1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_builder.h"
/**
* Some ALU operations may not be supported in hardware in specific bit-sizes.
* This pass allows implementations to selectively lower such operations to
* a bit-size that is supported natively and then converts the result back to
* the original bit-size.
*/
static nir_ssa_def *convert_to_bit_size(nir_builder *bld, nir_ssa_def *src,
nir_alu_type type, unsigned bit_size)
{
/* create b2i32(a) instead of i2i32(b2i8(a))/i2i32(b2i16(a)) */
nir_alu_instr *alu = nir_src_as_alu_instr(nir_src_for_ssa(src));
if ((type & (nir_type_uint | nir_type_int)) && bit_size == 32 &&
alu && (alu->op == nir_op_b2i8 || alu->op == nir_op_b2i16)) {
nir_alu_instr *instr = nir_alu_instr_create(bld->shader, nir_op_b2i32);
nir_alu_src_copy(&instr->src[0], &alu->src[0], instr);
return nir_builder_alu_instr_finish_and_insert(bld, instr);
}
return nir_convert_to_bit_size(bld, src, type, bit_size);
}
static void
lower_alu_instr(nir_builder *bld, nir_alu_instr *alu, unsigned bit_size)
{
const nir_op op = alu->op;
unsigned dst_bit_size = alu->dest.dest.ssa.bit_size;
bld->cursor = nir_before_instr(&alu->instr);
/* Convert each source to the requested bit-size */
nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS] = { NULL };
for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
nir_ssa_def *src = nir_ssa_for_alu_src(bld, alu, i);
nir_alu_type type = nir_op_infos[op].input_types[i];
if (nir_alu_type_get_type_size(type) == 0)
src = convert_to_bit_size(bld, src, type, bit_size);
if (i == 1 && (op == nir_op_ishl || op == nir_op_ishr || op == nir_op_ushr)) {
assert(util_is_power_of_two_nonzero(dst_bit_size));
src = nir_iand(bld, src, nir_imm_int(bld, dst_bit_size - 1));
}
srcs[i] = src;
}
/* Emit the lowered ALU instruction */
nir_ssa_def *lowered_dst = NULL;
if (op == nir_op_imul_high || op == nir_op_umul_high) {
assert(dst_bit_size * 2 <= bit_size);
lowered_dst = nir_imul(bld, srcs[0], srcs[1]);
if (nir_op_infos[op].output_type & nir_type_uint)
lowered_dst = nir_ushr_imm(bld, lowered_dst, dst_bit_size);
else
lowered_dst = nir_ishr_imm(bld, lowered_dst, dst_bit_size);
} else if (op == nir_op_iadd_sat || op == nir_op_isub_sat || op == nir_op_uadd_sat ||
op == nir_op_uadd_carry) {
if (op == nir_op_isub_sat)
lowered_dst = nir_isub(bld, srcs[0], srcs[1]);
else
lowered_dst = nir_iadd(bld, srcs[0], srcs[1]);
/* The add_sat and sub_sat instructions need to clamp the result to the
* range of the original type.
