summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_insert_waitcnt.cpp
blob: d19fdadadea8959e764c414fa4cf4b3a4b6c4de2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
/*
 * Copyright © 2018 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include <algorithm>
#include <map>

#include "aco_ir.h"
#include "vulkan/radv_shader.h"

namespace aco {

namespace {

/**
 * The general idea of this pass is:
 * The CFG is traversed in reverse postorder (forward).
 * Per BB one wait_ctx is maintained.
 * The in-context is the joined out-contexts of the predecessors.
 * The context contains a map: gpr -> wait_entry
 * consisting of the information about the cnt values to be waited for.
 * Note: After merge-nodes, it might occur that for the same register
 *       multiple cnt values are to be waited for.
 *
 * The values are updated according to the encountered instructions:
 * - additional events increment the counter of waits of the same type
 * - or erase gprs with counters higher than to be waited for.
 */

// TODO: do a more clever insertion of wait_cnt (lgkm_cnt) when there is a load followed by a use of a previous load

/* Instructions of the same event will finish in-order except for smem
 * and maybe flat. Instructions of different events may not finish in-order. */
enum wait_event : uint16_t {
   event_smem = 1 << 0,
   event_lds = 1 << 1,
   event_gds = 1 << 2,
   event_vmem = 1 << 3,
   event_vmem_store = 1 << 4, /* GFX10+ */
   event_flat = 1 << 5,
   event_exp_pos = 1 << 6,
   event_exp_param = 1 << 7,
   event_exp_mrt_null = 1 << 8,
   event_gds_gpr_lock = 1 << 9,
   event_vmem_gpr_lock = 1 << 10,
};

enum counter_type : uint8_t {
   counter_exp = 1 << 0,
   counter_lgkm = 1 << 1,
   counter_vm = 1 << 2,
   counter_vs = 1 << 3,
};

static const uint16_t exp_events = event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock;
static const uint16_t lgkm_events = event_smem | event_lds | event_gds | event_flat;
static const uint16_t vm_events = event_vmem | event_flat;
static const uint16_t vs_events = event_vmem_store;

uint8_t get_counters_for_event(wait_event ev)
{
   switch (ev) {
   case event_smem:
   case event_lds:
   case event_gds:
      return counter_lgkm;
   case event_vmem:
      return counter_vm;
   case event_vmem_store:
      return counter_vs;
   case event_flat:
      return counter_vm | counter_lgkm;
   case event_exp_pos:
   case event_exp_param:
   case event_exp_mrt_null:
   case event_gds_gpr_lock:
   case event_vmem_gpr_lock:
      return counter_exp;
   default:
      return 0;
   }
}

struct wait_imm {
   static const uint8_t unset_counter = 0xff;

   uint8_t vm;
   uint8_t exp;
   uint8_t lgkm;
   uint8_t vs;

   wait_imm() :
      vm(unset_counter), exp(unset_counter), lgkm(unset_counter), vs(unset_counter) {}
   wait_imm(uint16_t vm_, uint16_t exp_, uint16_t lgkm_, uint16_t vs_) :
      vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_) {}

   uint16_t pack(enum chip_class chip) const
   {
      uint16_t imm = 0;
      assert(exp == unset_counter || exp <= 0x7);
      switch (chip) {
      case GFX10:
         assert(lgkm == unset_counter || lgkm <= 0x3f);
         assert(vm == unset_counter || vm <= 0x3f);
         imm = ((vm & 0x30) << 10) | ((lgkm & 0x3f) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
         break;
      case GFX9:
         assert(lgkm == unset_counter || lgkm <= 0xf);
         assert(vm == unset_counter || vm <= 0x3f);
         imm = ((vm & 0x30) << 10) | ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
         break;
      default:
         assert(lgkm == unset_counter || lgkm <= 0xf);
         assert(vm == unset_counter || vm <= 0xf);
         imm = ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
         break;
      }
      if (chip < GFX9 && vm == wait_imm::unset_counter)
         imm |= 0xc000; /* should have no effect on pre-GFX9 and now we won't have to worry about the architecture when interpreting the immediate */
      if (chip < GFX10 && lgkm == wait_imm::unset_counter)
         imm |= 0x3000; /* should have no effect on pre-GFX10 and now we won't have to worry about the architecture when interpreting the immediate */
      return imm;
   }

