summaryrefslogtreecommitdiff
path: root/src/intel/compiler/brw_nir.c
blob: a507c62a5d4b4a7e01d52da6ada0df7debb559bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "brw_nir.h"
#include "brw_nir_rt.h"
#include "brw_shader.h"
#include "dev/intel_debug.h"
#include "compiler/glsl_types.h"
#include "compiler/nir/nir_builder.h"
#include "util/u_math.h"

static bool
remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr,
                  enum tess_primitive_mode _primitive_mode)
{
   const int location = nir_intrinsic_base(intr);
   const unsigned component = nir_intrinsic_component(intr);
   bool out_of_bounds = false;
   bool write = !nir_intrinsic_infos[intr->intrinsic].has_dest;
   unsigned mask = write ? nir_intrinsic_write_mask(intr) : 0;
   nir_ssa_def *src = NULL, *dest = NULL;

   if (write) {
      assert(intr->src[0].is_ssa);
      assert(intr->num_components == intr->src[0].ssa->num_components);
   } else {
      assert(intr->dest.is_ssa);
      assert(intr->num_components == intr->dest.ssa.num_components);
   }

   if (location == VARYING_SLOT_TESS_LEVEL_INNER) {
      b->cursor = write ? nir_before_instr(&intr->instr)
                        : nir_after_instr(&intr->instr);

      switch (_primitive_mode) {
      case TESS_PRIMITIVE_QUADS:
         /* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
         nir_intrinsic_set_base(intr, 0);

         if (write) {
            assert(intr->src[0].ssa->num_components == 2);

            intr->num_components = 4;

            nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
            nir_ssa_def *x = nir_channel(b, intr->src[0].ssa, 0);
            nir_ssa_def *y = nir_channel(b, intr->src[0].ssa, 1);
            src = nir_vec4(b, undef, undef, y, x);
            mask = !!(mask & WRITEMASK_X) << 3 | !!(mask & WRITEMASK_Y) << 2;
         } else if (intr->dest.ssa.num_components > 1) {
            assert(intr->dest.ssa.num_components == 2);

            intr->num_components = 4;
            intr->dest.ssa.num_components = 4;

            unsigned wz[2] = { 3, 2 };
            dest = nir_swizzle(b, &intr->dest.ssa, wz, 2);
         } else {
            nir_intrinsic_set_component(intr, 3 - component);
         }
         break;
      case TESS_PRIMITIVE_TRIANGLES:
         /* gl_TessLevelInner[0] lives at DWord 4. */
         nir_intrinsic_set_base(intr, 1);
         mask &= WRITEMASK_X;
         out_of_bounds = component > 0;
         break;
      case TESS_PRIMITIVE_ISOLINES:
         out_of_bounds = true;
         break;
      default:
         unreachable("Bogus tessellation domain");
      }
   } else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) {
      b->cursor = write ? nir_before_instr(&intr->instr)
                        : nir_after_instr(&intr->instr);

      nir_intrinsic_set_base(intr, 1);

      switch (_primitive_mode) {
      case TESS_PRIMITIVE_QUADS:
      case TESS_PRIMITIVE_TRIANGLES:
         /* Quads:     gl_TessLevelOuter[0..3] lives at DWords 7-4 (reversed).
          * Triangles: gl_TessLevelOuter[0..2] lives at DWords 7-5 (reversed).
          */
         if (write) {
            assert(intr->src[0].ssa->num_components == 4);

            unsigned wzyx[4] = { 3, 2, 1, 0 };
            src = nir_swizzle(b, intr->src[0].ssa, wzyx, 4);
            mask = !!(mask & WRITEMASK_X) << 3 | !!(mask & WRITEMASK_Y) << 2 |
                   !!(mask & WRITEMASK_Z) << 1 | !!(mask & WRITEMASK_W) << 0;

            /* Don't overwrite the inner factor at DWord 4 for triangles */
            if (_primitive_mode == TESS_PRIMITIVE_TRIANGLES)
               mask &= ~WRITEMASK_X;
         } else if (intr->dest.ssa.num_components > 1) {
            assert(intr->dest.ssa.num_components == 4);

            unsigned wzyx[4] = { 3, 2, 1, 0 };
            dest = nir_swizzle(b, &intr->dest.ssa, wzyx, 4);
         } else {
            nir_intrinsic_set_component(intr, 3 - component);
            out_of_bounds = component == 3 &&
                            _primitive_mode == TESS_PRIMITIVE_TRIANGLES;
         }
         break;
      case TESS_PRIMITIVE_ISOLINES:
         /* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
         if (write) {
            assert(intr->src[0].ssa->num_components == 4);

            nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
            nir_ssa_def *x = nir_channel(b, intr->src[0].ssa, 0);
            nir_ssa_def *y = nir_channel(b, intr->src[0].ssa, 1);
            src = nir_vec4(b, undef, undef, x, y);
            mask = !!(mask & WRITEMASK_X) << 2 | !!(mask & WRITEMASK_Y) << 3;
         } else {
            nir_intrinsic_set_component(intr, 2 + component);
            out_of_bounds = component > 1;
         }
         break;
      default:
         unreachable("Bogus tessellation domain");
      }
   } else {
      return false;
   }

   if (out_of_bounds) {
      if (!write)
         nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_ssa_undef(b, 1, 32));
      nir_instr_remove(&intr->instr);
   } else if (write) {
      nir_intrinsic_set_write_mask(intr, mask);

      if (src) {
         nir_instr_rewrite_src(&intr->instr, &intr->src[0],
                               nir_src_for_ssa(src));
      }
   } else if (dest) {
      nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, dest,
                                     dest->parent_instr);
   }

   return true;
}

static bool
is_input(nir_intrinsic_instr *intrin)
{
   return intrin->intrinsic == nir_intrinsic_load_input ||
          intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
          intrin->intrinsic == nir_intrinsic_load_interpolated_input;
}

static bool
is_output(nir_intrinsic_instr *intrin)
{
   return intrin->intrinsic == nir_intrinsic_load_output ||
          intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
          intrin->intrinsic == nir_intrinsic_store_output ||
          intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
}


static bool
remap_patch_urb_offsets(nir_block *block, nir_builder *b,
                        const struct brw_vue_map *vue_map,
                        enum tess_primitive_mode tes_primitive_mode)
{
   nir_foreach_instr_safe(instr, block) {
      if (instr->type != nir_instr_type_intrinsic)
         continue;

      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

      gl_shader_stage stage = b->shader->info.stage;

      if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) ||
          (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) {

         if (remap_tess_levels(b, intrin, tes_primitive_mode))
            continue;

         int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]];
         assert(vue_slot != -1);
         intrin->const_index[0] = vue_slot;

         nir_src *vertex = nir_get_io_arrayed_index_src(intrin);
         if (vertex) {
            if (nir_src_is_const(*vertex)) {
               intrin->const_index[0] += nir_src_as_uint(*vertex) *
                                         vue_map->num_per_vertex_slots;
            } else {
               b->cursor = nir_before_instr(&intrin->instr);

               /* Multiply by the number of per-vertex slots. */
               nir_ssa_def *vertex_offset =
                  nir_imul(b,
                           nir_ssa_for_src(b, *vertex, 1),
                           nir_imm_int(b,
                                       vue_map->num_per_vertex_slots));

               /* Add it to the existing offset */
               nir_src *offset = nir_get_io_offset_src(intrin);
               nir_ssa_def *total_offset =
                  nir_iadd(b, vertex_offset,
                           nir_ssa_for_src(b, *offset, 1));

               nir_instr_rewrite_src(&intrin->instr, offset,
                                     nir_src_for_ssa(total_offset));
            }
         }
      }
   }
   return true;
}

void
brw_nir_lower_vs_inputs(nir_shader *nir,
                        bool edgeflag_is_last,
                        const uint8_t *vs_attrib_wa_flags)
{
   /* Start with the location of the variable's base. */
   nir_foreach_shader_in_variable(var, nir)
      var->data.driver_location = var->data.location;

   /* Now use nir_lower_io to walk dereference chains.  Attribute arrays are
    * loaded as one vec4 or dvec4 per element (or matrix column), depending on
    * whether it is a double-precision type or not.
    */
   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
                nir_lower_io_lower_64bit_to_32);

   /* This pass needs actual constants */
   nir_opt_constant_folding(nir);

   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);

   brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags);