*/
if (op == nir_op_iadd_sat || op == nir_op_isub_sat) {
const int64_t int_max = u_intN_max(dst_bit_size);
const int64_t int_min = u_intN_min(dst_bit_size);
lowered_dst = nir_iclamp(bld, lowered_dst,
nir_imm_intN_t(bld, int_min, bit_size),
nir_imm_intN_t(bld, int_max, bit_size));
} else if (op == nir_op_uadd_sat) {
const uint64_t uint_max = u_uintN_max(dst_bit_size);
lowered_dst = nir_umin(bld, lowered_dst,
nir_imm_intN_t(bld, uint_max, bit_size));
} else {
assert(op == nir_op_uadd_carry);
lowered_dst = nir_ushr_imm(bld, lowered_dst, dst_bit_size);
}
} else {
lowered_dst = nir_build_alu_src_arr(bld, op, srcs);
}
/* Convert result back to the original bit-size */
if (nir_alu_type_get_type_size(nir_op_infos[op].output_type) == 0 &&
dst_bit_size != bit_size) {
nir_alu_type type = nir_op_infos[op].output_type;
nir_ssa_def *dst = nir_convert_to_bit_size(bld, lowered_dst, type, dst_bit_size);
nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, dst);
} else {
nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, lowered_dst);
}
}
static void
lower_intrinsic_instr(nir_builder *b, nir_intrinsic_instr *intrin,
unsigned bit_size)
{
switch (intrin->intrinsic) {
case nir_intrinsic_read_invocation:
case nir_intrinsic_read_first_invocation:
case nir_intrinsic_vote_feq:
case nir_intrinsic_vote_ieq:
case nir_intrinsic_shuffle:
case nir_intrinsic_shuffle_xor:
case nir_intrinsic_shuffle_up:
case nir_intrinsic_shuffle_down:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan: {
assert(intrin->src[0].is_ssa && intrin->dest.is_ssa);
const unsigned old_bit_size = intrin->dest.ssa.bit_size;
assert(old_bit_size < bit_size);
nir_alu_type type = nir_type_uint;
if (nir_intrinsic_has_reduction_op(intrin))
type = nir_op_infos[nir_intrinsic_reduction_op(intrin)].input_types[0];
else if (intrin->intrinsic == nir_intrinsic_vote_feq)
type = nir_type_float;
b->cursor = nir_before_instr(&intrin->instr);
nir_intrinsic_instr *new_intrin =
nir_instr_as_intrinsic(nir_instr_clone(b->shader, &intrin->instr));
nir_ssa_def *new_src = nir_convert_to_bit_size(b, intrin->src[0].ssa,
type, bit_size);
new_intrin->src[0] = nir_src_for_ssa(new_src);
if (intrin->intrinsic == nir_intrinsic_vote_feq ||
intrin->intrinsic == nir_intrinsic_vote_ieq) {
/* These return a Boolean; it's always 1-bit */
assert(new_intrin->dest.ssa.bit_size == 1);
} else {
/* These return the same bit size as the source; we need to adjust
* the size and then we'll have to emit a down-cast.
*/
assert(intrin->src[0].ssa->bit_size == intrin->dest.ssa.bit_size);
new_intrin->dest.ssa.bit_size = bit_size;
}
nir_builder_instr_insert(b, &new_intrin->instr);
nir_ssa_def *res = &new_intrin->dest.ssa;
if (intrin->intrinsic == nir_intrinsic_exclusive_scan) {
/* For exclusive scan, we have to be careful because the identity
* value for the higher bit size may get added into the mix by
* disabled channels. For some cases (imin/imax in particular),
* this value won't convert to the right identity value when we
* down-cast so we have to clamp it.
*/
switch (nir_intrinsic_reduction_op(intrin)) {
case nir_op_imin: {
int64_t int_max = (1ull << (old_bit_size - 1)) - 1;
res = nir_imin(b, res, nir_imm_intN_t(b, int_max, bit_size));
break;
}
case nir_op_imax: {
int64_t int_min = -(int64_t)(1ull << (old_bit_size - 1));
res = nir_imax(b, res, nir_imm_intN_t(b, int_min, bit_size));
break;
}
default:
break;
}
}
if (intrin->intrinsic != nir_intrinsic_vote_feq &&
intrin->intrinsic != nir_intrinsic_vote_ieq)
res = nir_u2uN(b, res, old_bit_size);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, res);
