summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_scheduler.cpp
blob: 0cd67a979e0cbe866e8a6a3e7853b83f002b7646 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
/*
 * Copyright © 2018 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "aco_ir.h"
#include <unordered_set>
#include <algorithm>

#include "vulkan/radv_shader.h" // for radv_nir_compiler_options
#include "amdgfxregs.h"

#define SMEM_WINDOW_SIZE (350 - ctx.num_waves * 35)
#define VMEM_WINDOW_SIZE (1024 - ctx.num_waves * 64)
#define POS_EXP_WINDOW_SIZE 512
#define SMEM_MAX_MOVES (80 - ctx.num_waves * 8)
#define VMEM_MAX_MOVES (128 - ctx.num_waves * 4)
#define POS_EXP_MAX_MOVES 512

namespace aco {

struct sched_ctx {
   std::vector<bool> depends_on;
   std::vector<bool> RAR_dependencies;
   RegisterDemand max_registers;
   int16_t num_waves;
   int16_t last_SMEM_stall;
   int last_SMEM_dep_idx;
};

/* This scheduler is a simple bottom-up pass based on ideas from
 * "A Novel Lightweight Instruction Scheduling Algorithm for Just-In-Time Compiler"
 * from Xiaohua Shi and Peng Guo.
 * The basic approach is to iterate over all instructions. When a memory instruction
 * is encountered it tries to move independent instructions from above and below
 * between the memory instruction and it's first user.
 * The novelty is that this scheduler cares for the current register pressure:
 * Instructions will only be moved if the register pressure won't exceed a certain bound.
 */

template <typename T>
void move_element(T& list, size_t idx, size_t before) {
    if (idx < before) {
        auto begin = std::next(list.begin(), idx);
        auto end = std::next(list.begin(), before);
        std::rotate(begin, begin + 1, end);
    } else if (idx > before) {
        auto begin = std::next(list.begin(), before);
        auto end = std::next(list.begin(), idx + 1);
        std::rotate(begin, end - 1, end);
    }
}

static RegisterDemand getLiveChanges(aco_ptr<Instruction>& instr)
{
   RegisterDemand changes;
   for (const Definition& def : instr->definitions) {
      if (!def.isTemp() || def.isKill())
         continue;
      changes += def.getTemp();
   }

   for (const Operand& op : instr->operands) {
      if (!op.isTemp() || !op.isFirstKill())
         continue;
      changes -= op.getTemp();
   }

   return changes;
}

static RegisterDemand getTempRegisters(aco_ptr<Instruction>& instr)
{
   RegisterDemand temp_registers;
   for (const Definition& def : instr->definitions) {
      if (!def.isTemp() || !def.isKill())
         continue;
      temp_registers += def.getTemp();
   }
   return temp_registers;
}

static bool is_spill_reload(aco_ptr<Instruction>& instr)
{
   return instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload;
}

bool can_move_instr(aco_ptr<Instruction>& instr, Instruction* current, int moving_interaction)
{
   /* don't move exports so that they stay closer together */
   if (instr->format == Format::EXP)
      return false;

   /* handle barriers */

   /* TODO: instead of stopping, maybe try to move the barriers and any
    * instructions interacting with them instead? */
   if (instr->format != Format::PSEUDO_BARRIER) {
      if (instr->opcode == aco_opcode::s_barrier) {
         bool can_reorder = false;
         switch (current->format) {
         case Format::SMEM:
            can_reorder = static_cast<SMEM_instruction*>(current)->can_reorder;
            break;
         case Format::MUBUF:
            can_reorder = static_cast<MUBUF_instruction*>(current)->can_reorder;
            break;
         case Format::MIMG:
            can_reorder = static_cast<MIMG_instruction*>(current)->can_reorder;
            break;
         default:
            break;
         }
         return can_reorder && moving_interaction == barrier_none;
      } else {
         return true;
      }
   }

   int interaction = get_barrier_interaction(current);
   interaction |= moving_interaction;