   /* The last step is to remap VERT_ATTRIB_* to actual registers */

   /* Whether or not we have any system generated values.  gl_DrawID is not
    * included here as it lives in its own vec4.
    */
   const bool has_sgvs =
      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);

   const unsigned num_inputs = util_bitcount64(nir->info.inputs_read);

   nir_foreach_function(function, nir) {
      if (!function->impl)
         continue;

      nir_builder b;
      nir_builder_init(&b, function->impl);

      nir_foreach_block(block, function->impl) {
         nir_foreach_instr_safe(instr, block) {
            if (instr->type != nir_instr_type_intrinsic)
               continue;

            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

            switch (intrin->intrinsic) {
            case nir_intrinsic_load_first_vertex:
            case nir_intrinsic_load_base_instance:
            case nir_intrinsic_load_vertex_id_zero_base:
            case nir_intrinsic_load_instance_id:
            case nir_intrinsic_load_is_indexed_draw:
            case nir_intrinsic_load_draw_id: {
               b.cursor = nir_after_instr(&intrin->instr);

               /* gl_VertexID and friends are stored by the VF as the last
                * vertex element.  We convert them to load_input intrinsics at
                * the right location.
                */
               nir_intrinsic_instr *load =
                  nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
               load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));

               nir_intrinsic_set_base(load, num_inputs);
               switch (intrin->intrinsic) {
               case nir_intrinsic_load_first_vertex:
                  nir_intrinsic_set_component(load, 0);
                  break;
               case nir_intrinsic_load_base_instance:
                  nir_intrinsic_set_component(load, 1);
                  break;
               case nir_intrinsic_load_vertex_id_zero_base:
                  nir_intrinsic_set_component(load, 2);
                  break;
               case nir_intrinsic_load_instance_id:
                  nir_intrinsic_set_component(load, 3);
                  break;
               case nir_intrinsic_load_draw_id:
               case nir_intrinsic_load_is_indexed_draw:
                  /* gl_DrawID and IsIndexedDraw are stored right after
                   * gl_VertexID and friends if any of them exist.
                   */
                  nir_intrinsic_set_base(load, num_inputs + has_sgvs);
                  if (intrin->intrinsic == nir_intrinsic_load_draw_id)
                     nir_intrinsic_set_component(load, 0);
                  else
                     nir_intrinsic_set_component(load, 1);
                  break;
               default:
                  unreachable("Invalid system value intrinsic");
               }

               load->num_components = 1;
               nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL);
               nir_builder_instr_insert(&b, &load->instr);

               nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
                                        &load->dest.ssa);
               nir_instr_remove(&intrin->instr);
               break;
            }

            case nir_intrinsic_load_input: {
               /* Attributes come in a contiguous block, ordered by their
                * gl_vert_attrib value.  That means we can compute the slot
                * number for an attribute by masking out the enabled attributes
                * before it and counting the bits.
                */
               int attr = nir_intrinsic_base(intrin);
               uint64_t inputs_read = nir->info.inputs_read;
               int slot = -1;
               if (edgeflag_is_last) {
                  inputs_read &= ~BITFIELD64_BIT(VERT_ATTRIB_EDGEFLAG);
                  if (attr == VERT_ATTRIB_EDGEFLAG)
                     slot = num_inputs - 1;
               }
               if (slot == -1)
                  slot = util_bitcount64(inputs_read &
                                         BITFIELD64_MASK(attr));
               nir_intrinsic_set_base(intrin, slot);
               break;
            }

            default:
               break; /* Nothing to do */
            }
         }
      }
   }
}

void
brw_nir_lower_vue_inputs(nir_shader *nir,
                         const struct brw_vue_map *vue_map)
{
   nir_foreach_shader_in_variable(var, nir)
      var->data.driver_location = var->data.location;

   /* Inputs are stored in vec4 slots, so use type_size_vec4(). */
   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
                nir_lower_io_lower_64bit_to_32);

   /* This pass needs actual constants */
   nir_opt_constant_folding(nir);

   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);

   nir_foreach_function(function, nir) {
      if (!function->impl)
         continue;

      nir_foreach_block(block, function->impl) {
         nir_foreach_instr(instr, block) {
            if (instr->type != nir_instr_type_intrinsic)
               continue;

            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

            if (intrin->intrinsic == nir_intrinsic_load_input ||
                intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
               /* Offset 0 is the VUE header, which contains
                * VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
                * VARYING_SLOT_PSIZ [.w].
                */
               int varying = nir_intrinsic_base(intrin);
               int vue_slot;
               switch (varying) {
               case VARYING_SLOT_PSIZ:
                  nir_intrinsic_set_base(intrin, 0);
                  nir_intrinsic_set_component(intrin, 3);
                  break;

               default:
                  vue_slot = vue_map->varying_to_slot[varying];
                  assert(vue_slot != -1);
                  nir_intrinsic_set_base(intrin, vue_slot);
                  break;
               }
            }
         }
      }
   }
}

void
brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map)
{
   nir_foreach_shader_in_variable(var, nir)
      var->data.driver_location = var->data.location;

   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
                nir_lower_io_lower_64bit_to_32);

   /* This pass needs actual constants */
   nir_opt_constant_folding(nir);

   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);

   nir_foreach_function(function, nir) {
      if (function->impl) {
         nir_builder b;
         nir_builder_init(&b, function->impl);
         nir_foreach_block(block, function->impl) {
            remap_patch_urb_offsets(block, &b, vue_map,
                                    nir->info.tess._primitive_mode);
         }
      }
   }
}

static bool
lower_barycentric_per_sample(nir_builder *b,
                             nir_instr *instr,
                             UNUSED void *cb_data)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
   if (intrin->intrinsic != nir_intrinsic_load_barycentric_pixel &&
       intrin->intrinsic != nir_intrinsic_load_barycentric_centroid)
      return false;

   b->cursor = nir_before_instr(instr);
   nir_ssa_def *centroid =
      nir_load_barycentric(b, nir_intrinsic_load_barycentric_sample,
                           nir_intrinsic_interp_mode(intrin));
   nir_ssa_def_rewrite_uses(&intrin->dest.ssa, centroid);
   nir_instr_remove(instr);
   return true;
}

/**
 * Convert interpolateAtOffset() offsets from [-0.5, +0.5] floating point
 * offsets to integer [-8, +7] offsets (in units of 1/16th of a pixel).
 *
 * We clamp to +7/16 on the upper end of the range, since +0.5 isn't
 * representable in a S0.4 value; a naive conversion would give us -8/16,
 * which is the opposite of what was intended.
 *
 * This is allowed by GL_ARB_gpu_shader5's quantization rules:
 *
 *    "Not all values of <offset> may be supported; x and y offsets may
 *     be rounded to fixed-point values with the number of fraction bits
 *     given by the implementation-dependent constant
 *     FRAGMENT_INTERPOLATION_OFFSET_BITS."
 */
static bool
lower_barycentric_at_offset(nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

   if (intrin->intrinsic != nir_intrinsic_load_barycentric_at_offset)
      return false;

   b->cursor = nir_before_instr(instr);

   assert(intrin->src[0].ssa);
   nir_ssa_def *offset =
      nir_imin(b, nir_imm_int(b, 7),
               nir_f2i32(b, nir_fmul(b, nir_imm_float(b, 16),
                                     intrin->src[0].ssa)));

   nir_instr_rewrite_src(instr, &intrin->src[0], nir_src_for_ssa(offset));

   return true;
}

void
brw_nir_lower_fs_inputs(nir_shader *nir,
                        const struct intel_device_info *devinfo,
                        const struct brw_wm_prog_key *key)
{
   nir_foreach_shader_in_variable(var, nir) {
      var->data.driver_location = var->data.location;

      /* Apply default interpolation mode.
       *
       * Everything defaults to smooth except for the legacy GL color
       * built-in variables, which might be flat depending on API state.
       */
      if (var->data.interpolation == INTERP_MODE_NONE) {
         const bool flat = key->flat_shade &&
            (var->data.location == VARYING_SLOT_COL0 ||
             var->data.location == VARYING_SLOT_COL1);

         var->data.interpolation = flat ? INTERP_MODE_FLAT
                                        : INTERP_MODE_SMOOTH;
      }

      /* On Ironlake and below, there is only one interpolation mode.
       * Centroid interpolation doesn't mean anything on this hardware --
       * there is no multisampling.
       */
      if (devinfo->ver < 6) {
         var->data.centroid = false;
         var->data.sample = false;
      }
   }

   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
                nir_lower_io_lower_64bit_to_32);
   if (devinfo->ver >= 11)
      nir_lower_interpolation(nir, ~0);

   if (key->multisample_fbo == BRW_NEVER) {
      nir_lower_single_sampled(nir);
   } else if (key->persample_interp == BRW_ALWAYS) {
      nir_shader_instructions_pass(nir, lower_barycentric_per_sample,
                                   nir_metadata_block_index |
                                   nir_metadata_dominance,
                                   NULL);
   }

   nir_shader_instructions_pass(nir, lower_barycentric_at_offset,
                                nir_metadata_block_index |
                                nir_metadata_dominance,
                                NULL);

