1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/*
* Copyright © 2020 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BRW_NIR_RT_BUILDER_H
#define BRW_NIR_RT_BUILDER_H
#include "brw_rt.h"
#include "nir_builder.h"
/* We have our own load/store scratch helpers because they emit a global
* memory read or write based on the scratch_base_ptr system value rather
* than a load/store_scratch intrinsic.
*/
static inline nir_ssa_def *
brw_nir_rt_load_scratch(nir_builder *b, uint32_t offset, unsigned align,
unsigned num_components, unsigned bit_size)
{
nir_ssa_def *addr =
nir_iadd_imm(b, nir_load_scratch_base_ptr(b, 1, 64, 1), offset);
return nir_load_global(b, addr, MIN2(align, BRW_BTD_STACK_ALIGN),
num_components, bit_size);
}
static inline void
brw_nir_rt_store_scratch(nir_builder *b, uint32_t offset, unsigned align,
nir_ssa_def *value, nir_component_mask_t write_mask)
{
nir_ssa_def *addr =
nir_iadd_imm(b, nir_load_scratch_base_ptr(b, 1, 64, 1), offset);
nir_store_global(b, addr, MIN2(align, BRW_BTD_STACK_ALIGN),
value, write_mask);
}
static inline void
brw_nir_btd_spawn(nir_builder *b, nir_ssa_def *record_addr)
{
nir_btd_spawn_intel(b, nir_load_btd_global_arg_addr_intel(b), record_addr);
}
static inline void
brw_nir_btd_retire(nir_builder *b)
{
nir_btd_retire_intel(b);
}
/** This is a pseudo-op which does a bindless return
*
* It loads the return address from the stack and calls btd_spawn to spawn the
* resume shader.
*/
static inline void
brw_nir_btd_return(struct nir_builder *b)
{
assert(b->shader->scratch_size == BRW_BTD_STACK_CALLEE_DATA_SIZE);
nir_ssa_def *resume_addr =
brw_nir_rt_load_scratch(b, BRW_BTD_STACK_RESUME_BSR_ADDR_OFFSET,
8 /* align */, 1, 64);
brw_nir_btd_spawn(b, resume_addr);
}
static inline void
assert_def_size(nir_ssa_def *def, unsigned num_components, unsigned bit_size)
{
assert(def->num_components == num_components);
assert(def->bit_size == bit_size);
}
static inline nir_ssa_def *
brw_nir_num_rt_stacks(nir_builder *b,
const struct intel_device_info *devinfo)
{
return nir_imul_imm(b, nir_load_ray_num_dss_rt_stacks_intel(b),
intel_device_info_num_dual_subslices(devinfo));
}
static inline nir_ssa_def *
brw_nir_rt_stack_id(nir_builder *b)
{
return nir_iadd(b, nir_umul_32x16(b, nir_load_ray_num_dss_rt_stacks_intel(b),
nir_load_btd_dss_id_intel(b)),
nir_load_btd_stack_id_intel(b));
}
static inline nir_ssa_def *
brw_nir_rt_sw_hotzone_addr(nir_builder *b,
const struct intel_device_info *devinfo)
{
nir_ssa_def *offset32 =
nir_imul_imm(b, brw_nir_rt_stack_id(b), BRW_RT_SIZEOF_HOTZONE);
offset32 = nir_iadd(b, offset32, nir_ineg(b,
nir_imul_imm(b, brw_nir_num_rt_stacks(b, devinfo),
BRW_RT_SIZEOF_HOTZONE)));
return nir_iadd(b, nir_load_ray_base_mem_addr_intel(b),
nir_i2i64(b, offset32));
}
static inline nir_ssa_def *
brw_nir_rt_ray_addr(nir_builder *b)
{
/* From the BSpec "Address Computation for Memory Based Data Structures:
* Ray and TraversalStack (Async Ray Tracing)":
*
* stackBase = RTDispatchGlobals.rtMemBasePtr
* + (DSSID * RTDispatchGlobals.numDSSRTStacks + stackID)
* * RTDispatchGlobals.stackSizePerRay // 64B aligned
*
* We assume that we can calculate a 32-bit offset first and then add it
* to the 64-bit base address at the end.