   void combine(const wait_imm& other)
   {
      vm = std::min(vm, other.vm);
      exp = std::min(exp, other.exp);
      lgkm = std::min(lgkm, other.lgkm);
      vs = std::min(vs, other.vs);
   }

   bool empty() const
   {
      return vm == unset_counter && exp == unset_counter &&
             lgkm == unset_counter && vs == unset_counter;
   }
};

struct wait_entry {
   wait_imm imm;
   uint16_t events; /* use wait_event notion */
   uint8_t counters; /* use counter_type notion */
   bool wait_on_read:1;
   bool logical:1;

   wait_entry(wait_event event, wait_imm imm, bool logical, bool wait_on_read)
           : imm(imm), events(event), counters(get_counters_for_event(event)),
             wait_on_read(wait_on_read), logical(logical) {}

   void join(const wait_entry& other)
   {
      events |= other.events;
      counters |= other.counters;
      imm.combine(other.imm);
      wait_on_read = wait_on_read || other.wait_on_read;
      assert(logical == other.logical);
   }

   void remove_counter(counter_type counter)
   {
      counters &= ~counter;

      if (counter == counter_lgkm) {
         imm.lgkm = wait_imm::unset_counter;
         events &= ~(event_smem | event_lds | event_gds);
      }

      if (counter == counter_vm) {
         imm.vm = wait_imm::unset_counter;
         events &= ~event_vmem;
      }

      if (counter == counter_exp) {
         imm.exp = wait_imm::unset_counter;
         events &= ~(event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock);
      }

      if (counter == counter_vs) {
         imm.vs = wait_imm::unset_counter;
         events &= ~event_vmem_store;
      }

      if (!(counters & counter_lgkm) && !(counters & counter_vm))
         events &= ~event_flat;
   }
};

struct wait_ctx {
   Program *program;
   enum chip_class chip_class;
   uint16_t max_vm_cnt;
   uint16_t max_exp_cnt;
   uint16_t max_lgkm_cnt;
   uint16_t max_vs_cnt;
   uint16_t unordered_events = event_smem | event_flat;

   uint8_t vm_cnt = 0;
   uint8_t exp_cnt = 0;
   uint8_t lgkm_cnt = 0;
   uint8_t vs_cnt = 0;
   bool pending_flat_lgkm = false;
   bool pending_flat_vm = false;

   wait_imm barrier_imm[barrier_count];

   std::map<PhysReg,wait_entry> gpr_map;

   wait_ctx() {}
   wait_ctx(Program *program_)
           : program(program_),
             chip_class(program_->chip_class),
             max_vm_cnt(program_->chip_class >= GFX9 ? 62 : 14),
             max_exp_cnt(6),
             max_lgkm_cnt(program_->chip_class >= GFX10 ? 62 : 14),
             max_vs_cnt(program_->chip_class >= GFX10 ? 62 : 0),
             unordered_events(event_smem | (program_->chip_class < GFX10 ? event_flat : 0)) {}

   void join(const wait_ctx* other, bool logical)
   {
      exp_cnt = std::max(exp_cnt, other->exp_cnt);
      vm_cnt = std::max(vm_cnt, other->vm_cnt);
      lgkm_cnt = std::max(lgkm_cnt, other->lgkm_cnt);
      vs_cnt = std::max(vs_cnt, other->vs_cnt);
      pending_flat_lgkm |= other->pending_flat_lgkm;
      pending_flat_vm |= other->pending_flat_vm;

      for (std::pair<PhysReg,wait_entry> entry : other->gpr_map)
      {
         std::map<PhysReg,wait_entry>::iterator it = gpr_map.find(entry.first);
         if (entry.second.logical != logical)
            continue;

         if (it != gpr_map.end())
            it->second.join(entry.second);
         else
            gpr_map.insert(entry);
      }

      for (unsigned i = 0; i < barrier_count; i++)
         barrier_imm[i].combine(other->barrier_imm[i]);
   }
};

wait_imm check_instr(Instruction* instr, wait_ctx& ctx)
{
   wait_imm wait;

   for (const Operand op : instr->operands) {
      if (op.isConstant() || op.isUndefined())
         continue;