   /* This pass needs actual constants */
   nir_opt_constant_folding(nir);

   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
}

void
brw_nir_lower_vue_outputs(nir_shader *nir)
{
   nir_foreach_shader_out_variable(var, nir) {
      var->data.driver_location = var->data.location;
   }

   nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
                nir_lower_io_lower_64bit_to_32);
}

void
brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map,
                          enum tess_primitive_mode tes_primitive_mode)
{
   nir_foreach_shader_out_variable(var, nir) {
      var->data.driver_location = var->data.location;
   }

   nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
                nir_lower_io_lower_64bit_to_32);

   /* This pass needs actual constants */
   nir_opt_constant_folding(nir);

   nir_io_add_const_offset_to_base(nir, nir_var_shader_out);

   nir_foreach_function(function, nir) {
      if (function->impl) {
         nir_builder b;
         nir_builder_init(&b, function->impl);
         nir_foreach_block(block, function->impl) {
            remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode);
         }
      }
   }
}

void
brw_nir_lower_fs_outputs(nir_shader *nir)
{
   nir_foreach_shader_out_variable(var, nir) {
      var->data.driver_location =
         SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
         SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
   }

   nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0);
}

#define OPT(pass, ...) ({                                  \
   bool this_progress = false;                             \
   NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__);      \
   if (this_progress)                                      \
      progress = true;                                     \
   this_progress;                                          \
})

void
brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler,
                 bool is_scalar)
{
   bool progress;
   unsigned lower_flrp =
      (nir->options->lower_flrp16 ? 16 : 0) |
      (nir->options->lower_flrp32 ? 32 : 0) |
      (nir->options->lower_flrp64 ? 64 : 0);

   do {
      progress = false;
      /* This pass is causing problems with types used by OpenCL :
       *    https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/13955
       *
       * Running with it disabled made no difference in the resulting assembly
       * code.
       */
      if (nir->info.stage != MESA_SHADER_KERNEL)
         OPT(nir_split_array_vars, nir_var_function_temp);
      OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
      OPT(nir_opt_deref);
      if (OPT(nir_opt_memcpy))
         OPT(nir_split_var_copies);
      OPT(nir_lower_vars_to_ssa);
      if (!nir->info.var_copies_lowered) {
         /* Only run this pass if nir_lower_var_copies was not called
          * yet. That would lower away any copy_deref instructions and we
          * don't want to introduce any more.
          */
         OPT(nir_opt_find_array_copies);
      }
      OPT(nir_opt_copy_prop_vars);
      OPT(nir_opt_dead_write_vars);
      OPT(nir_opt_combine_stores, nir_var_all);

      OPT(nir_opt_ray_queries);
      OPT(nir_opt_ray_query_ranges);

      if (is_scalar) {
         OPT(nir_lower_alu_to_scalar, NULL, NULL);
      } else {
         OPT(nir_opt_shrink_stores, true);
         OPT(nir_opt_shrink_vectors);
      }

      OPT(nir_copy_prop);

      if (is_scalar) {
         OPT(nir_lower_phis_to_scalar, false);
      }

      OPT(nir_copy_prop);
      OPT(nir_opt_dce);
      OPT(nir_opt_cse);
      OPT(nir_opt_combine_stores, nir_var_all);

      /* Passing 0 to the peephole select pass causes it to convert
       * if-statements that contain only move instructions in the branches
       * regardless of the count.
       *
       * Passing 1 to the peephole select pass causes it to convert
       * if-statements that contain at most a single ALU instruction (total)
       * in both branches.  Before Gfx6, some math instructions were
       * prohibitively expensive and the results of compare operations need an
       * extra resolve step.  For these reasons, this pass is more harmful
       * than good on those platforms.
       *
       * For indirect loads of uniforms (push constants), we assume that array
       * indices will nearly always be in bounds and the cost of the load is
       * low.  Therefore there shouldn't be a performance benefit to avoid it.
       * However, in vec4 tessellation shaders, these loads operate by
       * actually pulling from memory.
       */
      const bool is_vec4_tessellation = !is_scalar &&
         (nir->info.stage == MESA_SHADER_TESS_CTRL ||
          nir->info.stage == MESA_SHADER_TESS_EVAL);
      OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false);
      OPT(nir_opt_peephole_select, 8, !is_vec4_tessellation,
          compiler->devinfo->ver >= 6);

      OPT(nir_opt_intrinsics);
      OPT(nir_opt_idiv_const, 32);
      OPT(nir_opt_algebraic);
      OPT(nir_lower_constant_convert_alu_types);
      OPT(nir_opt_constant_folding);

      if (lower_flrp != 0) {
         if (OPT(nir_lower_flrp,
                 lower_flrp,
                 false /* always_precise */)) {
            OPT(nir_opt_constant_folding);
         }

         /* Nothing should rematerialize any flrps, so we only need to do this
          * lowering once.
          */
         lower_flrp = 0;
      }

      OPT(nir_opt_dead_cf);
      if (OPT(nir_opt_trivial_continues)) {
         /* If nir_opt_trivial_continues makes progress, then we need to clean
          * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
          * to make progress.
          */
         OPT(nir_copy_prop);
         OPT(nir_opt_dce);
      }
      OPT(nir_opt_if, nir_opt_if_optimize_phi_true_false);
      OPT(nir_opt_conditional_discard);
      if (nir->options->max_unroll_iterations != 0) {
         OPT(nir_opt_loop_unroll);
      }
      OPT(nir_opt_remove_phis);
      OPT(nir_opt_gcm, false);
      OPT(nir_opt_undef);
      OPT(nir_lower_pack);
   } while (progress);

   /* Workaround Gfxbench unused local sampler variable which will trigger an
    * assert in the opt_large_constants pass.
    */
   OPT(nir_remove_dead_variables, nir_var_function_temp, NULL);
}

static unsigned
lower_bit_size_callback(const nir_instr *instr, UNUSED void *data)
{
   const struct brw_compiler *compiler = (const struct brw_compiler *) data;
   const struct intel_device_info *devinfo = compiler->devinfo;

   switch (instr->type) {
   case nir_instr_type_alu: {
      nir_alu_instr *alu = nir_instr_as_alu(instr);
      switch (alu->op) {
      case nir_op_bit_count:
      case nir_op_ufind_msb:
      case nir_op_ifind_msb:
      case nir_op_find_lsb:
         /* These are handled specially because the destination is always
          * 32-bit and so the bit size of the instruction is given by the
          * source.
          */
         assert(alu->src[0].src.is_ssa);
         return alu->src[0].src.ssa->bit_size == 32 ? 0 : 32;
      default:
         break;
      }

      assert(alu->dest.dest.is_ssa);
      if (alu->dest.dest.ssa.bit_size >= 32)
         return 0;

      /* Note: nir_op_iabs and nir_op_ineg are not lowered here because the
       * 8-bit ABS or NEG instruction should eventually get copy propagated
       * into the MOV that does the type conversion.  This results in far
       * fewer MOV instructions.
       */
      switch (alu->op) {
      case nir_op_idiv:
      case nir_op_imod:
      case nir_op_irem:
      case nir_op_udiv:
      case nir_op_umod:
      case nir_op_fceil:
      case nir_op_ffloor:
      case nir_op_ffract:
      case nir_op_fround_even:
      case nir_op_ftrunc:
         return 32;
      case nir_op_frcp:
      case nir_op_frsq:
      case nir_op_fsqrt:
      case nir_op_fpow:
      case nir_op_fexp2:
      case nir_op_flog2:
      case nir_op_fsin:
      case nir_op_fcos:
         return devinfo->ver < 9 ? 32 : 0;
      case nir_op_isign:
         assert(!"Should have been lowered by nir_opt_algebraic.");
         return 0;
      default:
         if (nir_op_infos[alu->op].num_inputs >= 2 &&
             alu->dest.dest.ssa.bit_size == 8)
            return 16;

         if (nir_alu_instr_is_comparison(alu) &&
             alu->src[0].src.ssa->bit_size == 8)
            return 16;

