diff options
Diffstat (limited to 'src/gallium/auxiliary/rtasm')
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c | 1067 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h | 433 |
2 files changed, 0 insertions, 1500 deletions
diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c deleted file mode 100644 index 53a0e722cff..00000000000 --- a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c +++ /dev/null @@ -1,1067 +0,0 @@ -/* - * (C) Copyright IBM Corporation 2008 - * All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * on the rights to use, copy, modify, merge, publish, distribute, sub - * license, and/or sell copies of the Software, and to permit persons to whom - * the Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice (including the next - * paragraph) shall be included in all copies or substantial portions of the - * Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL - * AUTHORS, COPYRIGHT HOLDERS, AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, - * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR - * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE - * USE OR OTHER DEALINGS IN THE SOFTWARE. - */ - -/** - * \file - * Real-time assembly generation interface for Cell B.E. SPEs. - * - * \author Ian Romanick <idr@us.ibm.com> - * \author Brian Paul - */ - - -#include <stdio.h> -#include "pipe/p_compiler.h" -#include "util/u_memory.h" -#include "rtasm_ppc_spe.h" - - -#ifdef GALLIUM_CELL -/** - * SPE instruction types - * - * There are 6 primary instruction encodings used on the Cell's SPEs. Each of - * the following unions encodes one type. - * - * \bug - * If, at some point, we start generating SPE code from a little-endian host - * these unions will not work. - */ -/*@{*/ -/** - * Encode one output register with two input registers - */ -union spe_inst_RR { - uint32_t bits; - struct { - unsigned op:11; - unsigned rB:7; - unsigned rA:7; - unsigned rT:7; - } inst; -}; - - -/** - * Encode one output register with three input registers - */ -union spe_inst_RRR { - uint32_t bits; - struct { - unsigned op:4; - unsigned rT:7; - unsigned rB:7; - unsigned rA:7; - unsigned rC:7; - } inst; -}; - - -/** - * Encode one output register with one input reg. and a 7-bit signed immed - */ -union spe_inst_RI7 { - uint32_t bits; - struct { - unsigned op:11; - unsigned i7:7; - unsigned rA:7; - unsigned rT:7; - } inst; -}; - - -/** - * Encode one output register with one input reg. and an 8-bit signed immed - */ -union spe_inst_RI8 { - uint32_t bits; - struct { - unsigned op:10; - unsigned i8:8; - unsigned rA:7; - unsigned rT:7; - } inst; -}; - - -/** - * Encode one output register with one input reg. and a 10-bit signed immed - */ -union spe_inst_RI10 { - uint32_t bits; - struct { - unsigned op:8; - unsigned i10:10; - unsigned rA:7; - unsigned rT:7; - } inst; -}; - - -/** - * Encode one output register with a 16-bit signed immediate - */ -union spe_inst_RI16 { - uint32_t bits; - struct { - unsigned op:9; - unsigned i16:16; - unsigned rT:7; - } inst; -}; - - -/** - * Encode one output register with a 18-bit signed immediate - */ -union spe_inst_RI18 { - uint32_t bits; - struct { - unsigned op:7; - unsigned i18:18; - unsigned rT:7; - } inst; -}; -/*@}*/ - - -static void -indent(const struct spe_function *p) -{ - int i; - for (i = 0; i < p->indent; i++) { - putchar(' '); - } -} - - -static const char * -rem_prefix(const char *longname) -{ - return longname + 4; -} - - -static const char * -reg_name(int reg) -{ - switch (reg) { - case SPE_REG_SP: - return "$sp"; - case SPE_REG_RA: - return "$lr"; - default: - { - /* cycle through four buffers to handle