1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
|
/*
* Copyright Michael Schellenberger Costa
* Copyright © 2020 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef ACO_UTIL_H
#define ACO_UTIL_H
#include "util/bitscan.h"
#include "util/macros.h"
#include "util/u_math.h"
#include <array>
#include <cassert>
#include <cstddef>
#include <functional>
#include <iterator>
#include <map>
#include <type_traits>
#include <unordered_map>
#include <vector>
namespace aco {
/*! \brief Definition of a span object
*
* \details A "span" is an "array view" type for holding a view of contiguous
* data. The "span" object does not own the data itself.
*/
template <typename T> class span {
public:
using value_type = T;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using size_type = uint16_t;
using difference_type = std::ptrdiff_t;
/*! \brief Compiler generated default constructor
*/
constexpr span() = default;
/*! \brief Constructor taking a pointer and the length of the span
* \param[in] data Pointer to the underlying data array
* \param[in] length The size of the span
*/
constexpr span(uint16_t offset_, const size_type length_) : offset{offset_}, length{length_} {}
/*! \brief Returns an iterator to the begin of the span
* \return data
*/
constexpr iterator begin() noexcept { return (pointer)((uintptr_t)this + offset); }
/*! \brief Returns a const_iterator to the begin of the span
* \return data
*/
constexpr const_iterator begin() const noexcept
{
return (const_pointer)((uintptr_t)this + offset);
}
/*! \brief Returns an iterator to the end of the span
* \return data + length
*/
constexpr iterator end() noexcept { return std::next(begin(), length); }
/*! \brief Returns a const_iterator to the end of the span
* \return data + length
*/
constexpr const_iterator end() const noexcept { return std::next(begin(), length); }
/*! \brief Returns a const_iterator to the begin of the span
* \return data
*/
constexpr const_iterator cbegin() const noexcept { return begin(); }
/*! \brief Returns a const_iterator to the end of the span
* \return data + length
*/
constexpr const_iterator cend() const noexcept { return std::next(begin(), length); }
/*! \brief Returns a reverse_iterator to the end of the span
* \return reverse_iterator(end())
*/
constexpr reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
/*! \brief Returns a const_reverse_iterator to the end of the span
* \return reverse_iterator(end())
*/
constexpr const_reverse_iterator rbegin() const noexcept
{
return const_reverse_iterator(end());
}
/*! \brief Returns a reverse_iterator to the begin of the span
* \return reverse_iterator(begin())
*/
constexpr reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
/*! \brief Returns a const_reverse_iterator to the begin of the span
* \return reverse_iterator(begin())
*/
constexpr const_reverse_iterator rend() const noexcept
{
return const_reverse_iterator(begin());
}
/*! \brief Returns a const_reverse_iterator to the end of the span
* \return rbegin()
*/
constexpr const_reverse_iterator crbegin() const noexcept
{
return const_reverse_iterator(cend());
}
/*! \brief Returns a const_reverse_iterator to the begin of the span
* \return rend()
*/
constexpr const_reverse_iterator crend() const noexcept
{
return const_reverse_iterator(cbegin());
}
/*! \brief Unchecked access operator
* \param[in] index Index of the element we want to access
* \return *(std::next(data, index))
*/
constexpr reference operator[](const size_type index) noexcept
{
assert(length > index);
return *(std::next(begin(), index));
}
/*! \brief Unchecked const access operator
* \param[in] index Index of the element we want to access
* \return *(std::next(data, index))
*/
constexpr const_reference operator[](const size_type index) const noexcept
{
assert(length > index);
return *(std::next(begin(), index));
}
/*! \brief Returns a reference to the last element of the span
* \return *(std::next(data, length - 1))
*/
constexpr reference back() noexcept
{
assert(length > 0);
return *(std::next(begin(), length - 1));
}
/*! \brief Returns a const_reference to the last element of the span
* \return *(std::next(data, length - 1))
*/
constexpr const_reference back() const noexcept
{
assert(length > 0);
return *(std::next(begin(), length - 1));
}
/*! \brief Returns a reference to the first element of the span
* \return *begin()
*/
constexpr reference front() noexcept
{
assert(length > 0);
return *begin();
}
/*! \brief Returns a const_reference to the first element of the span
* \return *cbegin()
*/
constexpr const_reference front() const noexcept
{
assert(length > 0);
return *cbegin();
}
/*! \brief Returns true if the span is empty
* \return length == 0
*/
constexpr bool empty() const noexcept { return length == 0; }
/*! \brief Returns the size of the span
* \return length == 0
*/
constexpr size_type size() const noexcept { return length; }
/*! \brief Decreases the size of the span by 1
*/
constexpr void pop_back() noexcept
{
assert(length > 0);
--length;
}
/*! \brief Adds an element to the end of the span
*/
constexpr void push_back(const_reference val) noexcept { *std::next(begin(), length++) = val; }
/*! \brief Clears the span
*/
constexpr void clear() noexcept
{
offset = 0;
length = 0;
}
private:
uint16_t offset{0}; //!> Byte offset from span to data
size_type length{0}; //!> Size of the span
};
/*
* Cache-friendly set of 32-bit IDs with fast insert/erase/lookup and
* the ability to efficiently iterate over contained elements.