         return 0;
      }
      break;
   }

   case nir_instr_type_intrinsic: {
      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
      switch (intrin->intrinsic) {
      case nir_intrinsic_read_invocation:
      case nir_intrinsic_read_first_invocation:
      case nir_intrinsic_vote_feq:
      case nir_intrinsic_vote_ieq:
      case nir_intrinsic_shuffle:
      case nir_intrinsic_shuffle_xor:
      case nir_intrinsic_shuffle_up:
      case nir_intrinsic_shuffle_down:
      case nir_intrinsic_quad_broadcast:
      case nir_intrinsic_quad_swap_horizontal:
      case nir_intrinsic_quad_swap_vertical:
      case nir_intrinsic_quad_swap_diagonal:
         if (intrin->src[0].ssa->bit_size == 8)
            return 16;
         return 0;

      case nir_intrinsic_reduce:
      case nir_intrinsic_inclusive_scan:
      case nir_intrinsic_exclusive_scan:
         /* There are a couple of register region issues that make things
          * complicated for 8-bit types:
          *
          *    1. Only raw moves are allowed to write to a packed 8-bit
          *       destination.
          *    2. If we use a strided destination, the efficient way to do
          *       scan operations ends up using strides that are too big to
          *       encode in an instruction.
          *
          * To get around these issues, we just do all 8-bit scan operations
          * in 16 bits.  It's actually fewer instructions than what we'd have
          * to do if we were trying to do it in native 8-bit types and the
          * results are the same once we truncate to 8 bits at the end.
          */
         if (intrin->dest.ssa.bit_size == 8)
            return 16;
         return 0;

      default:
         return 0;
      }
      break;
   }

   case nir_instr_type_phi: {
      nir_phi_instr *phi = nir_instr_as_phi(instr);
      if (phi->dest.ssa.bit_size == 8)
         return 16;
      return 0;
   }

   default:
      return 0;
   }
}

/* On gfx12.5+, if the offsets are not both constant and in the {-8,7} range,
 * we will have nir_lower_tex() lower the source offset by returning true from
 * this filter function.
 */
static bool
lower_xehp_tg4_offset_filter(const nir_instr *instr, UNUSED const void *data)
{
   if (instr->type != nir_instr_type_tex)
      return false;

   nir_tex_instr *tex = nir_instr_as_tex(instr);

   if (tex->op != nir_texop_tg4)
      return false;

   int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset);
   if (offset_index < 0)
      return false;

   if (!nir_src_is_const(tex->src[offset_index].src))
      return true;

   int64_t offset_x = nir_src_comp_as_int(tex->src[offset_index].src, 0);
   int64_t offset_y = nir_src_comp_as_int(tex->src[offset_index].src, 1);

   return offset_x < -8 || offset_x > 7 || offset_y < -8 || offset_y > 7;
}

/* Does some simple lowering and runs the standard suite of optimizations
 *
 * This is intended to be called more-or-less directly after you get the
 * shader out of GLSL or some other source.  While it is geared towards i965,
 * it is not at all generator-specific except for the is_scalar flag.  Even
 * there, it is safe to call with is_scalar = false for a shader that is
 * intended for the FS backend as long as nir_optimize is called again with
 * is_scalar = true to scalarize everything prior to code gen.
 */
void
brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
                   const struct brw_nir_compiler_opts *opts)
{
   const struct intel_device_info *devinfo = compiler->devinfo;
   UNUSED bool progress; /* Written by OPT */

   const bool is_scalar = compiler->scalar_stage[nir->info.stage];

   nir_validate_ssa_dominance(nir, "before brw_preprocess_nir");

   OPT(nir_lower_frexp);

   OPT(nir_lower_legacy_atomics);

   if (is_scalar) {
      OPT(nir_lower_alu_to_scalar, NULL, NULL);
   }

   if (nir->info.stage == MESA_SHADER_GEOMETRY)
      OPT(nir_lower_gs_intrinsics, 0);

   /* See also brw_nir_trig_workarounds.py */
   if (compiler->precise_trig &&
       !(devinfo->ver >= 10 || devinfo->platform == INTEL_PLATFORM_KBL))
      OPT(brw_nir_apply_trig_workarounds);

   /* This workaround existing for performance reasons. Since it requires not
    * setting RENDER_SURFACE_STATE::SurfaceArray when the array length is 1,
    * we're loosing the HW robustness feature in that case.
    *
    * So when robust image access is enabled, just avoid the workaround.
    */
   if (devinfo->ver >= 12 && !opts->robust_image_access)
      OPT(brw_nir_clamp_image_1d_2d_array_sizes);

   const nir_lower_tex_options tex_options = {
      .lower_txp = ~0,
      .lower_txf_offset = true,
      .lower_rect_offset = true,
      .lower_txd_cube_map = true,
      /* For below, See bspec 45942, "Enable new message layout for cube array" */
      .lower_txd_3d = devinfo->verx10 >= 125,
      .lower_txd_array = devinfo->verx10 >= 125,
      .lower_txb_shadow_clamp = true,
      .lower_txd_shadow_clamp = true,
      .lower_txd_offset_clamp = true,
      .lower_tg4_offsets = true,
      .lower_txs_lod = true, /* Wa_14012320009 */
      .lower_offset_filter =
         devinfo->verx10 >= 125 ? lower_xehp_tg4_offset_filter : NULL,
      .lower_invalid_implicit_lod = true,
   };

   OPT(nir_lower_tex, &tex_options);
   OPT(nir_normalize_cubemap_coords);

   OPT(nir_lower_global_vars_to_local);

   OPT(nir_split_var_copies);
   OPT(nir_split_struct_vars, nir_var_function_temp);

   brw_nir_optimize(nir, compiler, is_scalar);

   OPT(nir_lower_doubles, opts->softfp64, nir->options->lower_doubles_options);
   if (OPT(nir_lower_int64)) {
      OPT(nir_opt_algebraic);
      OPT(nir_lower_doubles, opts->softfp64,
          nir->options->lower_doubles_options);
   }

   OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);

   /* Lower a bunch of stuff */
   OPT(nir_lower_var_copies);

   /* This needs to be run after the first optimization pass but before we
    * lower indirect derefs away
    */
   if (compiler->supports_shader_constants) {
      OPT(nir_opt_large_constants, NULL, 32);
   }

   if (is_scalar) {
      OPT(nir_lower_load_const_to_scalar);
   }

   OPT(nir_lower_system_values);
   nir_lower_compute_system_values_options lower_csv_options = {
      .has_base_workgroup_id = nir->info.stage == MESA_SHADER_COMPUTE,
   };
   OPT(nir_lower_compute_system_values, &lower_csv_options);

   const nir_lower_subgroups_options subgroups_options = {
      .ballot_bit_size = 32,
      .ballot_components = 1,
      .lower_to_scalar = true,
      .lower_vote_trivial = !is_scalar,
      .lower_relative_shuffle = true,
      .lower_quad_broadcast_dynamic = true,
      .lower_elect = true,
   };
   OPT(nir_lower_subgroups, &subgroups_options);

   nir_variable_mode indirect_mask =
      brw_nir_no_indirect_mask(compiler, nir->info.stage);
   OPT(nir_lower_indirect_derefs, indirect_mask, UINT32_MAX);

   /* Even in cases where we can handle indirect temporaries via scratch, we
    * it can still be expensive.  Lower indirects on small arrays to
    * conditional load/stores.
    *
    * The threshold of 16 was chosen semi-arbitrarily.  The idea is that an
    * indirect on an array of 16 elements is about 30 instructions at which
    * point, you may be better off doing a send.  With a SIMD8 program, 16
    * floats is 1/8 of the entire register file.  Any array larger than that
    * is likely to cause pressure issues.  Also, this value is sufficiently
    * high that the benchmarks known to suffer from large temporary array
    * issues are helped but nothing else in shader-db is hurt except for maybe
    * that one kerbal space program shader.
    */
   if (is_scalar && !(indirect_mask & nir_var_function_temp))
      OPT(nir_lower_indirect_derefs, nir_var_function_temp, 16);

   /* Lower array derefs of vectors for SSBO and UBO loads.  For both UBOs and
    * SSBOs, our back-end is capable of loading an entire vec4 at a time and
    * we would like to take advantage of that whenever possible regardless of
    * whether or not the app gives us full loads.  This should allow the
    * optimizer to combine UBO and SSBO load operations and save us some send
    * messages.
    */
   OPT(nir_lower_array_deref_of_vec,
       nir_var_mem_ubo | nir_var_mem_ssbo,
       nir_lower_direct_array_deref_of_vec_load);