multiple calls per printf */ - static char buf[4][10]; - static int b = 0; - b = (b + 1) % 4; - sprintf(buf[b], "$%d", reg); - return buf[b]; - } - } -} - - -static void -emit_instruction(struct spe_function *p, uint32_t inst_bits) -{ - if (!p->store) - return; /* out of memory, drop the instruction */ - - if (p->num_inst == p->max_inst) { - /* allocate larger buffer */ - uint32_t *newbuf; - p->max_inst *= 2; /* 2x larger */ - newbuf = align_malloc(p->max_inst * SPE_INST_SIZE, 16); - if (newbuf) { - memcpy(newbuf, p->store, p->num_inst * SPE_INST_SIZE); - } - align_free(p->store); - p->store = newbuf; - if (!p->store) { - /* out of memory */ - p->num_inst = 0; - return; - } - } - - p->store[p->num_inst++] = inst_bits; -} - - - -static void emit_RR(struct spe_function *p, unsigned op, int rT, - int rA, int rB, const char *name) -{ - union spe_inst_RR inst; - inst.inst.op = op; - inst.inst.rB = rB; - inst.inst.rA = rA; - inst.inst.rT = rT; - emit_instruction(p, inst.bits); - if (p->print) { - indent(p); - printf("%s\t%s, %s, %s\n", - rem_prefix(name), reg_name(rT), reg_name(rA), reg_name(rB)); - } -} - - -static void emit_RRR(struct spe_function *p, unsigned op, int rT, - int rA, int rB, int rC, const char *name) -{ - union spe_inst_RRR inst; - inst.inst.op = op; - inst.inst.rT = rT; - inst.inst.rB = rB; - inst.inst.rA = rA; - inst.inst.rC = rC; - emit_instruction(p, inst.bits); - if (p->print) { - indent(p); - printf("%s\t%s, %s, %s, %s\n", rem_prefix(name), reg_name(rT), - reg_name(rA), reg_name(rB), reg_name(rC)); - } -} - - -static void emit_RI7(struct spe_function *p, unsigned op, int rT, - int rA, int imm, const char *name) -{ - union spe_inst_RI7 inst; - inst.inst.op = op; - inst.inst.i7 = imm; - inst.inst.rA = rA; - inst.inst.rT = rT; - emit_instruction(p, inst.bits); - if (p->print) { - indent(p); - printf("%s\t%s, %s, 0x%x\n", - rem_prefix(name), reg_name(rT), reg_name(rA), imm); - } -} - - - -static void emit_RI8(struct spe_function *p, unsigned op, int rT, - int rA, int imm, const char *name) -{ - union spe_inst_RI8 inst; - inst.inst.op = op; - inst.inst.i8 = imm; - inst.inst.rA = rA; - inst.inst.rT = rT; - emit_instruction(p, inst.bits); - if (p->print) { - indent(p); - printf("%s\t%s, %s, 0x%x\n", - rem_prefix(name), reg_name(rT), reg_name(rA), imm); - } -} - - - -static void emit_RI10(struct spe_function *p, unsigned op, int rT, - int rA, int imm, const char *name) -{ - union spe_inst_RI10 inst; - inst.inst.op = op; - inst.inst.i10 = imm; - inst.inst.rA = rA; - inst.inst.rT = rT; - emit_instruction(p, inst.bits); - if (p->print) { - indent(p); - printf("%s\t%s, %s, 0x%x\n", - rem_prefix(name), reg_name(rT), reg_name(rA), imm); - } -} - - -/** As above, but do range checking on signed immediate value */ -static void emit_RI10s(struct spe_function *p, unsigned op, int rT, - int rA, int imm, const char *name) -{ - assert(imm <= 511); - assert(imm >= -512); - emit_RI10(p, op, rT, rA, imm, name); -} - - -static void emit_RI16(struct spe_function *p, unsigned op, int rT, - int imm, const char *name) -{ - union spe_inst_RI16 inst; - inst.inst.op = op; - inst.inst.i16 = imm; - inst.inst.rT = rT; - emit_instruction(p, inst.bits); - if (p->print) { - indent(p); - printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm); - } -} - - -static void emit_RI18(struct spe_function *p, unsigned op, int rT, - int imm, const char *name) -{ - union spe_inst_RI18 inst; - inst.inst.op = op; - inst.inst.i18 = imm; - inst.inst.rT = rT; - emit_instruction(p, inst.bits); - if (p->print) { - indent(p); - printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm); - } -} - - -#define