*
* Internally implemented as a map of fixed-size bit vectors: If the set contains an ID, the
* corresponding bit in the appropriate bit vector is set. It doesn't use std::vector<bool> since
* we then couldn't efficiently iterate over the elements.
*
* The interface resembles a subset of std::set/std::unordered_set.
*/
struct IDSet {
static const uint32_t block_size = 1024u;
using block_t = std::array<uint64_t, block_size / 64>;
struct Iterator {
const IDSet* set;
std::map<uint32_t, block_t>::const_iterator block;
uint32_t id;
Iterator& operator++();
bool operator!=(const Iterator& other) const;
uint32_t operator*() const;
};
size_t count(uint32_t id) const { return find(id) != end(); }
Iterator find(uint32_t id) const
{
uint32_t block_index = id / block_size;
auto it = words.find(block_index);
if (it == words.end())
return end();
const block_t& block = it->second;
uint32_t sub_id = id % block_size;
if (block[sub_id / 64u] & (1ull << (sub_id % 64u)))
return Iterator{this, it, id};
else
return end();
}
std::pair<Iterator, bool> insert(uint32_t id)
{
uint32_t block_index = id / block_size;
auto it = words.try_emplace(block_index).first;
block_t& block = it->second;
uint32_t sub_id = id % block_size;
uint64_t* word = &block[sub_id / 64u];
uint64_t mask = 1ull << (sub_id % 64u);
if (*word & mask)
return std::make_pair(Iterator{this, it, id}, false);
*word |= mask;
return std::make_pair(Iterator{this, it, id}, true);
}
bool insert(const IDSet other)
{
bool inserted = false;
for (auto it = other.words.begin(); it != other.words.end(); ++it) {
block_t& dst = words[it->first];
const block_t& src = it->second;
for (unsigned j = 0; j < src.size(); j++) {
uint64_t new_bits = src[j] & ~dst[j];
if (new_bits) {
inserted = true;
dst[j] |= new_bits;
}
}
}
return inserted;
}
size_t erase(uint32_t id)
{
uint32_t block_index = id / block_size;
auto it = words.find(block_index);
if (it == words.end())
return 0;
block_t& block = it->second;
uint32_t sub_id = id % block_size;
uint64_t* word = &block[sub_id / 64u];
uint64_t mask = 1ull << (sub_id % 64u);
if (!(*word & mask))
return 0;
*word ^= mask;
return 1;
}
Iterator cbegin() const
{
Iterator res;
res.set = this;
for (auto it = words.begin(); it != words.end(); ++it) {
uint32_t first = get_first_set(it->second);
if (first != UINT32_MAX) {
res.block = it;
res.id = it->first * block_size + first;
return res;
}
}
return cend();
}
Iterator cend() const { return Iterator{this, words.end(), UINT32_MAX}; }
Iterator begin() const { return cbegin(); }
Iterator end() const { return cend(); }
size_t size() const
{
size_t bits_set = 0;
for (auto block : words) {
for (uint64_t word : block.second)
bits_set += util_bitcount64(word);
}
return bits_set;
}
bool empty() const { return !size(); }
private:
static uint32_t get_first_set(const block_t& words)
{
for (size_t i = 0; i < words.size(); i++) {
if (words[i])
return i * 64u + (ffsll(words[i]) - 1);
}
return UINT32_MAX;
}
std::map<uint32_t, block_t> words;
};
inline IDSet::Iterator&
IDSet::Iterator::operator++()
{
uint32_t block_index = id / block_size;
const block_t& block_words = block->second;
uint32_t sub_id = id % block_size;
uint64_t m = block_words[sub_id / 64u];
uint32_t bit = sub_id % 64u;
m = (m >> bit) >> 1;
if (m) {
id += ffsll(m);
return *this;
}
for (uint32_t i = sub_id / 64u + 1; i < block_words.size(); i++) {
if (block_words[i]) {
id = block_index * block_size + i * 64u + ffsll(block_words[i]) - 1;
return *this;
}
}
for (++block; block != set->words.end(); ++block) {
uint32_t first = get_first_set(block->second);
if (first != UINT32_MAX) {
id = block->first * block_size + first;
return *this;
}
}
id = UINT32_MAX;
return *this;
}
inline bool
IDSet::Iterator::operator!=(const IDSet::Iterator& other) const
{
assert(set == other.set);
assert(id != other.id || block == other.block);
return id != other.id;
}
inline uint32_t
IDSet::Iterator::operator*() const
{
return id;
}
/*
* Light-weight memory resource which allows to sequentially allocate from
* a buffer. Both, the release() method and the destructor release all managed
* memory.