   /* Get rid of split copies */
   brw_nir_optimize(nir, compiler, is_scalar);
}

static bool
brw_nir_zero_inputs_instr(struct nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
   if (intrin->intrinsic != nir_intrinsic_load_deref)
      return false;

   nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
   if (!nir_deref_mode_is(deref, nir_var_shader_in))
      return false;

   if (deref->deref_type != nir_deref_type_var)
      return false;

   nir_variable *var = deref->var;

   uint64_t zero_inputs = *(uint64_t *)data;
   if (!(BITFIELD64_BIT(var->data.location) & zero_inputs))
      return false;

   b->cursor = nir_before_instr(instr);

   nir_ssa_def *zero = nir_imm_zero(b, 1, 32);

   nir_ssa_def_rewrite_uses(&intrin->dest.ssa, zero);

   nir_instr_remove(instr);

   return true;
}

static bool
brw_nir_zero_inputs(nir_shader *shader, uint64_t *zero_inputs)
{
   return nir_shader_instructions_pass(shader, brw_nir_zero_inputs_instr,
         nir_metadata_block_index | nir_metadata_dominance, zero_inputs);
}

/* Code for Wa_14015590813 may have created input/output variables beyond
 * VARYING_SLOT_MAX and removed uses of variables below VARYING_SLOT_MAX.
 * Clean it up, so they all stay below VARYING_SLOT_MAX.
 */
static void
brw_mesh_compact_io(nir_shader *mesh, nir_shader *frag)
{
   gl_varying_slot mapping[VARYING_SLOT_MAX] = {0, };
   gl_varying_slot cur = VARYING_SLOT_VAR0;
   bool compact = false;

   nir_foreach_shader_out_variable(var, mesh) {
      gl_varying_slot location = var->data.location;
      if (location < VARYING_SLOT_VAR0)
         continue;
      assert(location < ARRAY_SIZE(mapping));

      const struct glsl_type *type = var->type;
      if (nir_is_arrayed_io(var, MESA_SHADER_MESH) || var->data.per_view) {
         assert(glsl_type_is_array(type));
         type = glsl_get_array_element(type);
      }

      if (mapping[location])
         continue;

      unsigned num_slots = glsl_count_attribute_slots(type, false);

      compact |= location + num_slots > VARYING_SLOT_MAX;

      mapping[location] = cur;
      cur += num_slots;
   }

   if (!compact)
      return;

   /* The rest of this function should be hit only for Wa_14015590813. */

   nir_foreach_shader_out_variable(var, mesh) {
      gl_varying_slot location = var->data.location;
      if (location < VARYING_SLOT_VAR0)
         continue;
      location = mapping[location];
      if (location == 0)
         continue;
      var->data.location = location;
   }

   nir_foreach_shader_in_variable(var, frag) {
      gl_varying_slot location = var->data.location;
      if (location < VARYING_SLOT_VAR0)
         continue;
      location = mapping[location];
      if (location == 0)
         continue;
      var->data.location = location;
   }

   nir_shader_gather_info(mesh, nir_shader_get_entrypoint(mesh));
   nir_shader_gather_info(frag, nir_shader_get_entrypoint(frag));

   if (should_print_nir(mesh)) {
      printf("%s\n", __func__);
      nir_print_shader(mesh, stdout);
   }
   if (should_print_nir(frag)) {
      printf("%s\n", __func__);
      nir_print_shader(frag, stdout);
   }
}

void
brw_nir_link_shaders(const struct brw_compiler *compiler,
                     nir_shader *producer, nir_shader *consumer)
{
   if (producer->info.stage == MESA_SHADER_MESH &&
       consumer->info.stage == MESA_SHADER_FRAGMENT) {
      uint64_t fs_inputs = 0, ms_outputs = 0;
      /* gl_MeshPerPrimitiveNV[].gl_ViewportIndex, gl_PrimitiveID and gl_Layer
       * are per primitive, but fragment shader does not have them marked as
       * such. Add the annotation here.
       */
      nir_foreach_shader_in_variable(var, consumer) {
         fs_inputs |= BITFIELD64_BIT(var->data.location);

         switch (var->data.location) {
            case VARYING_SLOT_LAYER:
            case VARYING_SLOT_PRIMITIVE_ID:
            case VARYING_SLOT_VIEWPORT:
               var->data.per_primitive = 1;
               break;
            default:
               continue;
         }
      }

      nir_foreach_shader_out_variable(var, producer)
         ms_outputs |= BITFIELD64_BIT(var->data.location);

      uint64_t zero_inputs = ~ms_outputs & fs_inputs;
      zero_inputs &= BITFIELD64_BIT(VARYING_SLOT_LAYER) |
                     BITFIELD64_BIT(VARYING_SLOT_VIEWPORT);

      if (zero_inputs)
         NIR_PASS(_, consumer, brw_nir_zero_inputs, &zero_inputs);
   }

   nir_lower_io_arrays_to_elements(producer, consumer);
   nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
   nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");

   const bool p_is_scalar = compiler->scalar_stage[producer->info.stage];
   const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage];

   if (p_is_scalar && c_is_scalar) {
      NIR_PASS(_, producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
      NIR_PASS(_, consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
      brw_nir_optimize(producer, compiler, p_is_scalar);
      brw_nir_optimize(consumer, compiler, c_is_scalar);
   }

   if (nir_link_opt_varyings(producer, consumer))
      brw_nir_optimize(consumer, compiler, c_is_scalar);

   NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
   NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);

   if (nir_remove_unused_varyings(producer, consumer)) {
      if (should_print_nir(producer)) {
         printf("nir_remove_unused_varyings\n");
         nir_print_shader(producer, stdout);
      }
      if (should_print_nir(consumer)) {
         printf("nir_remove_unused_varyings\n");
         nir_print_shader(consumer, stdout);
      }

      NIR_PASS(_, producer, nir_lower_global_vars_to_local);
      NIR_PASS(_, consumer, nir_lower_global_vars_to_local);

      /* The backend might not be able to handle indirects on
       * temporaries so we need to lower indirects on any of the
       * varyings we have demoted here.
       */
      NIR_PASS(_, producer, nir_lower_indirect_derefs,
                  brw_nir_no_indirect_mask(compiler, producer->info.stage),
                  UINT32_MAX);
      NIR_PASS(_, consumer, nir_lower_indirect_derefs,
                  brw_nir_no_indirect_mask(compiler, consumer->info.stage),
                  UINT32_MAX);

      brw_nir_optimize(producer, compiler, p_is_scalar);
      brw_nir_optimize(consumer, compiler, c_is_scalar);

      if (producer->info.stage == MESA_SHADER_MESH &&
            consumer->info.stage == MESA_SHADER_FRAGMENT) {
         brw_mesh_compact_io(producer, consumer);
      }
   }

   NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out);

   if (producer->info.stage == MESA_SHADER_TESS_CTRL &&
       producer->options->vectorize_tess_levels)
   NIR_PASS_V(producer, nir_vectorize_tess_levels);

   NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out);
   NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in);

   if (producer->info.stage != MESA_SHADER_TESS_CTRL &&
       producer->info.stage != MESA_SHADER_MESH &&
       producer->info.stage != MESA_SHADER_TASK) {
      /* Calling lower_io_to_vector creates output variable writes with
       * write-masks.  On non-TCS outputs, the back-end can't handle it and we
       * need to call nir_lower_io_to_temporaries to get rid of them.  This,
       * in turn, creates temporary variables and extra copy_deref intrinsics
       * that we need to clean up.
       *
       * Note Mesh/Task don't support I/O as temporaries (I/O is shared
       * between whole workgroup, possibly using multiple HW threads). For
       * those write-mask in output is handled by I/O lowering.
       */
      NIR_PASS_V(producer, nir_lower_io_to_temporaries,
                 nir_shader_get_entrypoint(producer), true, false);
      NIR_PASS(_, producer, nir_lower_global_vars_to_local);
      NIR_PASS(_, producer, nir_split_var_copies);
      NIR_PASS(_, producer, nir_lower_var_copies);
   }
}

bool
brw_nir_should_vectorize_mem(unsigned align_mul, unsigned align_offset,
                             unsigned bit_size,
                             unsigned num_components,
                             nir_intrinsic_instr *low,
                             nir_intrinsic_instr *high,
                             void *data)
{
   /* Don't combine things to generate 64-bit loads/stores.  We have to split
    * those back into 32-bit ones anyway and UBO loads aren't split in NIR so
    * we don't want to make a mess for the back-end.
    */
   if (bit_size > 32)
      return false;

   if (low->intrinsic == nir_intrinsic_load_global_const_block_intel ||
       low->intrinsic == nir_intrinsic_load_ssbo_uniform_block_intel ||
       low->intrinsic == nir_intrinsic_load_shared_uniform_block_intel) {
      if (num_components > 4) {
         if (!util_is_power_of_two_nonzero(num_components))
            return false;

         if (bit_size != 32)
            return false;

         if (num_components > 32)
            return false;
      }
   } else {
      /* We can handle at most a vec4 right now.  Anything bigger would get
       * immediately split by brw_nir_lower_mem_access_bit_sizes anyway.
       */
      if (num_components > 4)
         return false;
   }


   uint32_t align;
   if (align_offset)
      align = 1 << (ffs(align_offset) - 1);
   else
      align = align_mul;

   if (align < bit_size / 8)
      return false;

   return true;
}

static
bool combine_all_memory_barriers(nir_intrinsic_instr *a,
                                 nir_intrinsic_instr *b,
                                 void *data)
{
   /* Only combine pure memory barriers */
   if ((nir_intrinsic_execution_scope(a) != NIR_SCOPE_NONE) ||
       (nir_intrinsic_execution_scope(b) != NIR_SCOPE_NONE))
      return false;

