1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
|
/*
* Copyright © 2021 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include <algorithm>
#include <array>
#include <bitset>
#include <vector>
namespace aco {
namespace {
constexpr const size_t max_reg_cnt = 512;
constexpr const size_t max_sgpr_cnt = 128;
constexpr const size_t min_vgpr = 256;
constexpr const size_t max_vgpr_cnt = 256;
struct Idx {
bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; }
bool operator!=(const Idx& other) const { return !operator==(other); }
bool found() const { return block != UINT32_MAX; }
uint32_t block;
uint32_t instr;
};
/** Indicates that a register was not yet written in the shader. */
Idx not_written_yet{UINT32_MAX, 0};
/** Indicates that an operand is constant or undefined, not written by any instruction. */
Idx const_or_undef{UINT32_MAX, 2};
/** Indicates that a register was overwritten by different instructions in previous blocks. */
Idx overwritten_untrackable{UINT32_MAX, 3};
/** Indicates that a register was written by subdword operations. */
Idx overwritten_subdword{UINT32_MAX, 4};
struct pr_opt_ctx {
using Idx_array = std::array<Idx, max_reg_cnt>;
Program* program;
Block* current_block;
uint32_t current_instr_idx;
std::vector<uint16_t> uses;
std::unique_ptr<Idx_array[]> instr_idx_by_regs;
pr_opt_ctx(Program* p)
: program(p), current_block(nullptr), current_instr_idx(0), uses(dead_code_analysis(p)),
instr_idx_by_regs(std::unique_ptr<Idx_array[]>{new Idx_array[p->blocks.size()]})
{}
ALWAYS_INLINE void reset_block_regs(const std::vector<uint32_t>& preds,
const unsigned block_index, const unsigned min_reg,
const unsigned num_regs)
{
const unsigned num_preds = preds.size();
const unsigned first_pred = preds[0];
/* Copy information from the first predecessor. */
memcpy(&instr_idx_by_regs[block_index][min_reg], &instr_idx_by_regs[first_pred][min_reg],
num_regs * sizeof(Idx));
/* Mark overwritten if it doesn't match with other predecessors. */
const unsigned until_reg = min_reg + num_regs;
for (unsigned i = 1; i < num_preds; ++i) {
unsigned pred = preds[i];
for (unsigned reg = min_reg; reg < until_reg; ++reg) {
Idx& idx = instr_idx_by_regs[block_index][reg];
if (idx == overwritten_untrackable)
continue;
if (idx != instr_idx_by_regs[pred][reg])
idx = overwritten_untrackable;
}
}
}
void reset_block(Block* block)
{
current_block = block;
current_instr_idx = 0;
if (block->linear_preds.empty()) {
std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
not_written_yet);
} else if (block->kind & block_kind_loop_header) {
/* Instructions inside the loop may overwrite registers of temporaries that are
* not live inside the loop, but we can't detect that because we haven't processed
* the blocks in the loop yet. As a workaround, mark all registers as untrackable.
* TODO: Consider improving this in the future.
*/
std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
overwritten_untrackable);
} else {
reset_block_regs(block->linear_preds, block->index, 0, max_sgpr_cnt);
reset_block_regs(block->linear_preds, block->index, 251, 3);
if (!block->logical_preds.empty()) {
/* We assume that VGPRs are only read by blocks which have a logical predecessor,
* ie. any block that reads any VGPR has at least 1 logical predecessor.
*/
reset_block_regs(block->logical_preds, block->index, min_vgpr, max_vgpr_cnt);
} else {
/* If a block has no logical predecessors, it is not part of the
* logical CFG and therefore it also won't have any logical successors.
* Such a block does not write any VGPRs ever.
*/
assert(block->logical_succs.empty());
}
}
}
Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); }
};
void
save_reg_writes(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
for (const Definition& def : instr->definitions) {
assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255);
assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256);
unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u);
unsigned r = def.physReg().reg();
Idx idx{ctx.current_block->index, ctx.current_instr_idx};
if (def.regClass().is_subdword())
idx = overwritten_subdword;
assert((r + dw_size) <= max_reg_cnt);
assert(def.size() == dw_size || def.regClass().is_subdword());
std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx);
}
}
Idx
last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc)
{
/* Verify that all of the operand's registers are written by the same instruction. */
assert(physReg.reg() < max_reg_cnt);
Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()];
unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u);
unsigned r = physReg.reg();
bool all_same =
std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size,
[instr_idx](Idx i) { return i == instr_idx; });
return all_same ? instr_idx : overwritten_untrackable;
}
Idx
last_writer_idx(pr_opt_ctx& ctx, const Operand& op)
{
if (op.isConstant() || op.isUndefined())
return const_or_undef;
return last_writer_idx(ctx, op.physReg(), op.regClass());
}
/**
* Check whether a register has been overwritten since the given location.