EMIT(_name, _op) \ -void _name (struct spe_function *p) \ -{ \ - emit_RR(p, _op, 0, 0, 0, __FUNCTION__); \ -} - -#define EMIT_(_name, _op) \ -void _name (struct spe_function *p, int rT) \ -{ \ - emit_RR(p, _op, rT, 0, 0, __FUNCTION__); \ -} - -#define EMIT_R(_name, _op) \ -void _name (struct spe_function *p, int rT, int rA) \ -{ \ - emit_RR(p, _op, rT, rA, 0, __FUNCTION__); \ -} - -#define EMIT_RR(_name, _op) \ -void _name (struct spe_function *p, int rT, int rA, int rB) \ -{ \ - emit_RR(p, _op, rT, rA, rB, __FUNCTION__); \ -} - -#define EMIT_RRR(_name, _op) \ -void _name (struct spe_function *p, int rT, int rA, int rB, int rC) \ -{ \ - emit_RRR(p, _op, rT, rA, rB, rC, __FUNCTION__); \ -} - -#define EMIT_RI7(_name, _op) \ -void _name (struct spe_function *p, int rT, int rA, int imm) \ -{ \ - emit_RI7(p, _op, rT, rA, imm, __FUNCTION__); \ -} - -#define EMIT_RI8(_name, _op, bias) \ -void _name (struct spe_function *p, int rT, int rA, int imm) \ -{ \ - emit_RI8(p, _op, rT, rA, bias - imm, __FUNCTION__); \ -} - -#define EMIT_RI10(_name, _op) \ -void _name (struct spe_function *p, int rT, int rA, int imm) \ -{ \ - emit_RI10(p, _op, rT, rA, imm, __FUNCTION__); \ -} - -#define EMIT_RI10s(_name, _op) \ -void _name (struct spe_function *p, int rT, int rA, int imm) \ -{ \ - emit_RI10s(p, _op, rT, rA, imm, __FUNCTION__); \ -} - -#define EMIT_RI16(_name, _op) \ -void _name (struct spe_function *p, int rT, int imm) \ -{ \ - emit_RI16(p, _op, rT, imm, __FUNCTION__); \ -} - -#define EMIT_RI18(_name, _op) \ -void _name (struct spe_function *p, int rT, int imm) \ -{ \ - emit_RI18(p, _op, rT, imm, __FUNCTION__); \ -} - -#define EMIT_I16(_name, _op) \ -void _name (struct spe_function *p, int imm) \ -{ \ - emit_RI16(p, _op, 0, imm, __FUNCTION__); \ -} - -#include "rtasm_ppc_spe.h" - - - -/** - * Initialize an spe_function. - * \param code_size initial size of instruction buffer to allocate, in bytes. - * If zero, use a default. - */ -void spe_init_func(struct spe_function *p, unsigned code_size) -{ - uint i; - - if (!code_size) - code_size = 64; - - p->num_inst = 0; - p->max_inst = code_size / SPE_INST_SIZE; - p->store = align_malloc(code_size, 16); - - p->set_count = 0; - memset(p->regs, 0, SPE_NUM_REGS * sizeof(p->regs[0])); - - /* Conservatively treat R0 - R2 and R80 - R127 as non-volatile. - */ - p->regs[0] = p->regs[1] = p->regs[2] = 1; - for (i = 80; i <= 127; i++) { - p->regs[i] = 1; - } - - p->print = FALSE; - p->indent = 0; -} - - -void spe_release_func(struct spe_function *p) -{ - assert(p->num_inst <= p->max_inst); - if (p->store != NULL) { - align_free(p->store); - } - p->store = NULL; -} - - -/** Return current code size in bytes. */ -unsigned spe_code_size(const struct spe_function *p) -{ - return p->num_inst * SPE_INST_SIZE; -} - - -/** - * Allocate a SPE register. - * \return register index or -1 if none left. - */ -int spe_allocate_available_register(struct spe_function *p) -{ - unsigned i; - for (i = 0; i < SPE_NUM_REGS; i++) { - if (p->regs[i] == 0) { - p->regs[i] = 1; - return i; - } - } - - return -1; -} - - -/** - * Mark the given SPE register as "allocated". - */ -int spe_allocate_register(struct spe_function *p, int reg) -{ - assert(reg < SPE_NUM_REGS); - assert(p->regs[reg] == 0); - p->regs[reg] = 1; - return reg; -} - - -/** - * Mark the given SPE register as "unallocated". Note that this should - * only be used on registers allocated in the current register set; an - * assertion will fail if an attempt is made to deallocate a register - * allocated in an earlier register set. - */ -void spe_release_register(struct spe_function *p, int reg) -{ - assert(reg >= 0); - assert(reg < SPE_NUM_REGS); - assert(p->regs[reg] == 1); - - p->regs[reg] = 0; -} - -/** - * Start a new set of registers. This can be called if - * it will be difficult later to determine exactly what - * registers were actually allocated during a code generation - * sequence, and you really just want to deallocate all of them. - */ -void spe_allocate_register_set(struct spe_function *p) -{ - uint i; - - /* Keep track of the set count. If it ever wraps around to 0, - * we're in trouble. - */ - p->set_count++; - assert(p->set_count > 0); - - /* Increment the allocation count of all registers currently - * allocated. Then any registers that are allocated in this set - * will be the only ones with a count of 1; they'll all be released - * when the register set is released. - */ - for (i = 0; i < SPE_NUM_REGS; i++) { - if (p->regs[i] > 0) - p->regs[i]++; - } -} - -void spe_release_register_set(struct spe_function *p) -{ - uint i; - - /* If the set count drops below zero, we're in trouble. */ - assert(p->set_count > 0); - p->set_count--; - - /* Drop the allocation level of all registers. Any allocated - * during this register set will drop to 0 and then become - * available. - */ - for (i = 0; i < SPE_NUM_REGS; i++) { - if (p->regs[i] > 0) - p->regs[i]--; - } -} - - -unsigned -spe_get_registers_used(const struct spe_function *p, ubyte used[]) -{ - unsigned i, num = 0; - /* only count registers in the range available to callers */ - for (i = 2; i < 80; i++) { - if (p->regs[i]) { - used[num++] = i; - } - } - return num; -} - - -void -spe_print_code(struct spe_function *p, boolean enable) -{ - p->print = enable; -} - - -void -spe_indent(struct spe_function *p, int spaces) -{ - p->indent += spaces; -} - - -void -spe_comment(struct spe_function *p, int rel_indent, const char *s) -{ - if (p->print) { - p->indent += rel_indent; - indent(p); - p->indent -= rel_indent; - printf("# %s\n", s); - } -} - - -/** - * Load quad word. - * NOTE: offset is in bytes and the least significant 4 bits must be zero! - */ -void spe_lqd(struct spe_function *p, int rT, int rA, int offset) -{ - const boolean pSave = p->print; - - /* offset must be a multiple of 16 */ - assert(offset % 16 == 0); - /* offset must fit in 10-bit signed int field, after shifting */ - assert((offset >> 4) <= 511); - assert((offset >> 4) >= -512); - - p->print = FALSE; - emit_RI10(p, 0x034, rT, rA, offset >> 4, "spe_lqd"); - p->print = pSave; - - if (p->print) { - indent(p); - printf("lqd\t%s, %d(%s)\n", reg_name(rT), offset, reg_name(rA)); - } -} - - -/** - * Store quad word. - * NOTE: offset is in bytes and the least significant 4 bits must be zero! - */ -void spe_stqd(struct spe_function *p, int rT, int rA, int offset) -{ - const boolean pSave = p->print; - - /* offset must be a multiple of 16 */ - assert(offset % 16 == 0); - /* offset must fit in 10-bit signed int field, after shifting */ - assert((offset >> 4) <= 511); - assert((offset >> 4) >= -512); - - p->print = FALSE; - emit_RI10(p, 0x024, rT, rA, offset >> 4, "spe_stqd"); - p->print = pSave; - - if (p->print) { - indent(p); - printf("stqd\t%s, %d(%s)\n", reg_name(rT), offset, reg_name(rA)); - } -} - - -/** - * For branch instructions: - * \param d if 1, disable interupts if branch is taken - * \param e if 1, enable interupts if branch is taken - * If d and e are both zero, don't change interupt status (right?) - */ - -/** Branch Indirect to address in rA */ -void spe_bi(struct spe_function *p, int rA, int d, int e) -{ - emit_RI7(p, 0x1a8, 0, rA, (d << 5) | (e << 4), __FUNCTION__); -} - -/** Interupt Return */ -void spe_iret(struct spe_function *p, int rA, int d, int e) -{ - emit_RI7(p, 