   /* Translation to backend IR will get rid of modes we don't care about, so
    * no harm in always combining them.
    *
    * TODO: While HW has only ACQUIRE|RELEASE fences, we could improve the
    * scheduling so that it can take advantage of the different semantics.
    */
   nir_intrinsic_set_memory_modes(a, nir_intrinsic_memory_modes(a) |
                                     nir_intrinsic_memory_modes(b));
   nir_intrinsic_set_memory_semantics(a, nir_intrinsic_memory_semantics(a) |
                                         nir_intrinsic_memory_semantics(b));
   nir_intrinsic_set_memory_scope(a, MAX2(nir_intrinsic_memory_scope(a),
                                          nir_intrinsic_memory_scope(b)));
   return true;
}

static nir_mem_access_size_align
get_mem_access_size_align(nir_intrinsic_op intrin, uint8_t bytes,
                          uint32_t align_mul, uint32_t align_offset,
                          bool offset_is_const, const void *cb_data)
{
   const uint32_t align = nir_combined_align(align_mul, align_offset);

   switch (intrin) {
   case nir_intrinsic_load_ssbo:
   case nir_intrinsic_load_shared:
   case nir_intrinsic_load_scratch:
      /* The offset is constant so we can use a 32-bit load and just shift it
       * around as needed.
       */
      if (align < 4 && offset_is_const) {
         assert(util_is_power_of_two_nonzero(align_mul) && align_mul >= 4);
         const unsigned pad = align_offset % 4;
         const unsigned comps32 = MIN2(DIV_ROUND_UP(bytes + pad, 4), 4);
         return (nir_mem_access_size_align) {
            .bit_size = 32,
            .num_components = comps32,
            .align = 4,
         };
      }
      break;

   case nir_intrinsic_load_task_payload:
      if (bytes < 4 || align < 4) {
         return (nir_mem_access_size_align) {
            .bit_size = 32,
            .num_components = 1,
            .align = 4,
         };
      }
      break;

   default:
      break;
   }

   const bool is_load = nir_intrinsic_infos[intrin].has_dest;
   const bool is_scratch = intrin == nir_intrinsic_load_scratch ||
                           intrin == nir_intrinsic_store_scratch;

   if (align < 4 || bytes < 4) {
      /* Choose a byte, word, or dword */
      bytes = MIN2(bytes, 4);
      if (bytes == 3)
         bytes = is_load ? 4 : 2;

      if (is_scratch) {
         /* The way scratch address swizzling works in the back-end, it
          * happens at a DWORD granularity so we can't have a single load
          * or store cross a DWORD boundary.
          */
         if ((align_offset % 4) + bytes > MIN2(align_mul, 4))
            bytes = MIN2(align_mul, 4) - (align_offset % 4);

         /* Must be a power of two */
         if (bytes == 3)
            bytes = 2;
      }

      return (nir_mem_access_size_align) {
         .bit_size = bytes * 8,
         .num_components = 1,
         .align = 1,
      };
   } else {
      bytes = MIN2(bytes, 16);
      return (nir_mem_access_size_align) {
         .bit_size = 32,
         .num_components = is_scratch ? 1 :
                           is_load ? DIV_ROUND_UP(bytes, 4) : bytes / 4,
         .align = 4,
      };
   }
}

static void
brw_vectorize_lower_mem_access(nir_shader *nir,
                               const struct brw_compiler *compiler,
                               bool is_scalar,
                               bool robust_buffer_access)
{
   bool progress = false;

   if (is_scalar) {
      nir_load_store_vectorize_options options = {
         .modes = nir_var_mem_ubo | nir_var_mem_ssbo |
                  nir_var_mem_global | nir_var_mem_shared |
                  nir_var_mem_task_payload,
         .callback = brw_nir_should_vectorize_mem,
         .robust_modes = (nir_variable_mode)0,
      };

      if (robust_buffer_access) {
         options.robust_modes = nir_var_mem_ubo | nir_var_mem_ssbo |
                                nir_var_mem_global;
      }

      OPT(nir_opt_load_store_vectorize, &options);

      /* Only run the blockify optimization on Gfx9+ because although prior HW
       * versions have support for block loads, they do have limitations on
       * alignment as well as requiring split sends which are not supported
       * there.
       */
      if (compiler->devinfo->ver >= 9) {
         /* Required for nir_divergence_analysis() */
         OPT(nir_convert_to_lcssa, true, true);

         /* When HW supports block loads, using the divergence analysis, try
          * to find uniform SSBO loads and turn them into block loads.
          *
          * Rerun the vectorizer after that to make the largest possible block
          * loads.
          *
          * This is a win on 2 fronts :
          *   - fewer send messages
          *   - reduced register pressure
          */
         nir_divergence_analysis(nir);
         if (OPT(brw_nir_blockify_uniform_loads, compiler->devinfo))
            OPT(nir_opt_load_store_vectorize, &options);
         OPT(nir_opt_remove_phis);
      }
   }

   OPT(nir_lower_mem_access_bit_sizes,
       nir_var_mem_ssbo |
       nir_var_mem_constant |
       nir_var_mem_task_payload |
       nir_var_shader_temp |
       nir_var_function_temp |
       nir_var_mem_global |
       nir_var_mem_shared,
       get_mem_access_size_align, NULL);

   while (progress) {
      progress = false;

      OPT(nir_lower_pack);
      OPT(nir_copy_prop);
      OPT(nir_opt_dce);
      OPT(nir_opt_cse);
      OPT(nir_opt_algebraic);
      OPT(nir_opt_constant_folding);
   }
}

static bool
nir_shader_has_local_variables(const nir_shader *nir)
{
   nir_foreach_function(func, nir) {
      if (func->impl && !exec_list_is_empty(&func->impl->locals))
         return true;
   }

   return false;
}

/* Prepare the given shader for codegen
 *
 * This function is intended to be called right before going into the actual
 * backend and is highly backend-specific.  Also, once this function has been
 * called on a shader, it will no longer be in SSA form so most optimizations
 * will not work.
 */
void
brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler,
                    bool is_scalar, bool debug_enabled,
                    bool robust_buffer_access)
{
   const struct intel_device_info *devinfo = compiler->devinfo;

   UNUSED bool progress; /* Written by OPT */

   OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);

   OPT(nir_opt_combine_barriers, combine_all_memory_barriers, NULL);

   do {
      progress = false;
      OPT(nir_opt_algebraic_before_ffma);
   } while (progress);

   if (devinfo->verx10 >= 125) {
      /* Lower integer division by constants before nir_lower_idiv. */
      OPT(nir_opt_idiv_const, 32);
      const nir_lower_idiv_options options = {
         .allow_fp16 = false
      };
      OPT(nir_lower_idiv, &options);
   }

   if (gl_shader_stage_can_set_fragment_shading_rate(nir->info.stage))
      NIR_PASS(_, nir, brw_nir_lower_shading_rate_output);

   brw_nir_optimize(nir, compiler, is_scalar);

   if (is_scalar && nir_shader_has_local_variables(nir)) {
      OPT(nir_lower_vars_to_explicit_types, nir_var_function_temp,
          glsl_get_natural_size_align_bytes);
      OPT(nir_lower_explicit_io, nir_var_function_temp,
          nir_address_format_32bit_offset);
      brw_nir_optimize(nir, compiler, is_scalar);
   }

   brw_vectorize_lower_mem_access(nir, compiler, is_scalar,
                                  robust_buffer_access);

   if (OPT(nir_lower_int64))
      brw_nir_optimize(nir, compiler, is_scalar);

   if (devinfo->ver >= 6) {
      /* Try and fuse multiply-adds, if successful, run shrink_vectors to
       * avoid peephole_ffma to generate things like this :
       *    vec16 ssa_0 = ...
       *    vec16 ssa_1 = fneg ssa_0
       *    vec1  ssa_2 = ffma ssa_1, ...
       *
       * We want this instead :
       *    vec16 ssa_0 = ...
       *    vec1  ssa_1 = fneg ssa_0.x
       *    vec1  ssa_2 = ffma ssa_1, ...
       */
      if (OPT(brw_nir_opt_peephole_ffma))
         OPT(nir_opt_shrink_vectors);
   }

   if (is_scalar)
      OPT(brw_nir_opt_peephole_imul32x16);

   if (OPT(nir_opt_comparison_pre)) {
      OPT(nir_copy_prop);
      OPT(nir_opt_dce);
      OPT(nir_opt_cse);