break;
}
default:
unreachable("Unsupported instruction");
}
}
static void
lower_phi_instr(nir_builder *b, nir_phi_instr *phi, unsigned bit_size,
nir_phi_instr *last_phi)
{
assert(phi->dest.is_ssa);
unsigned old_bit_size = phi->dest.ssa.bit_size;
assert(old_bit_size < bit_size);
nir_foreach_phi_src(src, phi) {
b->cursor = nir_after_block_before_jump(src->pred);
assert(src->src.is_ssa);
nir_ssa_def *new_src = nir_u2uN(b, src->src.ssa, bit_size);
nir_instr_rewrite_src(&phi->instr, &src->src, nir_src_for_ssa(new_src));
}
phi->dest.ssa.bit_size = bit_size;
b->cursor = nir_after_instr(&last_phi->instr);
nir_ssa_def *new_dest = nir_u2uN(b, &phi->dest.ssa, old_bit_size);
nir_ssa_def_rewrite_uses_after(&phi->dest.ssa, new_dest,
new_dest->parent_instr);
}
static bool
lower_impl(nir_function_impl *impl,
nir_lower_bit_size_callback callback,
void *callback_data)
{
nir_builder b;
nir_builder_init(&b, impl);
bool progress = false;
nir_foreach_block(block, impl) {
/* Stash this so we can rewrite phi destinations quickly. */
nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
nir_foreach_instr_safe(instr, block) {
unsigned lower_bit_size = callback(instr, callback_data);
if (lower_bit_size == 0)
continue;
switch (instr->type) {
case nir_instr_type_alu:
lower_alu_instr(&b, nir_instr_as_alu(instr), lower_bit_size);
break;
case nir_instr_type_intrinsic:
lower_intrinsic_instr(&b, nir_instr_as_intrinsic(instr),
lower_bit_size);
break;
case nir_instr_type_phi:
lower_phi_instr(&b, nir_instr_as_phi(instr),
lower_bit_size, last_phi);
break;
default:
unreachable("Unsupported instruction type");
}
progress = true;
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
bool
nir_lower_bit_size(nir_shader *shader,
nir_lower_bit_size_callback callback,
void *callback_data)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl)
progress |= lower_impl(function->impl, callback, callback_data);
}
return progress;
}
static void
split_phi(nir_builder *b, nir_phi_instr *phi)
{
nir_phi_instr *lowered[2] = {
nir_phi_instr_create(b->shader),
nir_phi_instr_create(b->shader)
};
int num_components = phi->dest.ssa.num_components;
assert(phi->dest.ssa.bit_size == 64);
nir_foreach_phi_src(src, phi) {
assert(num_components == src->src.ssa->num_components);
b->cursor = nir_before_src(&src->src);
nir_ssa_def *x = nir_unpack_64_2x32_split_x(b, src->src.ssa);
nir_ssa_def *y = nir_unpack_64_2x32_split_y(b, src->src.ssa);
nir_phi_instr_add_src(lowered[0], src->pred, nir_src_for_ssa(x));
nir_phi_instr_add_src(lowered[1], src->pred, nir_src_for_ssa(y));
}
nir_ssa_dest_init(&lowered[0]->instr, &lowered[0]->dest, num_components,
32);
nir_ssa_dest_init(&lowered[1]->instr, &lowered[1]->dest, num_components,
32);
b->cursor = nir_before_instr(&phi->instr);
nir_builder_instr_insert(b, &lowered[0]->instr);
nir_builder_instr_insert(b, &lowered[1]->instr);
b->cursor = nir_after_phis(nir_cursor_current_block(b->cursor));
nir_ssa_def *merged = nir_pack_64_2x32_split(b, &lowered[0]->dest.ssa, &lowered[1]->dest.ssa);
nir_ssa_def_rewrite_uses(&phi->dest.ssa, merged);
nir_instr_remove(&phi->instr);
}
static bool
lower_64bit_phi_instr(nir_builder *b, nir_instr *instr, UNUSED void *cb_data)
{
if (instr->type != nir_instr_type_phi)
return false;
nir_phi_instr *phi = nir_instr_as_phi(instr);
assert(phi->dest.is_ssa);
if (phi->dest.ssa.bit_size <= 32)
return false;
split_phi(b, phi);
return true;
}
bool
nir_lower_64bit_phis(nir_shader *shader)
{
return nir_shader_instructions_pass(shader, lower_64bit_phi_instr,
nir_metadata_block_index |
nir_metadata_dominance,
NULL);
}
|