      /* check consecutively read gprs */
      for (unsigned j = 0; j < op.size(); j++) {
         PhysReg reg{op.physReg() + j};
         std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
         if (it == ctx.gpr_map.end() || !it->second.wait_on_read)
            continue;

         wait.combine(it->second.imm);
      }
   }

   for (const Definition& def : instr->definitions) {
      /* check consecutively written gprs */
      for (unsigned j = 0; j < def.getTemp().size(); j++)
      {
         PhysReg reg{def.physReg() + j};

         std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
         if (it == ctx.gpr_map.end())
            continue;

         /* Vector Memory reads and writes return in the order they were issued */
         if (instr->isVMEM() && ((it->second.events & vm_events) == event_vmem)) {
            it->second.remove_counter(counter_vm);
            if (!it->second.counters)
               it = ctx.gpr_map.erase(it);
            continue;
         }

         /* LDS reads and writes return in the order they were issued. same for GDS */
         if (instr->format == Format::DS) {
            bool gds = static_cast<DS_instruction*>(instr)->gds;
            if ((it->second.events & lgkm_events) == (gds ? event_gds : event_lds)) {
               it->second.remove_counter(counter_lgkm);
               if (!it->second.counters)
                  it = ctx.gpr_map.erase(it);
               continue;
            }
         }

         wait.combine(it->second.imm);
      }
   }

   return wait;
}

wait_imm kill(Instruction* instr, wait_ctx& ctx)
{
   wait_imm imm;
   if (ctx.exp_cnt || ctx.vm_cnt || ctx.lgkm_cnt)
      imm.combine(check_instr(instr, ctx));

   if (instr->format == Format::PSEUDO_BARRIER) {
      unsigned* bsize = ctx.program->info->cs.block_size;
      unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
      switch (instr->opcode) {
      case aco_opcode::p_memory_barrier_all:
         for (unsigned i = 0; i < barrier_count; i++) {
            if ((1 << i) == barrier_shared && workgroup_size <= 64)
               continue;
            imm.combine(ctx.barrier_imm[i]);
         }
         break;
      case aco_opcode::p_memory_barrier_atomic:
         imm.combine(ctx.barrier_imm[ffs(barrier_atomic) - 1]);
         break;
      /* see comment in aco_scheduler.cpp's can_move_instr() on why these barriers are merged */
      case aco_opcode::p_memory_barrier_buffer:
      case aco_opcode::p_memory_barrier_image:
         imm.combine(ctx.barrier_imm[ffs(barrier_buffer) - 1]);
         imm.combine(ctx.barrier_imm[ffs(barrier_image) - 1]);
         break;
      case aco_opcode::p_memory_barrier_shared:
         if (workgroup_size > 64)
            imm.combine(ctx.barrier_imm[ffs(barrier_shared) - 1]);
         break;
      default:
         assert(false);
         break;
      }
   }

   if (!imm.empty()) {
      if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
         imm.vm = 0;
      if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
         imm.lgkm = 0;

      /* reset counters */
      ctx.exp_cnt = std::min(ctx.exp_cnt, imm.exp);
      ctx.vm_cnt = std::min(ctx.vm_cnt, imm.vm);
      ctx.lgkm_cnt = std::min(ctx.lgkm_cnt, imm.lgkm);
      ctx.vs_cnt = std::min(ctx.vs_cnt, imm.vs);