   switch (instr->opcode) {
   case aco_opcode::p_memory_barrier_atomic:
      return !(interaction & barrier_atomic);
   /* For now, buffer and image barriers are treated the same. this is because of
    * dEQP-VK.memory_model.message_passing.core11.u32.coherent.fence_fence.atomicwrite.device.payload_nonlocal.buffer.guard_nonlocal.image.comp
    * which seems to use an image load to determine if the result of a buffer load is valid. So the ordering of the two loads is important.
    * I /think/ we should probably eventually expand the meaning of a buffer barrier so that all buffer operations before it, must stay before it
    * and that both image and buffer operations after it, must stay after it. We should also do the same for image barriers.
    * Or perhaps the problem is that we don't have a combined barrier instruction for both buffers and images, but the CTS test expects us to?
    * Either way, this solution should work. */
   case aco_opcode::p_memory_barrier_buffer:
   case aco_opcode::p_memory_barrier_image:
      return !(interaction & (barrier_image | barrier_buffer));
   case aco_opcode::p_memory_barrier_shared:
      return !(interaction & barrier_shared);
   case aco_opcode::p_memory_barrier_all:
      return interaction == barrier_none;
   default:
      return false;
   }
}

bool can_reorder(Instruction* candidate, bool allow_smem)
{
   switch (candidate->format) {
   case Format::SMEM:
      return allow_smem || static_cast<SMEM_instruction*>(candidate)->can_reorder;
   case Format::MUBUF:
      return static_cast<MUBUF_instruction*>(candidate)->can_reorder;
   case Format::MIMG:
      return static_cast<MIMG_instruction*>(candidate)->can_reorder;
   case Format::MTBUF:
      return static_cast<MTBUF_instruction*>(candidate)->can_reorder;
   case Format::FLAT:
   case Format::GLOBAL:
   case Format::SCRATCH:
      return false;
   default:
      return true;
   }
}

void schedule_SMEM(sched_ctx& ctx, Block* block,
                   std::vector<RegisterDemand>& register_demand,
                   Instruction* current, int idx)
{
   assert(idx != 0);
   int window_size = SMEM_WINDOW_SIZE;
   int max_moves = SMEM_MAX_MOVES;
   int16_t k = 0;
   bool can_reorder_cur = can_reorder(current, false);

   /* create the initial set of values which current depends on */
   std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
   for (const Operand& op : current->operands) {
      if (op.isTemp())
         ctx.depends_on[op.tempId()] = true;
   }

   /* maintain how many registers remain free when moving instructions */
   RegisterDemand register_pressure = register_demand[idx];

   /* first, check if we have instructions before current to move down */
   int insert_idx = idx + 1;
   int moving_interaction = barrier_none;
   bool moving_spill = false;

   for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
      assert(candidate_idx >= 0);
      aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];

      /* break if we'd make the previous SMEM instruction stall */
      bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx;
      if (can_stall_prev_smem && ctx.last_SMEM_stall >= 0)
         break;

      /* break when encountering another MEM instruction, logical_start or barriers */
      if (!can_reorder(candidate.get(), false) && !can_reorder_cur)
         break;
      if (candidate->opcode == aco_opcode::p_logical_start)
         break;
      if (!can_move_instr(candidate, current, moving_interaction))
         break;
      register_pressure.update(register_demand[candidate_idx]);

      /* if current depends on candidate, add additional dependencies and continue */
      bool can_move_down = true;
      bool writes_exec = false;
      for (const Definition& def : candidate->definitions) {
         if (def.isTemp() && ctx.depends_on[def.tempId()])
            can_move_down = false;
         if (def.isFixed() && def.physReg() == exec)
            writes_exec = true;
      }
      if (writes_exec)
         break;

      if (moving_spill && is_spill_reload(candidate))
         can_move_down = false;
      if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
         can_move_down = false;
      moving_interaction |= get_barrier_interaction(candidate.get());
      moving_spill |= is_spill_reload(candidate);
      if (!can_move_down) {
         for (const Operand& op : candidate->operands) {
            if (op.isTemp())
               ctx.depends_on[op.tempId()] = true;
         }
         continue;
      }

      bool register_pressure_unknown = false;
      /* check if one of candidate's operands is killed by depending instruction */
      for (const Operand& op : candidate->operands) {
         if (op.isTemp() && ctx.depends_on[op.tempId()]) {
            // FIXME: account for difference in register pressure
            register_pressure_unknown = true;
         }
      }
      if (register_pressure_unknown) {
         for (const Operand& op : candidate->operands) {
            if (op.isTemp())
               ctx.depends_on[op.tempId()] = true;
         }
         continue;
      }

