1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
/*
* Copyright © 2023 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ac_nir.h"
#include "nir.h"
#include "nir_builder.h"
#include "radv_constants.h"
#include "radv_nir.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_args.h"
typedef struct {
const struct radv_shader_args *args;
const struct radv_shader_info *info;
const struct radv_pipeline_key *pl_key;
const struct radeon_info *rad_info;
} lower_vs_inputs_state;
static nir_ssa_def *
lower_load_vs_input_from_prolog(nir_builder *b, nir_intrinsic_instr *intrin,
lower_vs_inputs_state *s)
{
nir_src *offset_src = nir_get_io_offset_src(intrin);
assert(nir_src_is_const(*offset_src));
const unsigned base = nir_intrinsic_base(intrin);
const unsigned base_offset = nir_src_as_uint(*offset_src);
const unsigned driver_location = base + base_offset - VERT_ATTRIB_GENERIC0;
const unsigned component = nir_intrinsic_component(intrin);
const unsigned bit_size = intrin->dest.ssa.bit_size;
const unsigned num_components = intrin->dest.ssa.num_components;
/* 64-bit inputs: they occupy twice as many 32-bit components.
* 16-bit inputs: they occupy a 32-bit component (not packed).
*/
const unsigned arg_bit_size = MAX2(bit_size, 32);
unsigned num_input_args = 1;
nir_ssa_def *input_args[2] = {
ac_nir_load_arg(b, &s->args->ac, s->args->vs_inputs[driver_location]), NULL};
if (component * 32 + arg_bit_size * num_components > 128) {
assert(bit_size == 64);
num_input_args++;
input_args[1] = ac_nir_load_arg(b, &s->args->ac, s->args->vs_inputs[driver_location + 1]);
}
nir_ssa_def *extracted =
nir_extract_bits(b, input_args, num_input_args, component * 32, num_components, arg_bit_size);
if (bit_size < arg_bit_size) {
assert(bit_size == 16);
if (nir_alu_type_get_base_type(nir_intrinsic_dest_type(intrin)) == nir_type_float)
return nir_f2f16(b, extracted);
else
return nir_u2u16(b, extracted);
}
return extracted;
}
static nir_ssa_def *
calc_vs_input_index_instance_rate(nir_builder *b, unsigned location, lower_vs_inputs_state *s)
{
const uint32_t divisor = s->pl_key->vs.instance_rate_divisors[location];
nir_ssa_def *start_instance = nir_load_base_instance(b);
if (divisor == 0)
return start_instance;
nir_ssa_def *instance_id = nir_udiv_imm(b, nir_load_instance_id(b), divisor);
return nir_iadd(b, start_instance, instance_id);
}
static nir_ssa_def *
calc_vs_input_index(nir_builder *b, unsigned location, lower_vs_inputs_state *s)
{
if (s->pl_key->vs.instance_rate_inputs & BITFIELD_BIT(location))
return calc_vs_input_index_instance_rate(b, location, s);
return nir_iadd(b, nir_load_first_vertex(b), nir_load_vertex_id_zero_base(b));
}
static bool
can_use_untyped_load(const struct util_format_description *f, const unsigned bit_size)
{
/* All components must have same size and type. */
if (!f->is_array)
return false;
const struct util_format_channel_description *c = &f->channel[0];
return c->size == bit_size && bit_size >= 32;
}
static nir_ssa_def *
oob_input_load_value(nir_builder *b, const unsigned channel_idx, const unsigned bit_size,
const bool is_float)
{
/* 22.1.1. Attribute Location and Component Assignment of Vulkan 1.3 specification:
* For 64-bit data types, no default attribute values are provided. Input variables
* must not use more components than provided by the attribute.