      /* update barrier wait imms */
      for (unsigned i = 0; i < barrier_count; i++) {
         wait_imm& bar = ctx.barrier_imm[i];
         if (bar.exp != wait_imm::unset_counter && imm.exp <= bar.exp)
            bar.exp = wait_imm::unset_counter;
         if (bar.vm != wait_imm::unset_counter && imm.vm <= bar.vm)
            bar.vm = wait_imm::unset_counter;
         if (bar.lgkm != wait_imm::unset_counter && imm.lgkm <= bar.lgkm)
            bar.lgkm = wait_imm::unset_counter;
         if (bar.vs != wait_imm::unset_counter && imm.vs <= bar.vs)
            bar.vs = wait_imm::unset_counter;
      }

      /* remove all vgprs with higher counter from map */
      std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.begin();
      while (it != ctx.gpr_map.end())
      {
         if (imm.exp != wait_imm::unset_counter && imm.exp <= it->second.imm.exp)
            it->second.remove_counter(counter_exp);
         if (imm.vm != wait_imm::unset_counter && imm.vm <= it->second.imm.vm)
            it->second.remove_counter(counter_vm);
         if (imm.lgkm != wait_imm::unset_counter && imm.lgkm <= it->second.imm.lgkm)
            it->second.remove_counter(counter_lgkm);
         if (imm.lgkm != wait_imm::unset_counter && imm.vs <= it->second.imm.vs)
            it->second.remove_counter(counter_vs);
         if (!it->second.counters)
            it = ctx.gpr_map.erase(it);
         else
            it++;
      }
   }

   if (imm.vm == 0)
      ctx.pending_flat_vm = false;
   if (imm.lgkm == 0)
      ctx.pending_flat_lgkm = false;

   return imm;
}

void update_barrier_imm(wait_ctx& ctx, uint8_t counters, barrier_interaction barrier)
{
   unsigned barrier_index = ffs(barrier) - 1;
   for (unsigned i = 0; i < barrier_count; i++) {
      wait_imm& bar = ctx.barrier_imm[i];
      if (i == barrier_index) {
         if (counters & counter_lgkm)
            bar.lgkm = 0;
         if (counters & counter_vm)
            bar.vm = 0;
         if (counters & counter_exp)
            bar.exp = 0;
         if (counters & counter_vs)
            bar.vs = 0;
      } else {
         if (counters & counter_lgkm && bar.lgkm != wait_imm::unset_counter && bar.lgkm < ctx.max_lgkm_cnt)
            bar.lgkm++;
         if (counters & counter_vm && bar.vm != wait_imm::unset_counter && bar.vm < ctx.max_vm_cnt)
            bar.vm++;
         if (counters & counter_exp && bar.exp != wait_imm::unset_counter && bar.exp < ctx.max_exp_cnt)
            bar.exp++;
         if (counters & counter_vs && bar.vs != wait_imm::unset_counter && bar.vs < ctx.max_vs_cnt)
            bar.vs++;
      }
   }
}

void update_counters(wait_ctx& ctx, wait_event event, barrier_interaction barrier=barrier_none)
{
   uint8_t counters = get_counters_for_event(event);

   if (counters & counter_lgkm && ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
      ctx.lgkm_cnt++;
   if (counters & counter_vm && ctx.vm_cnt <= ctx.max_vm_cnt)
      ctx.vm_cnt++;
   if (counters & counter_exp && ctx.exp_cnt <= ctx.max_exp_cnt)
      ctx.exp_cnt++;
   if (counters & counter_vs && ctx.vs_cnt <= ctx.max_vs_cnt)
      ctx.vs_cnt++;

   update_barrier_imm(ctx, counters, barrier);

   if (ctx.unordered_events & event)
      return;

   if (ctx.pending_flat_lgkm)
      counters &= ~counter_lgkm;
   if (ctx.pending_flat_vm)
      counters &= ~counter_vm;

   for (std::pair<const PhysReg,wait_entry>& e : ctx.gpr_map) {
      wait_entry& entry = e.second;

      if (entry.events & ctx.unordered_events)
         continue;

      assert(entry.events);