*/
nir_ssa_def *offset32 =
nir_imul(b, brw_nir_rt_stack_id(b),
nir_load_ray_hw_stack_size_intel(b));
return nir_iadd(b, nir_load_ray_base_mem_addr_intel(b),
nir_u2u64(b, offset32));
}
static inline nir_ssa_def *
brw_nir_rt_mem_hit_addr(nir_builder *b, bool committed)
{
return nir_iadd_imm(b, brw_nir_rt_ray_addr(b),
committed ? 0 : BRW_RT_SIZEOF_HIT_INFO);
}
static inline nir_ssa_def *
brw_nir_rt_hit_attrib_data_addr(nir_builder *b)
{
return nir_iadd_imm(b, brw_nir_rt_ray_addr(b),
BRW_RT_OFFSETOF_HIT_ATTRIB_DATA);
}
static inline nir_ssa_def *
brw_nir_rt_mem_ray_addr(nir_builder *b,
enum brw_rt_bvh_level bvh_level)
{
/* From the BSpec "Address Computation for Memory Based Data Structures:
* Ray and TraversalStack (Async Ray Tracing)":
*
* rayBase = stackBase + sizeof(HitInfo) * 2 // 64B aligned
* rayPtr = rayBase + bvhLevel * sizeof(Ray); // 64B aligned
*
* In Vulkan, we always have exactly two levels of BVH: World and Object.
*/
uint32_t offset = BRW_RT_SIZEOF_HIT_INFO * 2 +
bvh_level * BRW_RT_SIZEOF_RAY;
return nir_iadd_imm(b, brw_nir_rt_ray_addr(b), offset);
}
static inline nir_ssa_def *
brw_nir_rt_sw_stack_addr(nir_builder *b,
const struct intel_device_info *devinfo)
{
nir_ssa_def *addr = nir_load_ray_base_mem_addr_intel(b);
nir_ssa_def *offset32 = nir_imul(b, brw_nir_num_rt_stacks(b, devinfo),
nir_load_ray_hw_stack_size_intel(b));
addr = nir_iadd(b, addr, nir_u2u64(b, offset32));
return nir_iadd(b, addr,
nir_imul(b, nir_u2u64(b, brw_nir_rt_stack_id(b)),
nir_u2u64(b, nir_load_ray_sw_stack_size_intel(b))));
}
static inline nir_ssa_def *
nir_unpack_64_4x16_split_z(nir_builder *b, nir_ssa_def *val)
{
return nir_unpack_32_2x16_split_x(b, nir_unpack_64_2x32_split_y(b, val));
}
struct brw_nir_rt_globals_defs {
nir_ssa_def *base_mem_addr;
nir_ssa_def *call_stack_handler_addr;
nir_ssa_def *hw_stack_size;
nir_ssa_def *num_dss_rt_stacks;
nir_ssa_def *hit_sbt_addr;
nir_ssa_def *hit_sbt_stride;
nir_ssa_def *miss_sbt_addr;
nir_ssa_def *miss_sbt_stride;
nir_ssa_def *sw_stack_size;
nir_ssa_def *launch_size;
nir_ssa_def *call_sbt_addr;
nir_ssa_def *call_sbt_stride;
nir_ssa_def *resume_sbt_addr;
};
static inline void
brw_nir_rt_load_globals(nir_builder *b,
struct brw_nir_rt_globals_defs *defs)
{
nir_ssa_def *addr = nir_load_btd_global_arg_addr_intel(b);
nir_ssa_def *data;
data = nir_load_global_const_block_intel(b, 16, addr, nir_imm_true(b));
defs->base_mem_addr = nir_pack_64_2x32(b, nir_channels(b, data, 0x3));
defs->call_stack_handler_addr =
nir_pack_64_2x32(b, nir_channels(b, data, 0x3 << 2));
defs->hw_stack_size = nir_channel(b, data, 4);
defs->num_dss_rt_stacks = nir_iand_imm(b, nir_channel(b, data, 5), 0xffff);
defs->hit_sbt_addr =
nir_pack_64_2x32_split(b, nir_channel(b, data, 8),
nir_extract_i16(b, nir_channel(b, data, 9),
nir_imm_int(b, 0)));
defs->hit_sbt_stride =
nir_unpack_32_2x16_split_y(b, nir_channel(b, data, 9));
defs->miss_sbt_addr =
nir_pack_64_2x32_split(b, nir_channel(b, data, 10),
nir_extract_i16(b, nir_channel(b, data, 11),
nir_imm_int(b, 0)));
defs->miss_sbt_stride =
nir_unpack_32_2x16_split_y(b, nir_channel(b, data, 11));
defs->sw_stack_size = nir_channel(b, data, 12);
defs->launch_size = nir_channels(b, data, 0x7u << 13);
data = nir_load_global_const_block_intel(b, 8, nir_iadd_imm(b, addr, 64),
nir_imm_true(b));
defs->call_sbt_addr =
nir_pack_64_2x32_split(b, nir_channel(b, data, 0),
nir_extract_i16(b, nir_channel(b, data, 1),
nir_imm_int(b, 0)));
defs->call_sbt_stride =
nir_unpack_32_2x16_split_y(b, nir_channel(b, data, 1));
defs->resume_sbt_addr =
nir_pack_64_2x32(b, nir_channels(b, data, 0x3 << 2));
}
static inline nir_ssa_def *
brw_nir_rt_unpack_leaf_ptr(nir_builder *b, nir_ssa_def *vec2)
{
/* Hit record leaf pointers are 42-bit and assumed to be in 64B chunks.