      /* check if register pressure is low enough: the diff is negative if register pressure is decreased */
      const RegisterDemand candidate_diff = getLiveChanges(candidate);
      const RegisterDemand tempDemand = getTempRegisters(candidate);
      if (RegisterDemand(register_pressure - candidate_diff).exceeds(ctx.max_registers))
         break;
      const RegisterDemand tempDemand2 = getTempRegisters(block->instructions[insert_idx - 1]);
      const RegisterDemand new_demand  = register_demand[insert_idx - 1] - tempDemand2 + tempDemand;
      if (new_demand.exceeds(ctx.max_registers))
         break;
      // TODO: we might want to look further to find a sequence of instructions to move down which doesn't exceed reg pressure

      /* move the candidate below the memory load */
      move_element(block->instructions, candidate_idx, insert_idx);

      /* update register pressure */
      move_element(register_demand, candidate_idx, insert_idx);
      for (int i = candidate_idx; i < insert_idx - 1; i++) {
         register_demand[i] -= candidate_diff;
      }
      register_demand[insert_idx - 1] = new_demand;
      register_pressure -= candidate_diff;

      if (candidate_idx < ctx.last_SMEM_dep_idx)
         ctx.last_SMEM_stall++;
      insert_idx--;
      k++;
   }

   /* create the initial set of values which depend on current */
   std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
   std::fill(ctx.RAR_dependencies.begin(), ctx.RAR_dependencies.end(), false);
   for (const Definition& def : current->definitions) {
      if (def.isTemp())
         ctx.depends_on[def.tempId()] = true;
   }

   /* find the first instruction depending on current or find another MEM */
   insert_idx = idx + 1;
   moving_interaction = barrier_none;
   moving_spill = false;

   bool found_dependency = false;
   /* second, check if we have instructions after current to move up */
   for (int candidate_idx = idx + 1; k < max_moves && candidate_idx < (int) idx + window_size; candidate_idx++) {
      assert(candidate_idx < (int) block->instructions.size());
      aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];

      if (candidate->opcode == aco_opcode::p_logical_end)
         break;
      if (!can_move_instr(candidate, current, moving_interaction))
         break;

      const bool writes_exec = std::any_of(candidate->definitions.begin(), candidate->definitions.end(),
                                           [](const Definition& def) { return def.isFixed() && def.physReg() == exec;});
      if (writes_exec)
         break;

      /* check if candidate depends on current */
      bool is_dependency = std::any_of(candidate->operands.begin(), candidate->operands.end(),
                                       [&ctx](const Operand& op) { return op.isTemp() && ctx.depends_on[op.tempId()];});
      if (moving_spill && is_spill_reload(candidate))
         is_dependency = true;
      if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
         is_dependency = true;
      moving_interaction |= get_barrier_interaction(candidate.get());
      moving_spill |= is_spill_reload(candidate);
      if (is_dependency) {
         for (const Definition& def : candidate->definitions) {
            if (def.isTemp())
               ctx.depends_on[def.tempId()] = true;
         }
         for (const Operand& op : candidate->operands) {
            if (op.isTemp())
               ctx.RAR_dependencies[op.tempId()] = true;
         }
         if (!found_dependency) {
            insert_idx = candidate_idx;
            found_dependency = true;
            /* init register pressure */
            register_pressure = register_demand[insert_idx - 1];
         }
      }

      if (!can_reorder(candidate.get(), false) && !can_reorder_cur)
         break;

      if (!found_dependency) {
         k++;
         continue;
      }

      /* update register pressure */
      register_pressure.update(register_demand[candidate_idx - 1]);

      if (is_dependency)
         continue;
      assert(insert_idx != idx);

      // TODO: correctly calculate register pressure for this case
      bool register_pressure_unknown = false;
      /* check if candidate uses/kills an operand which is used by a dependency */
      for (const Operand& op : candidate->operands) {
         if (op.isTemp() && ctx.RAR_dependencies[op.tempId()])
            register_pressure_unknown = true;
      }
      if (register_pressure_unknown) {
         for (const Definition& def : candidate->definitions) {
            if (def.isTemp())
               ctx.RAR_dependencies[def.tempId()] = true;
         }
         for (const Operand& op : candidate->operands) {
            if (op.isTemp())
               ctx.RAR_dependencies[op.tempId()] = true;
         }
         continue;
      }