* This is an important part of checking whether certain optimizations are
* valid.
* Note that the decision is made based on registers and not on SSA IDs.
*/
bool
is_overwritten_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& since_idx)
{
/* If we didn't find an instruction, assume that the register is overwritten. */
if (!since_idx.found())
return true;
/* TODO: We currently can't keep track of subdword registers. */
if (rc.is_subdword())
return true;
unsigned begin_reg = reg.reg();
unsigned end_reg = begin_reg + rc.size();
unsigned current_block_idx = ctx.current_block->index;
for (unsigned r = begin_reg; r < end_reg; ++r) {
Idx& i = ctx.instr_idx_by_regs[current_block_idx][r];
if (i == overwritten_untrackable && current_block_idx > since_idx.block)
return true;
else if (i == overwritten_untrackable || i == not_written_yet)
continue;
assert(i.found());
if (i.block > since_idx.block || (i.block == since_idx.block && i.instr > since_idx.instr))
return true;
}
return false;
}
template <typename T>
bool
is_overwritten_since(pr_opt_ctx& ctx, const T& t, const Idx& idx)
{
return is_overwritten_since(ctx, t.physReg(), t.regClass(), idx);
}
void
try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* vcc = ... ; last_vcc_wr
* sX, scc = s_and_bXX vcc, exec ; op0_instr
* (...vcc and exec must not be overwritten inbetween...)
* s_cbranch_XX scc ; instr
*
* If possible, the above is optimized into:
*
* vcc = ... ; last_vcc_wr
* s_cbranch_XX vcc ; instr modified to use vcc
*/
/* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */
if (ctx.program->gfx_level < GFX8)
return;
if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 ||
instr->operands[0].physReg() != scc)
return;
Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]);
Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask);
/* We need to make sure:
* - the instructions that wrote the operand register and VCC are both found
* - the operand register used by the branch, and VCC were both written in the current block
* - EXEC hasn't been overwritten since the last VCC write
* - VCC hasn't been overwritten since the operand register was written
* (ie. the last VCC writer precedes the op0 writer)
*/
if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() ||
op0_instr_idx.block != ctx.current_block->index ||
last_vcc_wr_idx.block != ctx.current_block->index ||
is_overwritten_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) ||
is_overwritten_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx))
return;
Instruction* op0_instr = ctx.get(op0_instr_idx);
Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx);
if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ &&
op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) ||
op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec ||
!last_vcc_wr->isVOPC())
return;
assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId());
/* Reduce the uses of the SCC def */
ctx.uses[instr->operands[0].tempId()]--;
/* Use VCC instead of SCC in the branch */
instr->operands[0] = op0_instr->operands[0];
}
void
try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* s_bfe_u32 s0, s3, 0x40018 ; outputs SGPR and SCC if the SGPR != 0
* s_cmp_eq_i32 s0, 0 ; comparison between the SGPR and 0
* s_cbranch_scc0 BB3 ; use the result of the comparison, eg. branch or cselect
*
* If possible, the above is optimized into:
*
* s_bfe_u32 s0, s3, 0x40018 ; original instruction
* s_cbranch_scc1 BB3 ; modified to use SCC directly rather than the SGPR with comparison
*
*/
if (!instr->isSALU() && !instr->isBranch())
return;
if (instr->isSOPC() &&
(instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) &&
(instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) &&
(instr->operands[0].isTemp() || instr->operands[1].isTemp())) {
/* Make sure the constant is always in operand 1 */
if (instr->operands[0].isConstant())
std::swap(instr->operands[0], instr->operands[1]);
if (ctx.uses[instr->operands[0].tempId()] > 1)
return;
/* Find the writer instruction of Operand 0. */
Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
if (!wr_idx.found())
return;
Instruction* wr_instr = ctx.get(wr_idx);
if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 ||
wr_instr->definitions[1].physReg() != scc)
return;
/* Look for instructions which set SCC := (D != 0) */
switch (wr_instr->opcode) {
case aco_opcode::s_bfe_i32:
case aco_opcode::s_bfe_i64:
case aco_opcode::s_bfe_u32:
case aco_opcode::s_bfe_u64:
case aco_opcode::s_and_b32:
case aco_opcode::s_and_b64:
case aco_opcode::s_andn2_b32:
case aco_opcode::s_andn2_b64:
case aco_opcode::s_or_b32:
case aco_opcode::s_or_b64:
case aco_opcode::s_orn2_b32:
case aco_opcode::s_orn2_b64:
case aco_opcode::s_xor_b32:
case aco_opcode::s_xor_b64:
case aco_opcode::s_not_b32:
case aco_opcode::s_not_b64:
case aco_opcode::s_nor_b32:
case aco_opcode::s_nor_b64:
case aco_opcode::s_xnor_b32:
case aco_opcode::s_xnor_b64:
case aco_opcode::s_nand_b32:
case aco_opcode::s_nand_b64:
case aco_opcode::s_lshl_b32:
case aco_opcode::s_lshl_b64:
case aco_opcode::s_lshr_b32:
case aco_opcode::s_lshr_b64:
case aco_opcode::s_ashr_i32:
case aco_opcode::s_ashr_i64:
case aco_opcode::s_abs_i32:
case aco_opcode::s_absdiff_i32: break;
default: return;
}
/* Check whether both SCC and Operand 0 are written by the same instruction. */
Idx sccwr_idx = last_writer_idx(ctx, scc, s1);
if (wr_idx != sccwr_idx) {
/* Check whether the current instruction is the only user of its first operand. */
if (ctx.uses[wr_instr->definitions[1].tempId()] ||
ctx.uses[wr_instr->definitions[0].tempId()] > 1)
return;
/* Check whether the operands of the writer are overwritten. */
for (const Operand& op : wr_instr->operands) {
if (!op.isConstant() && is_overwritten_since(ctx, op, wr_idx))
return;
}
aco_opcode pulled_opcode = wr_instr->opcode;
if (instr->opcode == aco_opcode::s_cmp_eq_u32 ||
instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64) {
/* When s_cmp_eq is used, it effectively inverts the SCC def.
* However, we can't simply invert the opcodes here because that
* would change the meaning of the program.
*/
return;
}
Definition scc_def = instr->definitions[0];
ctx.uses[wr_instr->definitions[0].tempId()]--;
/* Copy the writer instruction, but use SCC from the current instr.
* This means that the original instruction will be eliminated.
*/
if (wr_instr->format == Format::SOP2) {
instr.reset(create_instruction<SOP2_instruction>(pulled_opcode, Format::SOP2, 2, 2));
instr->operands[1] = wr_instr->operands[1];
} else if (wr_instr->format == Format::SOP1) {
instr.reset(create_instruction<SOP1_instruction>(pulled_opcode, Format::SOP1, 1, 2));
}
instr->definitions[0] = wr_instr->definitions[0];
instr->definitions[1] = scc_def;
instr->operands[0] = wr_instr->operands[0];
return;
}
/* Use the SCC def from wr_instr */
ctx.uses[instr->operands[0].tempId()]--;
instr->operands[0] = Operand(wr_instr->definitions[1].getTemp(), scc);
ctx.uses[instr->operands[0].tempId()]++;
/* Set the opcode and operand to 32-bit */
instr->operands[1] = Operand::zero();
instr->opcode =
(instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64)
? aco_opcode::s_cmp_eq_u32
: aco_opcode::s_cmp_lg_u32;
} else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 &&
instr->operands[0].physReg() == scc) ||
instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64) {
/* For cselect, operand 2 is the SCC condition */
unsigned scc_op_idx = 0;
if (instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64) {
scc_op_idx = 2;
}
Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]);
if (!wr_idx.found())
return;
Instruction* wr_instr = ctx.get(wr_idx);
/* Check if we found the pattern above. */
if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 &&
wr_instr->opcode != aco_opcode::s_cmp_lg_u32)
return;
if (wr_instr->operands[0].physReg() != scc)
return;
if (!wr_instr->operands[1].constantEquals(0))
return;
/* The optimization can be unsafe when there are other users. */
if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1)
return;
if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) {
/* Flip the meaning of the instruction to correctly use the SCC. */
if (instr->format == Format::PSEUDO_BRANCH)
instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz
: aco_opcode::p_cbranch_z;
else if (instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64)
std::swap(instr->operands[0], instr->operands[1]);
else
unreachable(
"scc_nocompare optimization is only implemented for p_cbranch and s_cselect");
}
/* Use the SCC def from the original instruction, not the comparison */
ctx.uses[instr->operands[scc_op_idx].tempId()]--;
instr->operands[scc_op_idx] = wr_instr->operands[0];
}
}
void
try_combine_dpp(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* v_mov_dpp vA, vB, ... ; move instruction with DPP
* v_xxx vC, vA, ... ; current instr that uses the result from the move
*
* If possible, the above is optimized into:
*
* v_xxx_dpp vC, vB, ... ; current instr modified to use DPP directly
*
*/
if (!instr->isVALU() || instr->isDPP())
return;
for (unsigned i = 0; i < instr->operands.size(); i++) {
Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]);
if (!op_instr_idx.found())
continue;
const Instruction* mov = ctx.get(op_instr_idx);
if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP())
continue;
/* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite
* it's own operand before we use it.