      if ((counters & counter_exp) && (entry.events & exp_events) == event && entry.imm.exp < ctx.max_exp_cnt)
         entry.imm.exp++;
      if ((counters & counter_lgkm) && (entry.events & lgkm_events) == event && entry.imm.lgkm < ctx.max_lgkm_cnt)
         entry.imm.lgkm++;
      if ((counters & counter_vm) && (entry.events & vm_events) == event && entry.imm.vm < ctx.max_vm_cnt)
         entry.imm.vm++;
      if ((counters & counter_vs) && (entry.events & vs_events) == event && entry.imm.vs < ctx.max_vs_cnt)
         entry.imm.vs++;
   }
}

void update_counters_for_flat_load(wait_ctx& ctx, barrier_interaction barrier=barrier_none)
{
   assert(ctx.chip_class < GFX10);

   if (ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
      ctx.lgkm_cnt++;
   if (ctx.lgkm_cnt <= ctx.max_vm_cnt)
   ctx.vm_cnt++;

   update_barrier_imm(ctx, counter_vm | counter_lgkm, barrier);

   for (std::pair<PhysReg,wait_entry> e : ctx.gpr_map)
   {
      if (e.second.counters & counter_vm)
         e.second.imm.vm = 0;
      if (e.second.counters & counter_lgkm)
         e.second.imm.lgkm = 0;
   }
   ctx.pending_flat_lgkm = true;
   ctx.pending_flat_vm = true;
}

void insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read)
{
   uint16_t counters = get_counters_for_event(event);
   wait_imm imm;
   if (counters & counter_lgkm)
      imm.lgkm = 0;
   if (counters & counter_vm)
      imm.vm = 0;
   if (counters & counter_exp)
      imm.exp = 0;
   if (counters & counter_vs)
      imm.vs = 0;

   wait_entry new_entry(event, imm, !rc.is_linear(), wait_on_read);

   for (unsigned i = 0; i < rc.size(); i++) {
      auto it = ctx.gpr_map.emplace(PhysReg{reg.reg+i}, new_entry);
      if (!it.second)
         it.first->second.join(new_entry);
   }
}

void insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event)
{
   if (!op.isConstant() && !op.isUndefined())
      insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false);
}

void insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event)
{
   insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true);
}

void gen(Instruction* instr, wait_ctx& ctx)
{
   switch (instr->format) {
   case Format::EXP: {
      Export_instruction* exp_instr = static_cast<Export_instruction*>(instr);

      wait_event ev;
      if (exp_instr->dest <= 9)
         ev = event_exp_mrt_null;
      else if (exp_instr->dest <= 15)
         ev = event_exp_pos;
      else
         ev = event_exp_param;
      update_counters(ctx, ev);

      /* insert new entries for exported vgprs */
      for (unsigned i = 0; i < 4; i++)
      {
         if (exp_instr->enabled_mask & (1 << i)) {
            unsigned idx = exp_instr->compressed ? i >> 1 : i;
            assert(idx < exp_instr->operands.size());
            insert_wait_entry(ctx, exp_instr->operands[idx], ev);

         }
      }
      insert_wait_entry(ctx, exec, s2, ev, false);
      break;
   }
   case Format::FLAT: {
      if (ctx.chip_class < GFX10 && !instr->definitions.empty())
         update_counters_for_flat_load(ctx, barrier_buffer);
      else
         update_counters(ctx, event_flat, barrier_buffer);

      if (!instr->definitions.empty())
         insert_wait_entry(ctx, instr->definitions[0], event_flat);
      break;
   }
   case Format::SMEM: {
      update_counters(ctx, event_smem, static_cast<SMEM_instruction*>(instr)->barrier);

      if (!instr->definitions.empty())
         insert_wait_entry(ctx, instr->definitions[0], event_smem);
      break;
   }
   case Format::DS: {
      bool gds = static_cast<DS_instruction*>(instr)->gds;
      update_counters(ctx, gds ? event_gds : event_lds, gds ? barrier_none : barrier_shared);
      if (gds)
         update_counters(ctx, event_gds_gpr_lock);