      /* Do the select peepehole again.  nir_opt_comparison_pre (combined with
       * the other optimization passes) will have removed at least one
       * instruction from one of the branches of the if-statement, so now it
       * might be under the threshold of conversion to bcsel.
       *
       * See brw_nir_optimize for the explanation of is_vec4_tessellation.
       */
      const bool is_vec4_tessellation = !is_scalar &&
         (nir->info.stage == MESA_SHADER_TESS_CTRL ||
          nir->info.stage == MESA_SHADER_TESS_EVAL);
      OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false);
      OPT(nir_opt_peephole_select, 1, is_vec4_tessellation,
          compiler->devinfo->ver >= 6);
   }

   do {
      progress = false;
      if (OPT(nir_opt_algebraic_late)) {
         /* At this late stage, anything that makes more constants will wreak
          * havok on the vec4 backend.  The handling of constants in the vec4
          * backend is not good.
          */
         if (is_scalar)
            OPT(nir_opt_constant_folding);

         OPT(nir_copy_prop);
         OPT(nir_opt_dce);
         OPT(nir_opt_cse);
      }
   } while (progress);


   OPT(brw_nir_lower_conversions);

   if (is_scalar)
      OPT(nir_lower_alu_to_scalar, NULL, NULL);

   while (OPT(nir_opt_algebraic_distribute_src_mods)) {
      if (is_scalar)
         OPT(nir_opt_constant_folding);

      OPT(nir_copy_prop);
      OPT(nir_opt_dce);
      OPT(nir_opt_cse);
   }

   OPT(nir_copy_prop);
   OPT(nir_opt_dce);
   OPT(nir_opt_move, nir_move_comparisons);
   OPT(nir_opt_dead_cf);

   NIR_PASS(_, nir, nir_convert_to_lcssa, true, true);
   NIR_PASS_V(nir, nir_divergence_analysis);

   /* TODO: Enable nir_opt_uniform_atomics on Gfx7.x too.
    * It currently fails Vulkan tests on Haswell for an unknown reason.
    *
    * TODO: Using this optimization on RT/OpenCL kernels also seems to cause
    *       issues. Until we can understand those issues, disable it.
    */
   bool opt_uniform_atomic_stage_allowed =
      devinfo->ver >= 8 &&
      nir->info.stage != MESA_SHADER_KERNEL &&
      nir->info.stage != MESA_SHADER_RAYGEN &&
      !gl_shader_stage_is_callable(nir->info.stage);

   if (opt_uniform_atomic_stage_allowed && OPT(nir_opt_uniform_atomics)) {
      const nir_lower_subgroups_options subgroups_options = {
         .ballot_bit_size = 32,
         .ballot_components = 1,
         .lower_elect = true,
      };
      OPT(nir_lower_subgroups, &subgroups_options);

      if (OPT(nir_lower_int64))
         brw_nir_optimize(nir, compiler, is_scalar);
   }

   /* Clean up LCSSA phis */
   OPT(nir_opt_remove_phis);

   OPT(nir_lower_bool_to_int32);
   OPT(nir_copy_prop);
   OPT(nir_opt_dce);

   OPT(nir_lower_locals_to_regs);

   if (unlikely(debug_enabled)) {
      /* Re-index SSA defs so we print more sensible numbers. */
      nir_foreach_function(function, nir) {
         if (function->impl)
            nir_index_ssa_defs(function->impl);
      }

      fprintf(stderr, "NIR (SSA form) for %s shader:\n",
              _mesa_shader_stage_to_string(nir->info.stage));
      nir_print_shader(nir, stderr);
   }

   nir_validate_ssa_dominance(nir, "before nir_convert_from_ssa");

   OPT(nir_convert_from_ssa, true);

   if (!is_scalar) {
      OPT(nir_move_vec_src_uses_to_dest);
      OPT(nir_lower_vec_to_movs, NULL, NULL);
   }

   OPT(nir_opt_dce);

   if (OPT(nir_opt_rematerialize_compares))
      OPT(nir_opt_dce);

   /* This is the last pass we run before we start emitting stuff.  It
    * determines when we need to insert boolean resolves on Gen <= 5.  We
    * run it last because it stashes data in instr->pass_flags and we don't
    * want that to be squashed by other NIR passes.
    */
   if (devinfo->ver <= 5)
      brw_nir_analyze_boolean_resolves(nir);

   nir_sweep(nir);

   if (unlikely(debug_enabled)) {
      fprintf(stderr, "NIR (final form) for %s shader:\n",
              _mesa_shader_stage_to_string(nir->info.stage));
      nir_print_shader(nir, stderr);
   }
}

static bool
brw_nir_apply_sampler_key(nir_shader *nir,
                          const struct brw_compiler *compiler,
                          const struct brw_sampler_prog_key_data *key_tex)
{
   const struct intel_device_info *devinfo = compiler->devinfo;
   nir_lower_tex_options tex_options = {
      .lower_txd_clamp_bindless_sampler = true,
      .lower_txd_clamp_if_sampler_index_not_lt_16 = true,
      .lower_invalid_implicit_lod = true,
      .lower_index_to_offset = true,
   };

   /* Iron Lake and prior require lowering of all rectangle textures */
   if (devinfo->ver < 6)
      tex_options.lower_rect = true;

   /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
   if (devinfo->ver < 8) {
      tex_options.saturate_s = key_tex->gl_clamp_mask[0];
      tex_options.saturate_t = key_tex->gl_clamp_mask[1];
      tex_options.saturate_r = key_tex->gl_clamp_mask[2];
   }

   /* Prior to Haswell, we have to lower gradients on shadow samplers */
   tex_options.lower_txd_shadow = devinfo->verx10 <= 70;

   return nir_lower_tex(nir, &tex_options);
}

static unsigned
get_subgroup_size(const struct shader_info *info, unsigned max_subgroup_size)
{
   switch (info->subgroup_size) {
   case SUBGROUP_SIZE_API_CONSTANT:
      /* We have to use the global constant size. */
      return BRW_SUBGROUP_SIZE;

   case SUBGROUP_SIZE_UNIFORM:
      /* It has to be uniform across all invocations but can vary per stage
       * if we want.  This gives us a bit more freedom.
       *
       * For compute, brw_nir_apply_key is called per-dispatch-width so this
       * is the actual subgroup size and not a maximum.  However, we only
       * invoke one size of any given compute shader so it's still guaranteed
       * to be uniform across invocations.
       */
      return max_subgroup_size;

   case SUBGROUP_SIZE_VARYING:
      /* The subgroup size is allowed to be fully varying.  For geometry
       * stages, we know it's always 8 which is max_subgroup_size so we can
       * return that.  For compute, brw_nir_apply_key is called once per
       * dispatch-width so max_subgroup_size is the real subgroup size.
       *
       * For fragment, we return 0 and let it fall through to the back-end
       * compiler.  This means we can't optimize based on subgroup size but
       * that's a risk the client took when it asked for a varying subgroup
       * size.
       */
      return info->stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;

   case SUBGROUP_SIZE_REQUIRE_8:
   case SUBGROUP_SIZE_REQUIRE_16:
   case SUBGROUP_SIZE_REQUIRE_32:
      assert(gl_shader_stage_uses_workgroup(info->stage) ||
             (info->stage >= MESA_SHADER_RAYGEN && info->stage <= MESA_SHADER_CALLABLE));
      /* These enum values are expressly chosen to be equal to the subgroup
       * size that they require.
       */
      return info->subgroup_size;

   case SUBGROUP_SIZE_FULL_SUBGROUPS:
   case SUBGROUP_SIZE_REQUIRE_64:
   case SUBGROUP_SIZE_REQUIRE_128:
      break;
   }

   unreachable("Invalid subgroup size type");
}

unsigned
brw_nir_api_subgroup_size(const nir_shader *nir,
                          unsigned hw_subgroup_size)
{
   return get_subgroup_size(&nir->info, hw_subgroup_size);
}

void
brw_nir_apply_key(nir_shader *nir,
                  const struct brw_compiler *compiler,
                  const struct brw_base_prog_key *key,
                  unsigned max_subgroup_size,
                  bool is_scalar)
{
   bool progress = false;

