle.h"
#include "base/time/tick_clock.h"
#include "build/build_config.h"
namespace base {
namespace internal {
namespace {
// The reason for which the timer's scheduled task was invoked.
enum ScheduledTaskInvokedReason {
kStopped, // The timer fired for a stopped timer so nothing was done.
kRescheduled, // The timer fired before the desired run time so the user task
// was rescheduled for later. This can happens when the timer
// is restarted while it is already running.
kReady, // The timer fired at the desired run time so the task is ready
// to be invoked.
kMaxValue
};
void RecordScheduledTaskInvokedReason(ScheduledTaskInvokedReason reason) {
// Recording this histogram breaks a fuchsia test.
#if !defined(OS_FUCHSIA)
UMA_HISTOGRAM_ENUMERATION("Scheduler.TimerBase.ScheduledTaskInvokedReason",
reason);
#endif
}
} // namespace
// TaskDestructionDetector's role is to detect when the scheduled task is
// deleted without being executed. It can be disabled when the timer no longer
// wants to be notified.
class TaskDestructionDetector {
public:
explicit TaskDestructionDetector(TimerBase* timer) : timer_(timer) {}
~TaskDestructionDetector() {
// If this instance is getting destroyed before it was disabled, notify the
// timer.
if (timer_)
timer_->AbandonAndStop();
}
// Disables this instance so that the timer is no longer notified in the
// destructor.
void Disable() { timer_ = nullptr; }
private:
TimerBase* timer_;
DISALLOW_COPY_AND_ASSIGN(TaskDestructionDetector);
};
TimerBase::TimerBase() : TimerBase(nullptr) {}
TimerBase::TimerBase(const TickClock* tick_clock)
: task_destruction_detector_(nullptr),
tick_clock_(tick_clock),
is_running_(false) {
// It is safe for the timer to be created on a different thread/sequence than
// the one from which the timer APIs are called. The first call to the
// checker's CalledOnValidSequence() method will re-bind the checker, and
// later calls will verify that the same task runner is used.
DETACH_FROM_SEQUENCE(sequence_checker_);
}
TimerBase::TimerBase(const Location& posted_from, TimeDelta delay)
: TimerBase(posted_from, delay, nullptr) {}
TimerBase::TimerBase(const Location& posted_from,
TimeDelta delay,
const TickClock* tick_clock)
: task_destruction_detector_(nullptr),
posted_from_(posted_from),
delay_(delay),
tick_clock_(tick_clock),
is_running_(false) {
// See comment in other constructor.
DETACH_FROM_SEQUENCE(sequence_checker_);
}
TimerBase::~TimerBase() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
AbandonScheduledTask();
}
bool TimerBase::IsRunning() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return is_running_;
}
TimeDelta TimerBase::GetCurrentDelay() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return delay_;
}
void TimerBase::SetTaskRunner(scoped_refptr<SequencedTaskRunner> task_runner) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(task_runner->RunsTasksInCurrentSequence());
DCHECK(!IsRunning());
task_runner_.swap(task_runner);
}
void TimerBase::StartInternal(const Location& posted_from, TimeDelta delay) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
posted_from_ = posted_from;
delay_ = delay;
Reset();
}
void TimerBase::Stop() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
is_running_ = false;
// It's safe to destroy or restart Timer on another sequence after Stop().
DETACH_FROM_SEQUENCE(sequence_checker_);
OnStop();
// No more member accesses here: |this| could be deleted after Stop() call.
}
void TimerBase::Reset() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// If there's no pending task, start one up and return.
if (!task_destruction_detector_) {
ScheduleNewTask(delay_);
return;
}
// Set the new |desired_run_time_|.
if (delay_ > TimeDelta::FromMicroseconds(0))
desired_run_time_ = Now() + delay_;
else
desired_run_time_ = TimeTicks();
// We can use the existing scheduled task if it arrives before the new
// |desired_run_time_|.
if (desired_run_time_ >= scheduled_run_time_) {
is_running_ = true;
return;
}
// We can't reuse the |scheduled_task_|, so abandon it and post a new one.
AbandonScheduledTask();
ScheduleNewTask(delay_);
}
void TimerBase::ScheduleNewTask(TimeDelta delay) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!task_destruction_detector_);
is_running_ = true;
auto task_destruction_detector =
std::make_unique<TaskDestructionDetector>(this);
task_destruction_detector_ = task_destruction_detector.get();
if (delay > TimeDelta::FromMicroseconds(0)) {
GetTaskRunner()->PostDelayedTask(
posted_from_,
BindOnce(&TimerBase::OnScheduledTaskInvoked,
weak_ptr_factory_.GetWeakPtr(),
std::move(task_destruction_detector)),
delay);
scheduled_run_time_ = desired_run_time_ = Now() + delay;
} else {
GetTaskRunner()->PostTask(posted_from_,
BindOnce(&TimerBase::OnScheduledTaskInvoked,
weak_ptr_factory_.GetWeakPtr(),
std::move(task_destruction_detector)));
scheduled_run_time_ = desired_run_time_ = TimeTicks();
}
}
scoped_refptr<SequencedTaskRunner> TimerBase::GetTaskRunner() {
return task_runner_.get() ? task_runner_ : SequencedTaskRunnerHandle::Get();
}
TimeTicks TimerBase::Now() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return tick_clock_ ? tick_clock_->NowTicks() : TimeTicks::Now();
}
void TimerBase::AbandonScheduledTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (task_destruction_detector_) {
task_destruction_detector_->Disable();
task_destruction_detector_ = nullptr;
weak_ptr_factory_.InvalidateWeakPtrs();
}
}
void TimerBase::OnScheduledTaskInvoked(
std::unique_ptr<TaskDestructionDetector> task_destruction_detector) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// The scheduled task is currently running so its destruction detector is no
// longer needed.