      /* check if register pressure is low enough: the diff is negative if register pressure is decreased */
      const RegisterDemand candidate_diff = getLiveChanges(candidate);
      const RegisterDemand temp = getTempRegisters(candidate);
      if (RegisterDemand(register_pressure + candidate_diff).exceeds(ctx.max_registers))
         break;
      const RegisterDemand temp2 = getTempRegisters(block->instructions[insert_idx - 1]);
      const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + candidate_diff + temp;
      if (new_demand.exceeds(ctx.max_registers))
         break;

      /* move the candidate above the insert_idx */
      move_element(block->instructions, candidate_idx, insert_idx);

      /* update register pressure */
      move_element(register_demand, candidate_idx, insert_idx);
      for (int i = insert_idx + 1; i <= candidate_idx; i++) {
         register_demand[i] += candidate_diff;
      }
      register_demand[insert_idx] = new_demand;
      register_pressure += candidate_diff;
      insert_idx++;
      k++;
   }

   ctx.last_SMEM_dep_idx = found_dependency ? insert_idx : 0;
   ctx.last_SMEM_stall = 10 - ctx.num_waves - k;
}

void schedule_VMEM(sched_ctx& ctx, Block* block,
                   std::vector<RegisterDemand>& register_demand,
                   Instruction* current, int idx)
{
   assert(idx != 0);
   int window_size = VMEM_WINDOW_SIZE;
   int max_moves = VMEM_MAX_MOVES;
   int16_t k = 0;
   bool can_reorder_cur = can_reorder(current, false);

   /* create the initial set of values which current depends on */
   std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
   for (const Operand& op : current->operands) {
      if (op.isTemp())
         ctx.depends_on[op.tempId()] = true;
   }

   /* maintain how many registers remain free when moving instructions */
   RegisterDemand register_pressure = register_demand[idx];

   /* first, check if we have instructions before current to move down */
   int insert_idx = idx + 1;
   int moving_interaction = barrier_none;
   bool moving_spill = false;

   for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
      assert(candidate_idx >= 0);
      aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];

      /* break when encountering another VMEM instruction, logical_start or barriers */
      if (!can_reorder(candidate.get(), true) && !can_reorder_cur)
         break;
      if (candidate->opcode == aco_opcode::p_logical_start)
         break;
      if (!can_move_instr(candidate, current, moving_interaction))
         break;

      /* break if we'd make the previous SMEM instruction stall */
      bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx;
      if (can_stall_prev_smem && ctx.last_SMEM_stall >= 0)
         break;
      register_pressure.update(register_demand[candidate_idx]);

      /* if current depends on candidate, add additional dependencies and continue */
      bool can_move_down = true;
      bool writes_exec = false;
      for (const Definition& def : candidate->definitions) {
         if (def.isTemp() && ctx.depends_on[def.tempId()])
            can_move_down = false;
         if (def.isFixed() && def.physReg() == exec)
            writes_exec = true;
      }
      if (writes_exec)
         break;

      if (moving_spill && is_spill_reload(candidate))
         can_move_down = false;
      if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
         can_move_down = false;
      moving_interaction |= get_barrier_interaction(candidate.get());
      moving_spill |= is_spill_reload(candidate);
      if (!can_move_down) {
         for (const Operand& op : candidate->operands) {
            if (op.isTemp())
               ctx.depends_on[op.tempId()] = true;
         }
         continue;
      }

      bool register_pressure_unknown = false;
      /* check if one of candidate's operands is killed by depending instruction */
      for (const Operand& op : candidate->operands) {
         if (op.isTemp() && ctx.depends_on[op.tempId()]) {
            // FIXME: account for difference in register pressure
            register_pressure_unknown = true;
         }
      }
      if (register_pressure_unknown) {
         for (const Operand& op : candidate->operands) {
            if (op.isTemp())
               ctx.depends_on[op.tempId()] = true;
         }
         continue;
      }