*/
if (bit_size == 64)
return nir_ssa_undef(b, 1, bit_size);
if (channel_idx == 3) {
if (is_float)
return nir_imm_floatN_t(b, 1.0, bit_size);
else
return nir_imm_intN_t(b, 1, bit_size);
}
return nir_imm_intN_t(b, 0, bit_size);
}
static unsigned
count_format_bytes(const struct util_format_description *f, const unsigned first_channel,
const unsigned num_channels)
{
if (!num_channels)
return 0;
const unsigned last_channel = first_channel + num_channels - 1;
assert(last_channel < f->nr_channels);
unsigned bits = 0;
for (unsigned i = first_channel; i <= last_channel; ++i) {
bits += f->channel[i].size;
}
assert(bits % 8 == 0);
return bits / 8;
}
static bool
format_needs_swizzle(const struct util_format_description *f)
{
for (unsigned i = 0; i < f->nr_channels; ++i) {
if (f->swizzle[i] != PIPE_SWIZZLE_X + i)
return true;
}
return false;
}
static unsigned
first_used_swizzled_channel(const struct util_format_description *f, const unsigned mask,
const bool backwards)
{
unsigned first_used = backwards ? 0 : f->nr_channels;
const unsigned it_mask = mask & BITFIELD_MASK(f->nr_channels);
u_foreach_bit (b, it_mask) {
assert(f->swizzle[b] != PIPE_SWIZZLE_0 && f->swizzle[b] != PIPE_SWIZZLE_1);
const unsigned c = f->swizzle[b] - PIPE_SWIZZLE_X;
first_used = backwards ? MAX2(first_used, c) : MIN2(first_used, c);
}
return first_used;
}
static nir_ssa_def *
adjust_vertex_fetch_alpha(nir_builder *b, enum ac_vs_input_alpha_adjust alpha_adjust,
nir_ssa_def *alpha)
{
if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED)
alpha = nir_f2u32(b, alpha);
/* For the integer-like cases, do a natural sign extension.
*
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 and happen to contain 0, 1, 2, 3 as
* the two LSBs of the exponent.
*/
unsigned offset = alpha_adjust == AC_ALPHA_ADJUST_SNORM ? 23u : 0u;
alpha = nir_ibfe_imm(b, alpha, offset, 2u);
/* Convert back to the right type. */
if (alpha_adjust == AC_ALPHA_ADJUST_SNORM) {
alpha = nir_i2f32(b, alpha);
alpha = nir_fmax(b, alpha, nir_imm_float(b, -1.0f));
} else if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) {
alpha = nir_i2f32(b, alpha);
}
return alpha;
}
static nir_ssa_def *
lower_load_vs_input(nir_builder *b, nir_intrinsic_instr *intrin, lower_vs_inputs_state *s)
{
nir_src *offset_src = nir_get_io_offset_src(intrin);
assert(nir_src_is_const(*offset_src));
const unsigned base = nir_intrinsic_base(intrin);
const unsigned base_offset = nir_src_as_uint(*offset_src);
const unsigned location = base + base_offset - VERT_ATTRIB_GENERIC0;
const unsigned bit_size = intrin->dest.ssa.bit_size;
const unsigned dest_num_components = intrin->dest.ssa.num_components;
/* Convert the component offset to bit_size units.
* (Intrinsic component offset is in 32-bit units.)
*
* Small bitsize inputs consume the same space as 32-bit inputs,
* but 64-bit inputs consume twice as many.
* 64-bit variables must not have a component of 1 or 3.
* (See VK spec 15.1.5 "Component Assignment")
*/
const unsigned component = nir_intrinsic_component(intrin) / (MAX2(32, bit_size) / 32);
/* Bitmask of components in bit_size units
* of the current input load that are actually used.
*/
const unsigned dest_use_mask = nir_ssa_def_components_read(&intrin->dest.ssa) << component;
/* If the input is entirely unused, just replace it with undef.
* This is just in case we debug this pass without running DCE first.