task_destruction_detector->Disable();
task_destruction_detector_ = nullptr;
task_destruction_detector.reset();
// The timer may have been stopped.
if (!is_running_) {
RecordScheduledTaskInvokedReason(ScheduledTaskInvokedReason::kStopped);
return;
}
// First check if we need to delay the task because of a new target time.
if (desired_run_time_ > scheduled_run_time_) {
// Now() can be expensive, so only call it if we know the user has changed
// the |desired_run_time_|.
TimeTicks now = Now();
// Task runner may have called us late anyway, so only post a continuation
// task if the |desired_run_time_| is in the future.
if (desired_run_time_ > now) {
RecordScheduledTaskInvokedReason(
ScheduledTaskInvokedReason::kRescheduled);
// Post a new task to span the remaining time.
ScheduleNewTask(desired_run_time_ - now);
return;
}
}
RecordScheduledTaskInvokedReason(ScheduledTaskInvokedReason::kReady);
RunUserTask();
// No more member accesses here: |this| could be deleted at this point.
}
} // namespace internal
OneShotTimer::OneShotTimer() = default;
OneShotTimer::OneShotTimer(const TickClock* tick_clock)
: internal::TimerBase(tick_clock) {}
OneShotTimer::~OneShotTimer() = default;
void OneShotTimer::Start(const Location& posted_from,
TimeDelta delay,
OnceClosure user_task) {
user_task_ = std::move(user_task);
StartInternal(posted_from, delay);
}
void OneShotTimer::FireNow() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!task_runner_) << "FireNow() is incompatible with SetTaskRunner()";
DCHECK(IsRunning());
RunUserTask();
}
void OneShotTimer::OnStop() {
user_task_.Reset();
// No more member accesses here: |this| could be deleted after freeing
// |user_task_|.
}
void OneShotTimer::RunUserTask() {
// Make a local copy of the task to run. The Stop method will reset the
// |user_task_| member.
OnceClosure task = std::move(user_task_);
Stop();
DCHECK(task);
std::move(task).Run();
// No more member accesses here: |this| could be deleted at this point.
}
RepeatingTimer::RepeatingTimer() = default;
RepeatingTimer::RepeatingTimer(const TickClock* tick_clock)
: internal::TimerBase(tick_clock) {}
RepeatingTimer::~RepeatingTimer() = default;
RepeatingTimer::RepeatingTimer(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task)
: internal::TimerBase(posted_from, delay),
user_task_(std::move(user_task)) {}
RepeatingTimer::RepeatingTimer(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task,
const TickClock* tick_clock)
: internal::TimerBase(posted_from, delay, tick_clock),
user_task_(std::move(user_task)) {}
void RepeatingTimer::Start(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task) {
user_task_ = std::move(user_task);
StartInternal(posted_from, delay);
}
void RepeatingTimer::OnStop() {}
void RepeatingTimer::RunUserTask() {
// Make a local copy of the task to run in case the task destroy the timer
// instance.
RepeatingClosure task = user_task_;
ScheduleNewTask(GetCurrentDelay());
task.Run();
// No more member accesses here: |this| could be deleted at this point.
}
RetainingOneShotTimer::RetainingOneShotTimer() = default;
RetainingOneShotTimer::RetainingOneShotTimer(const TickClock* tick_clock)
: internal::TimerBase(tick_clock) {}
RetainingOneShotTimer::~RetainingOneShotTimer() = default;
RetainingOneShotTimer::RetainingOneShotTimer(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task)
: internal::TimerBase(posted_from, delay),
user_task_(std::move(user_task)) {}
RetainingOneShotTimer::RetainingOneShotTimer(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task,
const TickClock* tick_clock)
: internal::TimerBase(posted_from, delay, tick_clock),
user_task_(std::move(user_task)) {}
void RetainingOneShotTimer::Start(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task) {
user_task_ = std::move(user_task);
StartInternal(posted_from, delay);
}
void RetainingOneShotTimer::OnStop() {}
void RetainingOneShotTimer::RunUserTask() {
// Make a local copy of the task to run in case the task destroys the timer
// instance.
RepeatingClosure task = user_task_;
Stop();
task.Run();
// No more member accesses here: |this| could be deleted at this point.
}
} // namespace base
|