      /* check if register pressure is low enough: the diff is negative if register pressure is decreased */
      const RegisterDemand candidate_diff = getLiveChanges(candidate);
      const RegisterDemand temp = getTempRegisters(candidate);;
      if (RegisterDemand(register_pressure - candidate_diff).exceeds(ctx.max_registers))
         break;
      const RegisterDemand temp2 = getTempRegisters(block->instructions[insert_idx - 1]);
      const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + temp;
      if (new_demand.exceeds(ctx.max_registers))
         break;
      // TODO: we might want to look further to find a sequence of instructions to move down which doesn't exceed reg pressure

      /* move the candidate below the memory load */
      move_element(block->instructions, candidate_idx, insert_idx);

      /* update register pressure */
      move_element(register_demand, candidate_idx, insert_idx);
      for (int i = candidate_idx; i < insert_idx - 1; i++) {
         register_demand[i] -= candidate_diff;
      }
      register_demand[insert_idx - 1] = new_demand;
      register_pressure -=  candidate_diff;
      insert_idx--;
      k++;
      if (candidate_idx < ctx.last_SMEM_dep_idx)
         ctx.last_SMEM_stall++;
   }

   /* create the initial set of values which depend on current */
   std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
   std::fill(ctx.RAR_dependencies.begin(), ctx.RAR_dependencies.end(), false);
   for (const Definition& def : current->definitions) {
      if (def.isTemp())
         ctx.depends_on[def.tempId()] = true;
   }

   /* find the first instruction depending on current or find another VMEM */
   insert_idx = idx;
   moving_interaction = barrier_none;
   moving_spill = false;

   bool found_dependency = false;
   /* second, check if we have instructions after current to move up */
   for (int candidate_idx = idx + 1; k < max_moves && candidate_idx < (int) idx + window_size; candidate_idx++) {
      assert(candidate_idx < (int) block->instructions.size());
      aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];

      if (candidate->opcode == aco_opcode::p_logical_end)
         break;
      if (!can_move_instr(candidate, current, moving_interaction))
         break;

      const bool writes_exec = std::any_of(candidate->definitions.begin(), candidate->definitions.end(),
                                           [](const Definition& def) {return def.isFixed() && def.physReg() == exec; });
      if (writes_exec)
         break;

      /* check if candidate depends on current */
      bool is_dependency = !can_reorder(candidate.get(), true) && !can_reorder_cur;
      for (const Operand& op : candidate->operands) {
         if (op.isTemp() && ctx.depends_on[op.tempId()]) {
            is_dependency = true;
            break;
         }
      }
      if (moving_spill && is_spill_reload(candidate))
         is_dependency = true;
      if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
         is_dependency = true;
      moving_interaction |= get_barrier_interaction(candidate.get());
      moving_spill |= is_spill_reload(candidate);
      if (is_dependency) {
         for (const Definition& def : candidate->definitions) {
            if (def.isTemp())
               ctx.depends_on[def.tempId()] = true;
         }
         for (const Operand& op : candidate->operands) {
            if (op.isTemp())
               ctx.RAR_dependencies[op.tempId()] = true;
         }
         if (!found_dependency) {
            insert_idx = candidate_idx;
            found_dependency = true;
            /* init register pressure */
            register_pressure = register_demand[insert_idx - 1];
            continue;
         }
      }

      /* update register pressure */
      register_pressure.update(register_demand[candidate_idx - 1]);

      if (is_dependency || !found_dependency)
         continue;
      assert(insert_idx != idx);

      bool register_pressure_unknown = false;
      /* check if candidate uses/kills an operand which is used by a dependency */
      for (const Operand& op : candidate->operands) {
         if (op.isTemp() && ctx.RAR_dependencies[op.tempId()])
            register_pressure_unknown = true;
      }
      if (register_pressure_unknown) {
         for (const Definition& def : candidate->definitions) {
            if (def.isTemp())
               ctx.RAR_dependencies[def.tempId()] = true;
         }
         for (const Operand& op : candidate->operands) {
            if (op.isTemp())
               ctx.RAR_dependencies[op.tempId()] = true;
         }
         continue;
      }