* This leaves 22 bits at the top for other stuff.
*/
nir_ssa_def *ptr64 = nir_imul_imm(b, nir_pack_64_2x32(b, vec2), 64);
/* The top 16 bits (remember, we shifted by 6 already) contain garbage
* that we need to get rid of.
*/
nir_ssa_def *ptr_lo = nir_unpack_64_2x32_split_x(b, ptr64);
nir_ssa_def *ptr_hi = nir_unpack_64_2x32_split_y(b, ptr64);
ptr_hi = nir_extract_i16(b, ptr_hi, nir_imm_int(b, 0));
return nir_pack_64_2x32_split(b, ptr_lo, ptr_hi);
}
struct brw_nir_rt_mem_hit_defs {
nir_ssa_def *t;
nir_ssa_def *tri_bary; /**< Only valid for triangle geometry */
nir_ssa_def *aabb_hit_kind; /**< Only valid for AABB geometry */
nir_ssa_def *leaf_type;
nir_ssa_def *prim_leaf_index;
nir_ssa_def *front_face;
nir_ssa_def *prim_leaf_ptr;
nir_ssa_def *inst_leaf_ptr;
};
static inline void
brw_nir_rt_load_mem_hit(nir_builder *b,
struct brw_nir_rt_mem_hit_defs *defs,
bool committed)
{
nir_ssa_def *hit_addr = brw_nir_rt_mem_hit_addr(b, committed);
nir_ssa_def *data = nir_load_global(b, hit_addr, 16, 4, 32);
defs->t = nir_channel(b, data, 0);
defs->aabb_hit_kind = nir_channel(b, data, 1);
defs->tri_bary = nir_channels(b, data, 0x6);
nir_ssa_def *bitfield = nir_channel(b, data, 3);
defs->leaf_type =
nir_ubitfield_extract(b, bitfield, nir_imm_int(b, 17), nir_imm_int(b, 3));
defs->prim_leaf_index =
nir_ubitfield_extract(b, bitfield, nir_imm_int(b, 20), nir_imm_int(b, 4));
defs->front_face = nir_i2b(b, nir_iand_imm(b, bitfield, 1 << 27));
data = nir_load_global(b, nir_iadd_imm(b, hit_addr, 16), 16, 4, 32);
defs->prim_leaf_ptr =
brw_nir_rt_unpack_leaf_ptr(b, nir_channels(b, data, 0x3 << 0));
defs->inst_leaf_ptr =
brw_nir_rt_unpack_leaf_ptr(b, nir_channels(b, data, 0x3 << 2));
}
static inline void
brw_nir_memcpy_global(nir_builder *b,
nir_ssa_def *dst_addr, uint32_t dst_align,
nir_ssa_def *src_addr, uint32_t src_align,
uint32_t size)
{
/* We're going to copy in 16B chunks */
assert(size % 16 == 0);
dst_align = MIN2(dst_align, 16);
src_align = MIN2(src_align, 16);
for (unsigned offset = 0; offset < size; offset += 16) {
nir_ssa_def *data =
nir_load_global(b, nir_iadd_imm(b, src_addr, offset), src_align,
4, 32);
nir_store_global(b, nir_iadd_imm(b, dst_addr, offset), dst_align,
data, 0xf /* write_mask */);
}
}
static inline void
brw_nir_rt_commit_hit(nir_builder *b)
{
brw_nir_memcpy_global(b, brw_nir_rt_mem_hit_addr(b, true), 16,
brw_nir_rt_mem_hit_addr(b, false), 16,
BRW_RT_SIZEOF_HIT_INFO);
}
struct brw_nir_rt_mem_ray_defs {
nir_ssa_def *orig;
nir_ssa_def *dir;
nir_ssa_def *t_near;
nir_ssa_def *t_far;
nir_ssa_def *root_node_ptr;
nir_ssa_def *ray_flags;
nir_ssa_def *hit_group_sr_base_ptr;
nir_ssa_def *hit_group_sr_stride;
nir_ssa_def *miss_sr_ptr;
nir_ssa_def *shader_index_multiplier;
nir_ssa_def *inst_leaf_ptr;