*
* The memory resource is not thread-safe.
* This class mimics std::pmr::monotonic_buffer_resource
*/
class monotonic_buffer_resource final {
public:
explicit monotonic_buffer_resource(size_t size = initial_size)
{
/* The size parameter refers to the total size of the buffer.
* The usable data_size is size - sizeof(Buffer).
*/
size = MAX2(size, minimum_size);
buffer = (Buffer*)malloc(size);
buffer->next = nullptr;
buffer->data_size = size - sizeof(Buffer);
buffer->current_idx = 0;
}
~monotonic_buffer_resource()
{
release();
free(buffer);
}
/* Delete copy-constructor and -assignment to avoid double free() */
monotonic_buffer_resource(const monotonic_buffer_resource&) = delete;
monotonic_buffer_resource& operator=(const monotonic_buffer_resource&) = delete;
void* allocate(size_t size, size_t alignment)
{
buffer->current_idx = align(buffer->current_idx, alignment);
if (buffer->current_idx + size <= buffer->data_size) {
uint8_t* ptr = &buffer->data[buffer->current_idx];
buffer->current_idx += size;
return ptr;
}
/* create new larger buffer */
uint32_t total_size = buffer->data_size + sizeof(Buffer);
do {
total_size *= 2;
} while (total_size - sizeof(Buffer) < size);
Buffer* next = buffer;
buffer = (Buffer*)malloc(total_size);
buffer->next = next;
buffer->data_size = total_size - sizeof(Buffer);
buffer->current_idx = 0;
return allocate(size, alignment);
}
void release()
{
while (buffer->next) {
Buffer* next = buffer->next;
free(buffer);
buffer = next;
}
buffer->current_idx = 0;
}
bool operator==(const monotonic_buffer_resource& other) { return buffer == other.buffer; }
private:
struct Buffer {
Buffer* next;
uint32_t current_idx;
uint32_t data_size;
uint8_t data[];
};
Buffer* buffer;
static constexpr size_t initial_size = 4096;
static constexpr size_t minimum_size = 128;
static_assert(minimum_size > sizeof(Buffer));
};
/*
* Small memory allocator which wraps monotonic_buffer_resource
* in order to implement <allocator_traits>.
*
* This class mimics std::pmr::polymorphic_allocator with monotonic_buffer_resource
* as memory resource. The advantage of this specialization is the absence of
* virtual function calls and the propagation on swap, copy- and move assignment.
*/
template <typename T> class monotonic_allocator final {
public:
monotonic_allocator() = delete;
monotonic_allocator(monotonic_buffer_resource& m) : memory_resource(m) {}
template <typename U>
explicit monotonic_allocator(const monotonic_allocator<U>& rhs)
: memory_resource(rhs.memory_resource)
{}
/* Memory Allocation */
T* allocate(size_t size)
{
uint32_t bytes = sizeof(T) * size;
return (T*)memory_resource.get().allocate(bytes, alignof(T));
}
/* Memory will be freed on destruction of memory_resource */
void deallocate(T* ptr, size_t size) {}
/* Implement <allocator_traits> */
using value_type = T;
template <class U> struct rebind {
using other = monotonic_allocator<U>;
};
typedef std::true_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
template <typename> friend class monotonic_allocator;
template <typename X, typename Y>
friend bool operator==(monotonic_allocator<X> const& a, monotonic_allocator<Y> const& b);
template <typename X, typename Y>
friend bool operator!=(monotonic_allocator<X> const& a, monotonic_allocator<Y> const& b);
private:
std::reference_wrapper<monotonic_buffer_resource> memory_resource;
};
/* Necessary for <allocator_traits>. */
template <typename X, typename Y>
inline bool
operator==(monotonic_allocator<X> const& a, monotonic_allocator<Y> const& b)
{
return a.memory_resource.get() == b.memory_resource.get();
}
template <typename X, typename Y>
inline bool
operator!=(monotonic_allocator<X> const& a, monotonic_allocator<Y> const& b)
{
return !(a == b);
}
/*
* aco::map - alias for std::map with monotonic_allocator
*
* This template specialization mimics std::pmr::map.