      /* check if register pressure is low enough: the diff is negative if register pressure is decreased */
      const RegisterDemand candidate_diff = getLiveChanges(candidate);
      const RegisterDemand temp = getTempRegisters(candidate);
      if (RegisterDemand(register_pressure + candidate_diff).exceeds(ctx.max_registers))
         break;
      const RegisterDemand temp2 = getTempRegisters(block->instructions[insert_idx - 1]);
      const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + candidate_diff + temp;
      if (new_demand.exceeds(ctx.max_registers))
         break;

      /* move the candidate above the insert_idx */
      move_element(block->instructions, candidate_idx, insert_idx);

      /* update register pressure */
      move_element(register_demand, candidate_idx, insert_idx);
      for (int i = insert_idx + 1; i <= candidate_idx; i++) {
         register_demand[i] += candidate_diff;
      }
      register_demand[insert_idx] = new_demand;
      register_pressure += candidate_diff;
      insert_idx++;
      k++;
   }
}

void schedule_position_export(sched_ctx& ctx, Block* block,
                              std::vector<RegisterDemand>& register_demand,
                              Instruction* current, int idx)
{
   assert(idx != 0);
   int window_size = POS_EXP_WINDOW_SIZE;
   int max_moves = POS_EXP_MAX_MOVES;
   int16_t k = 0;

   /* create the initial set of values which current depends on */
   std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
   for (unsigned i = 0; i < current->operands.size(); i++) {
      if (current->operands[i].isTemp())
         ctx.depends_on[current->operands[i].tempId()] = true;
   }

   /* maintain how many registers remain free when moving instructions */
   RegisterDemand register_pressure = register_demand[idx];

   /* first, check if we have instructions before current to move down */
   int insert_idx = idx + 1;
   int moving_interaction = barrier_none;
   bool moving_spill = false;

   for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
      assert(candidate_idx >= 0);
      aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];

      /* break when encountering logical_start or barriers */
      if (candidate->opcode == aco_opcode::p_logical_start)
         break;
      if (candidate->isVMEM() || candidate->format == Format::SMEM)
         break;
      if (!can_move_instr(candidate, current, moving_interaction))
         break;

      register_pressure.update(register_demand[candidate_idx]);

      /* if current depends on candidate, add additional dependencies and continue */
      bool can_move_down = true;
      bool writes_exec = false;
      for (unsigned i = 0; i < candidate->definitions.size(); i++) {
         if (candidate->definitions[i].isTemp() && ctx.depends_on[candidate->definitions[i].tempId()])
            can_move_down = false;
         if (candidate->definitions[i].isFixed() && candidate->definitions[i].physReg() == exec)
            writes_exec = true;
      }
      if (writes_exec)
         break;

      if (moving_spill && is_spill_reload(candidate))
         can_move_down = false;
      if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
         can_move_down = false;
      moving_interaction |= get_barrier_interaction(candidate.get());
      moving_spill |= is_spill_reload(candidate);
      if (!can_move_down) {
         for (unsigned i = 0; i < candidate->operands.size(); i++) {
            if (candidate->operands[i].isTemp())
               ctx.depends_on[candidate->operands[i].tempId()] = true;
         }
         continue;
      }

      bool register_pressure_unknown = false;
      /* check if one of candidate's operands is killed by depending instruction */
      for (unsigned i = 0; i < candidate->operands.size(); i++) {
         if (candidate->operands[i].isTemp() && ctx.depends_on[candidate->operands[i].tempId()]) {
            // FIXME: account for difference in register pressure
            register_pressure_unknown = true;
         }
      }
      if (register_pressure_unknown) {
         for (unsigned i = 0; i < candidate->operands.size(); i++) {
            if (candidate->operands[i].isTemp())
               ctx.depends_on[candidate->operands[i].tempId()] = true;
         }
         continue;
      }

      /* check if register pressure is low enough: the diff is negative if register pressure is decreased */
      const RegisterDemand candidate_diff = getLiveChanges(candidate);
      const RegisterDemand temp = getTempRegisters(candidate);;
      if (RegisterDemand(register_pressure - candidate_diff).exceeds(ctx.max_registers))
         break;
      const RegisterDemand temp2 = getTempRegisters(block->instructions[insert_idx - 1]);
      const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + temp;
      if (new_demand.exceeds(ctx.max_registers))
         break;
      // TODO: we might want to look further to find a sequence of instructions to move down which doesn't exceed reg pressure