*/
if (!dest_use_mask)
return nir_ssa_undef(b, dest_num_components, bit_size);
const uint32_t attrib_binding = s->pl_key->vs.vertex_attribute_bindings[location];
const uint32_t attrib_offset = s->pl_key->vs.vertex_attribute_offsets[location];
const uint32_t attrib_stride = s->pl_key->vs.vertex_attribute_strides[location];
const enum pipe_format attrib_format = s->pl_key->vs.vertex_attribute_formats[location];
const struct util_format_description *f = util_format_description(attrib_format);
const struct ac_vtx_format_info *vtx_info =
ac_get_vtx_format_info(s->rad_info->gfx_level, s->rad_info->family, attrib_format);
const unsigned binding_index =
s->info->vs.use_per_attribute_vb_descs ? location : attrib_binding;
const unsigned desc_index =
util_bitcount(s->info->vs.vb_desc_usage_mask & u_bit_consecutive(0, binding_index));
nir_ssa_def *vertex_buffers_arg = ac_nir_load_arg(b, &s->args->ac, s->args->ac.vertex_buffers);
nir_ssa_def *vertex_buffers =
nir_pack_64_2x32_split(b, vertex_buffers_arg, nir_imm_int(b, s->rad_info->address32_hi));
nir_ssa_def *descriptor =
nir_load_smem_amd(b, 4, vertex_buffers, nir_imm_int(b, desc_index * 16));
nir_ssa_def *base_index = calc_vs_input_index(b, location, s);
nir_ssa_def *zero = nir_imm_int(b, 0);
/* We currently implement swizzling for all formats in shaders.
* Note, it is possible to specify swizzling in the DST_SEL fields of descriptors,
* but we don't use that because typed loads using the MTBUF instruction format
* don't support DST_SEL, so it's simpler to just handle it all in shaders.
*/
const bool needs_swizzle = format_needs_swizzle(f);
/* We need to adjust the alpha channel as loaded by the HW,
* for example sign extension and normalization may be necessary.
*/
const enum ac_vs_input_alpha_adjust alpha_adjust = vtx_info->alpha_adjust;
/* Try to shrink the load format by skipping unused components from the start.
* Beneficial because the backend may be able to emit fewer HW instructions.
* Only possible with array formats.
*/
const unsigned first_used_channel = first_used_swizzled_channel(f, dest_use_mask, false);
const unsigned skipped_start = f->is_array ? first_used_channel : 0;
/* Number of channels we actually use and load.
* Don't shrink the format here because this might allow the backend to
* emit fewer (but larger than needed) HW instructions.
*/
const unsigned first_trailing_unused_channel =
first_used_swizzled_channel(f, dest_use_mask, true) + 1;
const unsigned max_loaded_channels = MIN2(first_trailing_unused_channel, f->nr_channels);
const unsigned fetch_num_channels =
skipped_start >= max_loaded_channels ? 0 : max_loaded_channels - skipped_start;
/* Load VS inputs from VRAM.
*
* For the vast majority of cases this will only create 1x load_(typed)_buffer_amd
* intrinsic and the backend is responsible for further splitting that
* to as many HW instructions as needed based on alignment.
*
* Take care to prevent loaded components from failing the range check,
* by emitting several load intrinsics with different index sources.
* This is necessary because the backend can't further roll the const offset
* into the index source of MUBUF / MTBUF instructions.
*/
nir_ssa_def *loads[NIR_MAX_VEC_COMPONENTS] = {0};
unsigned num_loads = 0;
for (unsigned x = 0, channels; x < fetch_num_channels; x += channels) {
channels = fetch_num_channels - x;
const unsigned start = skipped_start + x;
enum pipe_format fetch_format = attrib_format;
nir_ssa_def *index = base_index;
/* Add excess constant offset to the index. */
unsigned const_off = attrib_offset + count_format_bytes(f, 0, start);
if (attrib_stride && const_off > attrib_stride) {
index = nir_iadd_imm(b, base_index, const_off / attrib_stride);
const_off %= attrib_stride;
}
/* Reduce the number of loaded channels until we can pass the range check.
* Only for array formats. VK spec mandates proper alignment for packed formats.
* Note, NONE seems to occur in real use and is considered an array format.
*/
if (f->is_array && fetch_format != PIPE_FORMAT_NONE) {
while (channels > 1 && attrib_stride &&
(const_off + count_format_bytes(f, start, channels)) > attrib_stride) {
channels--;
}
/* Keep the fetch format as large as possible to let the backend emit
* larger load instructions when it deems them beneficial.