*/
template <class Key, class T, class Compare = std::less<Key>>
using map = std::map<Key, T, Compare, aco::monotonic_allocator<std::pair<const Key, T>>>;
/*
* aco::unordered_map - alias for std::unordered_map with monotonic_allocator
*
* This template specialization mimics std::pmr::unordered_map.
*/
template <class Key, class T, class Hash = std::hash<Key>, class Pred = std::equal_to<Key>>
using unordered_map =
std::unordered_map<Key, T, Hash, Pred, aco::monotonic_allocator<std::pair<const Key, T>>>;
/*
* Helper class for a integer/bool (access_type) packed into
* a bigger integer (data_type) with an offset and size.
* It can be implicitly converted to access_type and supports
* all arithmetic assignment operators.
*
* When used together with a union, this allows storing
* multiple fields packed into a single integer.
*
* Example usage:
* union {
* bitfield_uint<uint32_t, 0, 5, uint8_t> int5;
* bitfield_uint<uint32_t, 5, 26, uint32_t> int26;
* bitfield_uint<uint32_t, 31, 1, bool> bool1;
* };
*
*/
template <typename data_type, unsigned offset, unsigned size, typename access_type>
class bitfield_uint {
public:
static_assert(sizeof(data_type) >= sizeof(access_type), "");
static_assert(std::is_unsigned<access_type>::value, "");
static_assert(std::is_unsigned<data_type>::value, "");
static_assert(sizeof(data_type) * 8 >= offset + size, "");
static_assert(sizeof(access_type) * 8 >= size, "");
static_assert(size > 0, "");
static_assert(!std::is_same_v<access_type, bool> || size == 1, "");
bitfield_uint() = default;
constexpr bitfield_uint(const access_type& value) { *this = value; }
constexpr operator access_type() const { return (storage >> offset) & mask; }
constexpr bitfield_uint& operator=(const access_type& value)
{
storage &= ~(mask << offset);
storage |= data_type(value & mask) << offset;
return *this;
}
constexpr bitfield_uint& operator=(const bitfield_uint& value)
{
return *this = access_type(value);
}
constexpr bitfield_uint& operator|=(const access_type& value)
{
storage |= data_type(value & mask) << offset;
return *this;
}
constexpr bitfield_uint& operator^=(const access_type& value)
{
storage ^= data_type(value & mask) << offset;
return *this;
}
constexpr bitfield_uint& operator&=(const access_type& value)
{
storage &= (data_type(value & mask) << offset) | ~(mask << offset);
return *this;
}
constexpr bitfield_uint& operator<<=(const access_type& shift)
{
static_assert(!std::is_same_v<access_type, bool>, "");
assert(shift < size);
return *this = access_type(*this) << shift;
}
constexpr bitfield_uint& operator>>=(const access_type& shift)
{
static_assert(!std::is_same_v<access_type, bool>, "");
assert(shift < size);
return *this = access_type(*this) >> shift;
}
constexpr bitfield_uint& operator*=(const access_type& op)
{
static_assert(!std::is_same_v<access_type, bool>, "");
return *this = access_type(*this) * op;
}
constexpr bitfield_uint& operator/=(const access_type& op)
{
static_assert(!std::is_same_v<access_type, bool>, "");
return *this = access_type(*this) / op;
}
constexpr bitfield_uint& operator%=(const access_type& op)
{
static_assert(!std::is_same_v<access_type, bool>, "");
return *this = access_type(*this) % op;
}
constexpr bitfield_uint& operator+=(const access_type& op)
{
static_assert(!std::is_same_v<access_type, bool>, "");
return *this = access_type(*this) + op;
}
constexpr bitfield_uint& operator-=(const access_type& op)
{
static_assert(!std::is_same_v<access_type, bool>, "");
return *this = access_type(*this) - op;
}
constexpr bitfield_uint& operator++()
{
static_assert(!std::is_same_v<access_type, bool>, "");
return *this += 1;
}
constexpr access_type operator++(int)
{
static_assert(!std::is_same_v<access_type, bool>, "");
access_type temp = *this;
++*this;
return temp;
}
constexpr bitfield_uint& operator--()
{
static_assert(!std::is_same_v<access_type, bool>, "");
return *this -= 1;
}
constexpr access_type operator--(int)
{
static_assert(!std::is_same_v<access_type, bool>, "");
access_type temp = *this;
--*this;
return temp;
}
constexpr void swap(access_type& other)
{
access_type tmp = *this;
*this = other;
other = tmp;
}
template <typename other_dt, unsigned other_off, unsigned other_s>
constexpr void swap(bitfield_uint<other_dt, other_off, other_s, access_type>& other)
{
access_type tmp = *this;
*this = other;
other = tmp;
}
protected:
static const data_type mask = BITFIELD64_MASK(size);
data_type storage;
};
/*
* Reference to a single bit in an integer that can be converted to a bool
* and supports bool (bitwise) assignment operators.