*/
if (mov->definitions[0].physReg() == mov->operands[0].physReg() &&
(!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1))
continue;
/* Don't propagate DPP if the source register is overwritten since the move. */
if (is_overwritten_since(ctx, mov->operands[0], op_instr_idx))
continue;
/* We won't eliminate the DPP mov if the operand is used twice */
bool op_used_twice = false;
for (unsigned j = 0; j < instr->operands.size(); j++)
op_used_twice |= i != j && instr->operands[i] == instr->operands[j];
if (op_used_twice)
continue;
bool dpp8 = mov->isDPP8();
bool input_mods = instr_info.can_use_input_modifiers[(int)instr->opcode] &&
instr_info.operand_size[(int)instr->opcode] == 32;
bool mov_uses_mods = mov->valu().neg[0] || mov->valu().abs[0];
if (((dpp8 && ctx.program->gfx_level < GFX11) || !input_mods) && mov_uses_mods)
continue;
if (i != 0) {
if (!can_swap_operands(instr, &instr->opcode, 0, i))
continue;
std::swap(instr->operands[0], instr->operands[i]);
instr->valu().neg[0].swap(instr->valu().neg[i]);
instr->valu().abs[0].swap(instr->valu().abs[i]);
instr->valu().opsel[0].swap(instr->valu().opsel[i]);
instr->valu().opsel_lo[0].swap(instr->valu().opsel_lo[i]);
instr->valu().opsel_hi[0].swap(instr->valu().opsel_hi[i]);
}
if (!can_use_DPP(ctx.program->gfx_level, instr, dpp8))
continue;
if (!dpp8) /* anything else doesn't make sense in SSA */
assert(mov->dpp16().row_mask == 0xf && mov->dpp16().bank_mask == 0xf);
if (--ctx.uses[mov->definitions[0].tempId()])
ctx.uses[mov->operands[0].tempId()]++;
convert_to_DPP(ctx.program->gfx_level, instr, dpp8);
instr->operands[0] = mov->operands[0];
if (dpp8) {
DPP8_instruction* dpp = &instr->dpp8();
memcpy(dpp->lane_sel, mov->dpp8().lane_sel, sizeof(dpp->lane_sel));
if (mov_uses_mods)
instr->format = asVOP3(instr->format);
} else {
DPP16_instruction* dpp = &instr->dpp16();
dpp->dpp_ctrl = mov->dpp16().dpp_ctrl;
dpp->bound_ctrl = true;
}
instr->valu().neg[0] ^= mov->valu().neg[0] && !instr->valu().abs[0];
instr->valu().abs[0] |= mov->valu().abs[0];
return;
}
}
unsigned
num_encoded_alu_operands(const aco_ptr<Instruction>& instr)
{
if (instr->isSALU()) {
if (instr->isSOP2())
return 2;
else if (instr->isSOP1())
return 1;
return 0;
}
if (instr->isVALU()) {
if (instr->isVOP1())
return 1;
else if (instr->isVOPC() || instr->isVOP2())
return 2;
else if (instr->opcode == aco_opcode::v_writelane_b32_e64 ||
instr->opcode == aco_opcode::v_writelane_b32)
return 2; /* potentially VOP3, but reads VDST as SRC2 */
else if (instr->isVOP3() || instr->isVOP3P() || instr->isVINTERP_INREG())
return instr->operands.size();
}
return 0;
}
void
try_reassign_split_vector(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* Any unused split_vector definition can always use the same register
* as the operand. This avoids creating unnecessary copies.