nir_ssa_def *ray_mask;
};
static inline void
brw_nir_rt_store_mem_ray(nir_builder *b,
const struct brw_nir_rt_mem_ray_defs *defs,
enum brw_rt_bvh_level bvh_level)
{
nir_ssa_def *ray_addr = brw_nir_rt_mem_ray_addr(b, bvh_level);
assert_def_size(defs->orig, 3, 32);
assert_def_size(defs->dir, 3, 32);
nir_store_global(b, nir_iadd_imm(b, ray_addr, 0), 16,
nir_vec4(b, nir_channel(b, defs->orig, 0),
nir_channel(b, defs->orig, 1),
nir_channel(b, defs->orig, 2),
nir_channel(b, defs->dir, 0)),
~0 /* write mask */);
assert_def_size(defs->t_near, 1, 32);
assert_def_size(defs->t_far, 1, 32);
nir_store_global(b, nir_iadd_imm(b, ray_addr, 16), 16,
nir_vec4(b, nir_channel(b, defs->dir, 1),
nir_channel(b, defs->dir, 2),
defs->t_near,
defs->t_far),
~0 /* write mask */);
assert_def_size(defs->root_node_ptr, 1, 64);
assert_def_size(defs->ray_flags, 1, 16);
assert_def_size(defs->hit_group_sr_base_ptr, 1, 64);
assert_def_size(defs->hit_group_sr_stride, 1, 16);
nir_store_global(b, nir_iadd_imm(b, ray_addr, 32), 16,
nir_vec4(b, nir_unpack_64_2x32_split_x(b, defs->root_node_ptr),
nir_pack_32_2x16_split(b,
nir_unpack_64_4x16_split_z(b, defs->root_node_ptr),
defs->ray_flags),
nir_unpack_64_2x32_split_x(b, defs->hit_group_sr_base_ptr),
nir_pack_32_2x16_split(b,
nir_unpack_64_4x16_split_z(b, defs->hit_group_sr_base_ptr),
defs->hit_group_sr_stride)),
~0 /* write mask */);
/* leaf_ptr is optional */
nir_ssa_def *inst_leaf_ptr;
if (defs->inst_leaf_ptr) {
inst_leaf_ptr = defs->inst_leaf_ptr;
} else {
inst_leaf_ptr = nir_imm_int64(b, 0);
}
assert_def_size(defs->miss_sr_ptr, 1, 64);
assert_def_size(defs->shader_index_multiplier, 1, 32);
assert_def_size(inst_leaf_ptr, 1, 64);
assert_def_size(defs->ray_mask, 1, 32);
nir_store_global(b, nir_iadd_imm(b, ray_addr, 48), 16,
nir_vec4(b, nir_unpack_64_2x32_split_x(b, defs->miss_sr_ptr),
nir_pack_32_2x16_split(b,
nir_unpack_64_4x16_split_z(b, defs->miss_sr_ptr),
nir_unpack_32_2x16_split_x(b,
nir_ishl(b, defs->shader_index_multiplier,
nir_imm_int(b, 8)))),
nir_unpack_64_2x32_split_x(b, inst_leaf_ptr),
nir_pack_32_2x16_split(b,
nir_unpack_64_4x16_split_z(b, inst_leaf_ptr),
nir_unpack_32_2x16_split_x(b, defs->ray_mask))),
~0 /* write mask */);
}
static inline void
brw_nir_rt_load_mem_ray(nir_builder *b,
struct brw_nir_rt_mem_ray_defs *defs,
enum brw_rt_bvh_level bvh_level)
{
nir_ssa_def *ray_addr = brw_nir_rt_mem_ray_addr(b, bvh_level);
nir_ssa_def *data[4] = {
nir_load_global(b, nir_iadd_imm(b, ray_addr, 0), 16, 4, 32),
nir_load_global(b, nir_iadd_imm(b, ray_addr, 16), 16, 4, 32),
nir_load_global(b, nir_iadd_imm(b, ray_addr, 32), 16, 4, 32),
nir_load_global(b, nir_iadd_imm(b, ray_addr, 48), 16, 4, 32),
};
defs->orig = nir_channels(b, data[0], 0x7);