*/
template <typename T> struct bit_reference {
constexpr bit_reference(T& s, unsigned b) : storage(s), bit(b) {}
constexpr bit_reference& operator=(const bit_reference& other) { return *this = (bool)other; }
constexpr bit_reference& operator=(bool val)
{
storage &= ~(T(0x1) << bit);
storage |= T(val) << bit;
return *this;
}
constexpr bit_reference& operator^=(bool val)
{
storage ^= T(val) << bit;
return *this;
}
constexpr bit_reference& operator|=(bool val)
{
storage |= T(val) << bit;
return *this;
}
constexpr bit_reference& operator&=(bool val)
{
storage &= T(val) << bit;
return *this;
}
constexpr operator bool() const { return (storage >> bit) & 0x1; }
constexpr void swap(bool& other)
{
bool tmp = (bool)*this;
*this = other;
other = tmp;
}
template <typename other_T> constexpr void swap(bit_reference<other_T> other)
{
bool tmp = (bool)*this;
*this = (bool)other;
other = tmp;
}
T& storage;
unsigned bit;
};
/*
* Base template for (const) bit iterators over an integer.
* Only intended to be used with the two specializations
* bitfield_array::iterator and bitfield_array::const_iterator.
*/
template <typename T, typename refT, typename ptrT> struct bitfield_iterator {
using difference_type = int;
using value_type = bool;
using iterator_category = std::random_access_iterator_tag;
using reference = refT;
using const_reference = bool;
using pointer = ptrT;
using iterator = bitfield_iterator<T, refT, ptrT>;
using ncT = std::remove_const_t<T>;
constexpr bitfield_iterator() : bf(nullptr), index(0) {}
constexpr bitfield_iterator(T* p, unsigned i) : bf(p), index(i) {}
/* const iterator must be constructable from iterator */
constexpr bitfield_iterator(
const bitfield_iterator<ncT, bit_reference<ncT>, bit_reference<ncT>*>& x)
: bf(x.bf), index(x.index)
{}
constexpr bool operator==(const bitfield_iterator& other) const
{
return bf == other.bf && index == other.index;
}
constexpr bool operator<(const bitfield_iterator& other) const { return index < other.index; }
constexpr bool operator!=(const bitfield_iterator& other) const { return !(*this == other); }
constexpr bool operator>(const bitfield_iterator& other) const { return other < *this; }
constexpr bool operator<=(const bitfield_iterator& other) const { return !(other < *this); }
constexpr bool operator>=(const bitfield_iterator& other) const { return !(*this < other); }
constexpr reference operator*() const { return bit_reference<T>(*bf, index); }
constexpr iterator& operator++()
{
index++;
return *this;
}
constexpr iterator operator++(int)
{
iterator tmp = *this;
index++;
return tmp;
}
constexpr iterator& operator--()
{
index--;
return *this;
}
constexpr iterator operator--(int)
{
iterator tmp = *this;
index--;
return tmp;
}
constexpr iterator& operator+=(difference_type value)
{
index += value;
return *this;
}
constexpr iterator& operator-=(difference_type value)
{
*this += -value;
return *this;
}
constexpr iterator operator+(difference_type value) const
{
iterator tmp = *this;
return tmp += value;
}
constexpr iterator operator-(difference_type value) const
{
iterator tmp = *this;
return tmp -= value;
}
constexpr reference operator[](difference_type value) const { return *(*this + value); }
T* bf;
unsigned index;
};
template <typename T, typename refT, typename ptrT>
constexpr inline bitfield_iterator<T, refT, ptrT>
operator+(int n, const bitfield_iterator<T, refT, ptrT>& x)
{
return x + n;
}
template <typename T, typename refT, typename ptrT>
constexpr inline int
operator-(const bitfield_iterator<T, refT, ptrT> x, const bitfield_iterator<T, refT, ptrT>& y)
{
return x.index - y.index;
}
/*
* Extends bitfield_uint with operator[] and iterators that
* allow accessing single bits within the uint. Can be used
* as a more compact version of bool arrays that also still
* allows accessing the whole array as an integer.