      /* move the candidate below the export */
      move_element(block->instructions, candidate_idx, insert_idx);

      /* update register pressure */
      move_element(register_demand, candidate_idx, insert_idx);
      for (int i = candidate_idx; i < insert_idx - 1; i++) {
         register_demand[i] -= candidate_diff;
      }
      register_demand[insert_idx - 1] = new_demand;
      register_pressure -=  candidate_diff;
      insert_idx--;
      k++;
   }
}

void schedule_block(sched_ctx& ctx, Program *program, Block* block, live& live_vars)
{
   ctx.last_SMEM_dep_idx = 0;
   ctx.last_SMEM_stall = INT16_MIN;

   /* go through all instructions and find memory loads */
   for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
      Instruction* current = block->instructions[idx].get();

      if (current->definitions.empty())
         continue;

      if (current->isVMEM())
         schedule_VMEM(ctx, block, live_vars.register_demand[block->index], current, idx);
      if (current->format == Format::SMEM)
         schedule_SMEM(ctx, block, live_vars.register_demand[block->index], current, idx);
   }

   if ((program->stage & hw_vs) && block->index == program->blocks.size() - 1) {
      /* Try to move position exports as far up as possible, to reduce register
       * usage and because ISA reference guides say so. */
      for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
         Instruction* current = block->instructions[idx].get();

         if (current->format == Format::EXP) {
            unsigned target = static_cast<Export_instruction*>(current)->dest;
            if (target >= V_008DFC_SQ_EXP_POS && target < V_008DFC_SQ_EXP_PARAM)
               schedule_position_export(ctx, block, live_vars.register_demand[block->index], current, idx);
         }
      }
   }

   /* resummarize the block's register demand */
   block->register_demand = RegisterDemand();
   for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
      block->register_demand.update(live_vars.register_demand[block->index][idx]);
   }
}


void schedule_program(Program *program, live& live_vars)
{
   sched_ctx ctx;
   ctx.depends_on.resize(program->peekAllocationId());
   ctx.RAR_dependencies.resize(program->peekAllocationId());
   /* Allowing the scheduler to reduce the number of waves to as low as 5
    * improves performance of Thrones of Britannia significantly and doesn't
    * seem to hurt anything else. */
   //TODO: maybe use some sort of heuristic instead
   //TODO: this also increases window-size/max-moves? did I realize that at the time?
   ctx.num_waves = std::min<uint16_t>(program->num_waves, 5);
   assert(ctx.num_waves);
   uint16_t total_sgpr_regs = program->chip_class >= GFX8 ? 800 : 512;
   uint16_t max_addressible_sgpr = program->sgpr_limit;
   ctx.max_registers = { int16_t(((256 / ctx.num_waves) & ~3) - 2), std::min<int16_t>(((total_sgpr_regs / ctx.num_waves) & ~7) - 2, max_addressible_sgpr)};

   for (Block& block : program->blocks)
      schedule_block(ctx, program, &block, live_vars);

   /* update max_reg_demand and num_waves */
   RegisterDemand new_demand;
   for (Block& block : program->blocks) {
      new_demand.update(block.register_demand);
   }
   update_vgpr_sgpr_demand(program, new_demand);

   /* if enabled, this code asserts that register_demand is updated correctly */
   #if 0
   int prev_num_waves = program->num_waves;
   const RegisterDemand prev_max_demand = program->max_reg_demand;

   std::vector<RegisterDemand> demands(program->blocks.size());
   for (unsigned j = 0; j < program->blocks.size(); j++) {
      demands[j] = program->blocks[j].register_demand;
   }

   struct radv_nir_compiler_options options;
   options.chip_class = program->chip_class;
   live live_vars2 = aco::live_var_analysis(program, &options);

   for (unsigned j = 0; j < program->blocks.size(); j++) {
      Block &b = program->blocks[j];
      for (unsigned i = 0; i < b.instructions.size(); i++)
         assert(live_vars.register_demand[b.index][i] == live_vars2.register_demand[b.index][i]);
      assert(b.register_demand == demands[j]);
   }

   assert(program->max_reg_demand == prev_max_demand);
   assert(program->num_waves == prev_num_waves);
   #endif
}

}