      if (!instr->definitions.empty())
         insert_wait_entry(ctx, instr->definitions[0], gds ? event_gds : event_lds);

      if (gds) {
         for (const Operand& op : instr->operands)
            insert_wait_entry(ctx, op, event_gds_gpr_lock);
         insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
      }
      break;
   }
   case Format::MUBUF:
   case Format::MTBUF:
   case Format::MIMG:
   case Format::GLOBAL: {
      wait_event ev = !instr->definitions.empty() || ctx.chip_class < GFX10 ? event_vmem : event_vmem_store;
      update_counters(ctx, ev, get_barrier_interaction(instr));

      if (!instr->definitions.empty())
         insert_wait_entry(ctx, instr->definitions[0], ev);

      if (instr->operands.size() == 4 && ctx.chip_class == GFX6) {
         ctx.exp_cnt++;
         update_counters(ctx, event_vmem_gpr_lock);
         insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
      }
      break;
   }
   default:
      break;
   }
}

void emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm imm)
{
   if (imm.vs != wait_imm::unset_counter) {
      assert(ctx.chip_class >= GFX10);
      SOPK_instruction* waitcnt_vs = create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 0);
      waitcnt_vs->imm = imm.vs;
      instructions.emplace_back(waitcnt_vs);
      imm.vs = wait_imm::unset_counter;
   }
   if (!imm.empty()) {
      SOPP_instruction* waitcnt = create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt, Format::SOPP, 0, 0);
      waitcnt->imm = imm.pack(ctx.chip_class);
      waitcnt->block = -1;
      instructions.emplace_back(waitcnt);
   }
}

void handle_block(Program *program, Block& block, wait_ctx& ctx)
{
   std::vector<aco_ptr<Instruction>> new_instructions;

   for (aco_ptr<Instruction>& instr : block.instructions) {
      wait_imm imm = kill(instr.get(), ctx);

      if (!imm.empty())
         emit_waitcnt(ctx, new_instructions, imm);

      gen(instr.get(), ctx);

      if (instr->format != Format::PSEUDO_BARRIER)
         new_instructions.emplace_back(std::move(instr));
   }

   /* check if this block is at the end of a loop */
   for (unsigned succ_idx : block.linear_succs) {
      /* eliminate any remaining counters */
      if (succ_idx <= block.index && (ctx.vm_cnt || ctx.exp_cnt || ctx.lgkm_cnt || ctx.vs_cnt)) {
         // TODO: we could do better if we only wait if the regs between the block and other predecessors differ

         aco_ptr<Instruction> branch = std::move(new_instructions.back());
         new_instructions.pop_back();

         wait_imm imm(ctx.vm_cnt ? 0 : wait_imm::unset_counter,
                      ctx.exp_cnt ? 0 : wait_imm::unset_counter,
                      ctx.lgkm_cnt ? 0 : wait_imm::unset_counter,
                      ctx.vs_cnt ? 0 : wait_imm::unset_counter);
         emit_waitcnt(ctx, new_instructions, imm);

         new_instructions.push_back(std::move(branch));

         ctx = wait_ctx(program);
         break;
      }
   }
   block.instructions.swap(new_instructions);
}

} /* end namespace */

void insert_wait_states(Program* program)
{
   wait_ctx out_ctx[program->blocks.size()]; /* per BB ctx */
   for (unsigned i = 0; i < program->blocks.size(); i++)
      out_ctx[i] = wait_ctx(program);

   for (unsigned i = 0; i < program->blocks.size(); i++) {
      Block& current = program->blocks[i];
      wait_ctx& in = out_ctx[current.index];

      for (unsigned b : current.linear_preds)
         in.join(&out_ctx[b], false);
      for (unsigned b : current.logical_preds)
         in.join(&out_ctx[b], true);

      if (current.instructions.empty())
         continue;

      handle_block(program, current, in);
   }
}

}