*/
template <typename data_type, unsigned offset, unsigned size, typename access_type>
class bitfield_array : public bitfield_uint<data_type, offset, size, access_type> {
public:
using value_type = bool;
using size_type = unsigned;
using difference_type = int;
using reference = bit_reference<data_type>;
using const_reference = bool;
using pointer = bit_reference<data_type>*;
using const_pointer = const bool*;
using iterator =
bitfield_iterator<data_type, bit_reference<data_type>, bit_reference<data_type>*>;
using const_iterator = bitfield_iterator<const data_type, bool, const bool*>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
bitfield_array() = default;
constexpr bitfield_array(const access_type& value) { *this = value; }
constexpr bitfield_array& operator=(const access_type& value)
{
storage &= ~(mask << offset);
storage |= data_type(value & mask) << offset;
return *this;
}
constexpr bitfield_array& operator=(const bitfield_array& value)
{
return *this = access_type(value);
}
constexpr reference operator[](unsigned index)
{
assert(index < size);
return reference(storage, offset + index);
}
constexpr bool operator[](unsigned index) const
{
assert(index < size);
return (storage >> (offset + index)) & 0x1;
}
constexpr iterator begin() noexcept { return iterator(&storage, offset); }
constexpr iterator end() noexcept { return std::next(begin(), size); }
constexpr const_iterator begin() const noexcept { return const_iterator(&storage, offset); }
constexpr const_iterator end() const noexcept { return std::next(begin(), size); }
constexpr const_iterator cbegin() const noexcept { return begin(); }
constexpr const_iterator cend() const noexcept { return std::next(begin(), size); }
constexpr reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
constexpr reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
constexpr const_reverse_iterator rbegin() const noexcept
{
return const_reverse_iterator(end());
}
constexpr const_reverse_iterator rend() const noexcept
{
return const_reverse_iterator(begin());
}
constexpr const_reverse_iterator crbegin() const noexcept
{
return const_reverse_iterator(cend());
}
constexpr const_reverse_iterator crend() const noexcept
{
return const_reverse_iterator(cbegin());
}
private:
using bitfield_uint<data_type, offset, size, access_type>::storage;
using bitfield_uint<data_type, offset, size, access_type>::mask;
};
template <typename T, unsigned offset> using bitfield_bool = bitfield_uint<T, offset, 1, bool>;
template <typename T, unsigned offset, unsigned size>
using bitfield_uint8 = bitfield_uint<T, offset, size, uint8_t>;
template <typename T, unsigned offset, unsigned size>
using bitfield_uint16 = bitfield_uint<T, offset, size, uint16_t>;
template <typename T, unsigned offset, unsigned size>
using bitfield_uint32 = bitfield_uint<T, offset, size, uint32_t>;
template <typename T, unsigned offset, unsigned size>
using bitfield_uint64 = bitfield_uint<T, offset, size, uint64_t>;
template <typename T, unsigned offset, unsigned size>
using bitfield_array8 = bitfield_array<T, offset, size, uint8_t>;
template <typename T, unsigned offset, unsigned size>
using bitfield_array16 = bitfield_array<T, offset, size, uint16_t>;
template <typename T, unsigned offset, unsigned size>
using bitfield_array32 = bitfield_array<T, offset, size, uint32_t>;
template <typename T, unsigned offset, unsigned size>
using bitfield_array64 = bitfield_array<T, offset, size, uint64_t>;
using bitarray8 = bitfield_array<uint8_t, 0, 8, uint8_t>;
} // namespace aco
#endif // ACO_UTIL_H
|