defs->dir = nir_vec3(b, nir_channel(b, data[0], 3),
nir_channel(b, data[1], 0),
nir_channel(b, data[1], 1));
defs->t_near = nir_channel(b, data[1], 2);
defs->t_far = nir_channel(b, data[1], 3);
defs->root_node_ptr =
nir_pack_64_2x32_split(b, nir_channel(b, data[2], 0),
nir_extract_i16(b, nir_channel(b, data[2], 1),
nir_imm_int(b, 0)));
defs->ray_flags =
nir_unpack_32_2x16_split_y(b, nir_channel(b, data[2], 1));
defs->hit_group_sr_base_ptr =
nir_pack_64_2x32_split(b, nir_channel(b, data[2], 2),
nir_extract_i16(b, nir_channel(b, data[2], 3),
nir_imm_int(b, 0)));
defs->hit_group_sr_stride =
nir_unpack_32_2x16_split_y(b, nir_channel(b, data[2], 3));
defs->miss_sr_ptr =
nir_pack_64_2x32_split(b, nir_channel(b, data[3], 0),
nir_extract_i16(b, nir_channel(b, data[3], 1),
nir_imm_int(b, 0)));
defs->shader_index_multiplier =
nir_ushr(b, nir_unpack_32_2x16_split_y(b, nir_channel(b, data[3], 1)),
nir_imm_int(b, 8));
defs->inst_leaf_ptr =
nir_pack_64_2x32_split(b, nir_channel(b, data[3], 2),
nir_extract_i16(b, nir_channel(b, data[3], 3),
nir_imm_int(b, 0)));
defs->ray_mask =
nir_unpack_32_2x16_split_y(b, nir_channel(b, data[3], 3));
}
struct brw_nir_rt_bvh_instance_leaf_defs {
nir_ssa_def *world_to_object[4];
nir_ssa_def *instance_id;
nir_ssa_def *instance_index;
nir_ssa_def *object_to_world[4];
};
static inline void
brw_nir_rt_load_bvh_instance_leaf(nir_builder *b,
struct brw_nir_rt_bvh_instance_leaf_defs *defs,
nir_ssa_def *leaf_addr)
{
/* We don't care about the first 16B of the leaf for now. One day, we may
* add code to decode it but none of that data is directly required for
* implementing any ray-tracing built-ins.
*/
defs->world_to_object[0] =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 16), 4, 3, 32);
defs->world_to_object[1] =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 28), 4, 3, 32);
defs->world_to_object[2] =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 40), 4, 3, 32);
/* The last column of the matrices is swapped between the two probably
* because it makes it easier/faster for hardware somehow.
*/
defs->object_to_world[3] =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 52), 4, 3, 32);
nir_ssa_def *data =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 64), 4, 4, 32);
defs->instance_id = nir_channel(b, data, 2);
defs->instance_index = nir_channel(b, data, 3);
defs->object_to_world[0] =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 80), 4, 3, 32);
defs->object_to_world[1] =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 92), 4, 3, 32);
defs->object_to_world[2] =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 104), 4, 3, 32);
defs->world_to_object[3] =
nir_load_global(b, nir_iadd_imm(b, leaf_addr, 116), 4, 3, 32);
}
#endif /* BRW_NIR_RT_BUILDER_H */
|