   OPT(brw_nir_apply_sampler_key, compiler, &key->tex);

   const nir_lower_subgroups_options subgroups_options = {
      .subgroup_size = get_subgroup_size(&nir->info, max_subgroup_size),
      .ballot_bit_size = 32,
      .ballot_components = 1,
      .lower_subgroup_masks = true,
   };
   OPT(nir_lower_subgroups, &subgroups_options);

   if (key->limit_trig_input_range)
      OPT(brw_nir_limit_trig_input_range_workaround);

   if (progress)
      brw_nir_optimize(nir, compiler, is_scalar);
}

enum brw_conditional_mod
brw_cmod_for_nir_comparison(nir_op op)
{
   switch (op) {
   case nir_op_flt:
   case nir_op_flt32:
   case nir_op_ilt:
   case nir_op_ilt32:
   case nir_op_ult:
   case nir_op_ult32:
      return BRW_CONDITIONAL_L;

   case nir_op_fge:
   case nir_op_fge32:
   case nir_op_ige:
   case nir_op_ige32:
   case nir_op_uge:
   case nir_op_uge32:
      return BRW_CONDITIONAL_GE;

   case nir_op_feq:
   case nir_op_feq32:
   case nir_op_ieq:
   case nir_op_ieq32:
   case nir_op_b32all_fequal2:
   case nir_op_b32all_iequal2:
   case nir_op_b32all_fequal3:
   case nir_op_b32all_iequal3:
   case nir_op_b32all_fequal4:
   case nir_op_b32all_iequal4:
      return BRW_CONDITIONAL_Z;

   case nir_op_fneu:
   case nir_op_fneu32:
   case nir_op_ine:
   case nir_op_ine32:
   case nir_op_b32any_fnequal2:
   case nir_op_b32any_inequal2:
   case nir_op_b32any_fnequal3:
   case nir_op_b32any_inequal3:
   case nir_op_b32any_fnequal4:
   case nir_op_b32any_inequal4:
      return BRW_CONDITIONAL_NZ;

   default:
      unreachable("Unsupported NIR comparison op");
   }
}

enum lsc_opcode
lsc_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic)
{
   switch (nir_intrinsic_atomic_op(atomic)) {
   case nir_atomic_op_iadd: {
      unsigned src_idx;
      switch (atomic->intrinsic) {
      case nir_intrinsic_image_atomic:
      case nir_intrinsic_bindless_image_atomic:
         src_idx = 3;
         break;
      case nir_intrinsic_ssbo_atomic:
         src_idx = 2;
         break;
      case nir_intrinsic_shared_atomic:
      case nir_intrinsic_global_atomic:
         src_idx = 1;
         break;
      default:
         unreachable("Invalid add atomic opcode");
      }

      if (nir_src_is_const(atomic->src[src_idx])) {
         int64_t add_val = nir_src_as_int(atomic->src[src_idx]);
         if (add_val == 1)
            return LSC_OP_ATOMIC_INC;
         else if (add_val == -1)
            return LSC_OP_ATOMIC_DEC;
      }
      return LSC_OP_ATOMIC_ADD;
   }

   case nir_atomic_op_imin: return LSC_OP_ATOMIC_MIN;
   case nir_atomic_op_umin: return LSC_OP_ATOMIC_UMIN;
   case nir_atomic_op_imax: return LSC_OP_ATOMIC_MAX;
   case nir_atomic_op_umax: return LSC_OP_ATOMIC_UMAX;
   case nir_atomic_op_iand: return LSC_OP_ATOMIC_AND;
   case nir_atomic_op_ior:  return LSC_OP_ATOMIC_OR;
   case nir_atomic_op_ixor: return LSC_OP_ATOMIC_XOR;
   case nir_atomic_op_xchg: return LSC_OP_ATOMIC_STORE;
   case nir_atomic_op_cmpxchg: return LSC_OP_ATOMIC_CMPXCHG;

   case nir_atomic_op_fmin: return LSC_OP_ATOMIC_FMIN;
   case nir_atomic_op_fmax: return LSC_OP_ATOMIC_FMAX;
   case nir_atomic_op_fcmpxchg: return LSC_OP_ATOMIC_FCMPXCHG;
   case nir_atomic_op_fadd: return LSC_OP_ATOMIC_FADD;

   default:
      unreachable("Unsupported NIR atomic intrinsic");
   }
}

enum brw_reg_type
brw_type_for_nir_type(const struct intel_device_info *devinfo,
                      nir_alu_type type)
{
   switch (type) {
   case nir_type_uint:
   case nir_type_uint32:
      return BRW_REGISTER_TYPE_UD;
   case nir_type_bool:
   case nir_type_int:
   case nir_type_bool32:
   case nir_type_int32:
      return BRW_REGISTER_TYPE_D;
   case nir_type_float:
   case nir_type_float32:
      return BRW_REGISTER_TYPE_F;
   case nir_type_float16:
      return BRW_REGISTER_TYPE_HF;
   case nir_type_float64:
      return BRW_REGISTER_TYPE_DF;
   case nir_type_int64:
      return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q;
   case nir_type_uint64:
      return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ;
   case nir_type_int16:
      return BRW_REGISTER_TYPE_W;
   case nir_type_uint16:
      return BRW_REGISTER_TYPE_UW;
   case nir_type_int8:
      return BRW_REGISTER_TYPE_B;
   case nir_type_uint8:
      return BRW_REGISTER_TYPE_UB;
   default:
      unreachable("unknown type");
   }

   return BRW_REGISTER_TYPE_F;
}

nir_shader *
brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
                               const struct brw_tcs_prog_key *key)
{
   const nir_shader_compiler_options *options =
      compiler->nir_options[MESA_SHADER_TESS_CTRL];

   uint64_t inputs_read = key->outputs_written &
      ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);

   unsigned locations[64];
   unsigned num_locations = 0;

   u_foreach_bit64(varying, inputs_read)
      locations[num_locations++] = varying;

   nir_shader *nir =
      nir_create_passthrough_tcs_impl(options, locations, num_locations,
                                      key->input_vertices);

   ralloc_steal(mem_ctx, nir);

   nir->info.inputs_read = inputs_read;
   nir->info.tess._primitive_mode = key->_tes_primitive_mode;
   nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");

   struct brw_nir_compiler_opts opts = {};
   brw_preprocess_nir(compiler, nir, &opts);

   return nir;
}

nir_ssa_def *
brw_nir_load_global_const(nir_builder *b, nir_intrinsic_instr *load_uniform,
      nir_ssa_def *base_addr, unsigned off)
{
   assert(load_uniform->intrinsic == nir_intrinsic_load_uniform);
   assert(load_uniform->dest.is_ssa);
   assert(load_uniform->src[0].is_ssa);

   unsigned bit_size = load_uniform->dest.ssa.bit_size;
   assert(bit_size >= 8 && bit_size % 8 == 0);
   unsigned byte_size = bit_size / 8;
   nir_ssa_def *sysval;

   if (nir_src_is_const(load_uniform->src[0])) {
      uint64_t offset = off +
                        nir_intrinsic_base(load_uniform) +
                        nir_src_as_uint(load_uniform->src[0]);

      /* Things should be component-aligned. */
      assert(offset % byte_size == 0);

      unsigned suboffset = offset % 64;
      uint64_t aligned_offset = offset - suboffset;

      /* Load two just in case we go over a 64B boundary */
      nir_ssa_def *data[2];
      for (unsigned i = 0; i < 2; i++) {
         nir_ssa_def *addr = nir_iadd_imm(b, base_addr, aligned_offset + i * 64);
         data[i] = nir_load_global_const_block_intel(b, 16, addr,
                                                     nir_imm_true(b));
      }

      sysval = nir_extract_bits(b, data, 2, suboffset * 8,
                                load_uniform->num_components, bit_size);
   } else {
      nir_ssa_def *offset32 =
         nir_iadd_imm(b, load_uniform->src[0].ssa,
                         off + nir_intrinsic_base(load_uniform));
      nir_ssa_def *addr = nir_iadd(b, base_addr, nir_u2u64(b, offset32));
      sysval = nir_load_global_constant(b, addr, byte_size,
                                        load_uniform->num_components, bit_size);
   }

   return sysval;
}