*/
if (instr->opcode == aco_opcode::p_split_vector) {
Operand& op = instr->operands[0];
if (!op.isTemp() || op.isKill())
return;
PhysReg reg = op.physReg();
for (Definition& def : instr->definitions) {
if (def.getTemp().type() == op.getTemp().type() && def.isKill())
def.setFixed(reg);
reg = reg.advance(def.bytes());
}
return;
}
/* We are looking for the following pattern:
*
* sA, sB = p_split_vector s[X:Y]
* ... X and Y not overwritten here ...
* use sA or sB <--- current instruction
*
* If possible, we propagate the registers from the p_split_vector
* operand into the current instruction and the above is optimized into:
*
* use sX or sY
*
* Thereby, we might violate register assignment rules.
* This optimization exists because it's too difficult to solve it
* in RA, and should be removed after we solved this in RA.
*/
if (!instr->isVALU() && !instr->isSALU())
return;
for (unsigned i = 0; i < num_encoded_alu_operands(instr); i++) {
/* Find the instruction that writes the current operand. */
const Operand& op = instr->operands[i];
Idx op_instr_idx = last_writer_idx(ctx, op);
if (!op_instr_idx.found())
continue;
/* Check if the operand is written by p_split_vector. */
Instruction* split_vec = ctx.get(op_instr_idx);
if (split_vec->opcode != aco_opcode::p_split_vector &&
split_vec->opcode != aco_opcode::p_extract_vector)
continue;
Operand& split_op = split_vec->operands[0];
/* Don't do anything if the p_split_vector operand is not a temporary
* or is killed by the p_split_vector.
* In this case the definitions likely already reuse the same registers as the operand.
*/
if (!split_op.isTemp() || split_op.isKill())
continue;
/* Only propagate operands of the same type */
if (split_op.getTemp().type() != op.getTemp().type())
continue;
/* Check if the p_split_vector operand's registers are overwritten. */
if (is_overwritten_since(ctx, split_op, op_instr_idx))
continue;
PhysReg reg = split_op.physReg();
if (split_vec->opcode == aco_opcode::p_extract_vector) {
reg =
reg.advance(split_vec->definitions[0].bytes() * split_vec->operands[1].constantValue());
}
for (Definition& def : split_vec->definitions) {
if (def.getTemp() != op.getTemp()) {
reg = reg.advance(def.bytes());
continue;
}
/* Don't propagate misaligned SGPRs.
* Note: No ALU instruction can take a variable larger than 64bit.
*/
if (op.regClass() == s2 && reg.reg() % 2 != 0)
break;
/* Sub dword operands might need updates to SDWA/opsel,
* but we only track full register writes at the moment.
*/
assert(op.physReg().byte() == reg.byte());
/* If there is only one use (left), recolor the split_vector definition */
if (ctx.uses[op.tempId()] == 1)
def.setFixed(reg);
else
ctx.uses[op.tempId()]--;
/* Use the p_split_vector operand register directly.
*
* Note: this might violate register assignment rules to some extend
* in case the definition does not get recolored, eventually.
*/
instr->operands[i].setFixed(reg);
break;
}
}
}
void
process_instruction(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* Don't try to optimize instructions which are already dead. */
if (!instr || is_dead(ctx.uses, instr.get())) {
instr.reset();
ctx.current_instr_idx++;
return;
}
try_apply_branch_vcc(ctx, instr);
try_optimize_scc_nocompare(ctx, instr);
try_combine_dpp(ctx, instr);
try_reassign_split_vector(ctx, instr);
if (instr)
save_reg_writes(ctx, instr);
ctx.current_instr_idx++;
}
} // namespace
void
optimize_postRA(Program* program)
{
pr_opt_ctx ctx(program);
/* Forward pass
* Goes through each instruction exactly once, and can transform
* instructions or adjust the use counts of temps.
*/
for (auto& block : program->blocks) {
ctx.reset_block(&block);
for (aco_ptr<Instruction>& instr : block.instructions)
process_instruction(ctx, instr);
}
/* Cleanup pass
* Gets rid of instructions which are manually deleted or
* no longer have any uses.
*/
for (auto& block : program->blocks) {
std::vector<aco_ptr<Instruction>> instructions;
instructions.reserve(block.instructions.size());
for (aco_ptr<Instruction>& instr : block.instructions) {
if (!instr || is_dead(ctx.uses, instr.get()))
continue;
instructions.emplace_back(std::move(instr));
}
block.instructions = std::move(instructions);
}
}
} // namespace aco
|