*/
fetch_format =
util_format_get_array(f->channel[0].type, f->channel[0].size, f->nr_channels - start,
f->is_unorm || f->is_snorm, f->channel[0].pure_integer);
}
assert(f->is_array || channels == fetch_num_channels);
/* Prefer using untyped buffer loads if possible, to avoid potential alignment issues.
* Typed loads can cause GPU hangs when used with improper alignment.
*/
if (can_use_untyped_load(f, bit_size)) {
loads[num_loads++] =
nir_load_buffer_amd(b, channels, bit_size, descriptor, zero, zero, index,
.base = const_off, .memory_modes = nir_var_shader_in);
} else {
const unsigned align_mul = MAX2(1, s->pl_key->vs.vertex_binding_align[attrib_binding]);
const unsigned align_offset = const_off % align_mul;
loads[num_loads++] = nir_load_typed_buffer_amd(
b, channels, bit_size, descriptor, zero, zero, index, .base = const_off,
.format = fetch_format, .align_mul = align_mul, .align_offset = align_offset,
.memory_modes = nir_var_shader_in);
}
}
nir_ssa_def *load = loads[0];
/* Extract the channels we actually need when we couldn't skip starting
* components or had to emit more than one load intrinsic.
*/
if (num_loads > 0 && (first_used_channel > skipped_start || num_loads != 1))
load = nir_extract_bits(b, loads, num_loads, (first_used_channel - skipped_start) * bit_size,
max_loaded_channels - first_used_channel, bit_size);
/* Return early if possible to avoid generating unnecessary IR. */
if (num_loads > 0 && first_used_channel == component &&
load->num_components == dest_num_components && !needs_swizzle &&
alpha_adjust == AC_ALPHA_ADJUST_NONE)
return load;
/* Fill unused and OOB components.
* Apply swizzle and alpha adjust according to the format.
*/
const nir_alu_type dst_type = nir_alu_type_get_base_type(nir_intrinsic_dest_type(intrin));
nir_ssa_def *channels[NIR_MAX_VEC_COMPONENTS] = {0};
for (unsigned i = 0; i < dest_num_components; ++i) {
const unsigned c = i + component;
if (!(dest_use_mask & BITFIELD_BIT(c))) {
/* Fill unused channels with zero. */
channels[i] = nir_imm_zero(b, 1, bit_size);
continue;
}
const unsigned sw = f->swizzle[c];
assert(sw >= first_used_channel);
const unsigned loaded_channel = sw - first_used_channel;
if (load && loaded_channel < load->num_components) {
/* Use channels that were loaded from VRAM. */
channels[i] = nir_channel(b, load, loaded_channel);
if (alpha_adjust != AC_ALPHA_ADJUST_NONE && c == 3)
channels[i] = adjust_vertex_fetch_alpha(b, alpha_adjust, channels[i]);
} else {
/* Handle input loads that are larger than their format. */
channels[i] = oob_input_load_value(b, c, bit_size, dst_type == nir_type_float);
}
}
return nir_vec(b, channels, dest_num_components);
}
static bool
lower_vs_input_instr(nir_builder *b, nir_instr *instr, void *state)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_input)
return false;
lower_vs_inputs_state *s = (lower_vs_inputs_state *)state;
b->cursor = nir_before_instr(instr);
nir_ssa_def *replacement = NULL;
if (s->info->vs.dynamic_inputs) {
replacement = lower_load_vs_input_from_prolog(b, intrin, s);
} else {
replacement = lower_load_vs_input(b, intrin, s);
}
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, replacement);
nir_instr_remove(instr);
nir_instr_free(instr);
return true;
}
bool
radv_nir_lower_vs_inputs(nir_shader *shader, const struct radv_pipeline_stage *vs_stage,
const struct radv_pipeline_key *pl_key, const struct radeon_info *rad_info)
{
assert(shader->info.stage == MESA_SHADER_VERTEX);
lower_vs_inputs_state state = {
.info = &vs_stage->info,
.args = &vs_stage->args,
.pl_key = pl_key,
.rad_info = rad_info,
};
return nir_shader_instructions_pass(shader, lower_vs_input_instr,
nir_metadata_dominance | nir_metadata_block_index, &state);
}
|