0x1aa, 0, rA, (d << 5) | (e << 4), __FUNCTION__); -} - -/** Branch indirect and set link on external data */ -void spe_bisled(struct spe_function *p, int rT, int rA, int d, - int e) -{ - emit_RI7(p, 0x1ab, rT, rA, (d << 5) | (e << 4), __FUNCTION__); -} - -/** Branch indirect and set link. Save PC in rT, jump to rA. */ -void spe_bisl(struct spe_function *p, int rT, int rA, int d, - int e) -{ - emit_RI7(p, 0x1a9, rT, rA, (d << 5) | (e << 4), __FUNCTION__); -} - -/** Branch indirect if zero word. If rT.word[0]==0, jump to rA. */ -void spe_biz(struct spe_function *p, int rT, int rA, int d, int e) -{ - emit_RI7(p, 0x128, rT, rA, (d << 5) | (e << 4), __FUNCTION__); -} - -/** Branch indirect if non-zero word. If rT.word[0]!=0, jump to rA. */ -void spe_binz(struct spe_function *p, int rT, int rA, int d, int e) -{ - emit_RI7(p, 0x129, rT, rA, (d << 5) | (e << 4), __FUNCTION__); -} - -/** Branch indirect if zero halfword. If rT.halfword[1]==0, jump to rA. */ -void spe_bihz(struct spe_function *p, int rT, int rA, int d, int e) -{ - emit_RI7(p, 0x12a, rT, rA, (d << 5) | (e << 4), __FUNCTION__); -} - -/** Branch indirect if non-zero halfword. If rT.halfword[1]!=0, jump to rA. */ -void spe_bihnz(struct spe_function *p, int rT, int rA, int d, int e) -{ - emit_RI7(p, 0x12b, rT, rA, (d << 5) | (e << 4), __FUNCTION__); -} - - -/* Hint-for-branch instructions - */ -#if 0 -hbr; -hbra; -hbrr; -#endif - - -/* Control instructions - */ -#if 0 -stop; -EMIT_RR (spe_stopd, 0x140); -EMIT_ (spe_nop, 0x201); -sync; -EMIT_ (spe_dsync, 0x003); -EMIT_R (spe_mfspr, 0x00c); -EMIT_R (spe_mtspr, 0x10c); -#endif - - -/** - ** Helper / "macro" instructions. - ** Use somewhat verbose names as a reminder that these aren't native - ** SPE instructions. - **/ - - -void -spe_load_float(struct spe_function *p, int rT, float x) -{ - if (x == 0.0f) { - spe_il(p, rT, 0x0); - } - else if (x == 0.5f) { - spe_ilhu(p, rT, 0x3f00); - } - else if (x == 1.0f) { - spe_ilhu(p, rT, 0x3f80); - } - else if (x == -1.0f) { - spe_ilhu(p, rT, 0xbf80); - } - else { - union { - float f; - unsigned u; - } bits; - bits.f = x; - spe_ilhu(p, rT, bits.u >> 16); - spe_iohl(p, rT, bits.u & 0xffff); - } -} - - -void -spe_load_int(struct spe_function *p, int rT, int i) -{ - if (-32768 <= i && i <= 32767) { - spe_il(p, rT, i); - } - else { - spe_ilhu(p, rT, i >> 16); - if (i & 0xffff) - spe_iohl(p, rT, i & 0xffff); - } -} - -void spe_load_uint(struct spe_function *p, int rT, uint ui) -{ - /* If the whole value is in the lower 18 bits, use ila, which - * doesn't sign-extend. Otherwise, if the two halfwords of - * the constant are identical, use ilh. Otherwise, if every byte of - * the desired value is 0x00 or 0xff, we can use Form Select Mask for - * Bytes Immediate (fsmbi) to load the value in a single instruction. - * Otherwise, in the general case, we have to use ilhu followed by iohl. - */ - if ((ui & 0x0003ffff) == ui) { - spe_ila(p, rT, ui); - } - else if ((ui >> 16) == (ui & 0xffff)) { - spe_ilh(p, rT, ui & 0xffff); - } - else if ( - ((ui & 0x000000ff) == 0 || (ui & 0x000000ff) == 0x000000ff) && - ((ui & 0x0000ff00) == 0 || (ui & 0x0000ff00) == 0x0000ff00) && - ((ui & 0x00ff0000) == 0 || (ui & 0x00ff0000) == 0x00ff0000) && - ((ui & 0xff000000) == 0 || (ui & 0xff000000) == 0xff000000) - ) { - uint mask = 0; - /* fsmbi duplicates each bit in the given mask eight times, - * using a 16-bit value to initialize a 16-byte quadword. - * Each 4-bit nybble of the mask corresponds to a full word - * of the result; look at the value and figure out the mask - * (replicated for each word in the quadword), and then - * form the "select mask" to get the value. - */ - if ((ui & 0x000000ff) == 0x000000ff) mask |= 0x1111; - if ((ui & 0x0000ff00) == 0x0000ff00) mask |= 0x2222; - if ((ui & 0x00ff0000) == 0x00ff0000) mask |= 0x4444; - if ((ui & 0xff000000) == 0xff000000) mask |= 0x8888; - spe_fsmbi(p, rT, mask); - } - else { - /* The general case: this usually uses two instructions, but - * may use only one if the low-order 16 bits of each word are 0. - */ - spe_ilhu(p, rT, ui >> 16); - if (ui & 0xffff) - spe_iohl(p, rT, ui & 0xffff); - } -} - -/** - * This function is constructed identically to spe_xor_uint() below. - * Changes to one should be made in the other. - */ -void -spe_and_uint(struct spe_function *p, int rT, int rA, uint ui) -{ - /* If we can, emit a single instruction, either And Byte Immediate - * (which uses the same constant across each byte), And Halfword Immediate - * (which sign-extends a 10-bit immediate to 16 bits and uses that - * across each halfword), or And Word Immediate (which sign-extends - * a 10-bit immediate to 32 bits). - * - * Otherwise, we'll need to use a temporary register. - */ - uint tmp; - - /* If the upper 23 bits are all 0s or all 1s, sign extension - * will work and we can use And Word Immediate - */ - tmp = ui & 0xfffffe00; - if (tmp == 0xfffffe00 || tmp == 0) { - spe_andi(p, rT, rA, ui & 0x000003ff); - return; - } - - /* If the ui field is symmetric along halfword boundaries and - * the upper 7 bits of each halfword are all 0s or 1s, we - * can use And Halfword Immediate - */ - tmp = ui & 0xfe00fe00; - if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) { - spe_andhi(p, rT, rA, ui & 0x000003ff); - return; - } - - /* If the ui field is symmetric in each byte, then we can use - * the And Byte Immediate instruction. - */ - tmp = ui & 0x000000ff; - if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) { - spe_andbi(p, rT, rA, tmp); - return; - } - - /* Otherwise, we'll have to use a temporary register. */ - int tmp_reg = spe_allocate_available_register(p); - spe_load_uint(p, tmp_reg, ui); - spe_and(p, rT, rA, tmp_reg); - spe_release_register(p, tmp_reg); -} - - -/** - * This function is constructed identically to spe_and_uint() above. - * Changes to one should be made in the other. - */ -void -spe_xor_uint(struct spe_function *p, int rT, int rA, uint ui) -{ - /* If we can, emit a single instruction, either Exclusive Or Byte - * Immediate (which uses the same constant across each byte), Exclusive - * Or Halfword Immediate (which sign-extends a 10-bit immediate to - * 16 bits and uses that across each halfword), or Exclusive Or Word - * Immediate (which sign-extends a 10-bit immediate to 32 bits). - * - * Otherwise, we'll need to use a temporary register. - */ - uint tmp; - - /* If the upper 23 bits are all 0s or all 1s, sign extension - * will work and we can use Exclusive Or Word Immediate - */ - tmp = ui & 0xfffffe00; - if (tmp == 0xfffffe00 || tmp == 0) { - spe_xori(p, rT, rA, ui & 0x000003ff); - return; - } - - /* If the ui field is symmetric along halfword boundaries and - * the upper 7 bits of each halfword are all 0s or 1s, we - * can use Exclusive Or Halfword Immediate - */ - tmp = ui & 0xfe00fe00; - if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) { - spe_xorhi(p, rT, rA, ui & 0x000003ff); - return; - } - - /* If the ui field is symmetric in each byte, then we can use - * the Exclusive Or Byte Immediate instruction. - */ - tmp = ui & 0x000000ff; - if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) { - spe_xorbi(p, rT, rA, tmp); - return; - } - - /* Otherwise, we'll have to use a temporary register. */ - int tmp_reg = spe_allocate_available_register(p); - spe_load_uint(p, tmp_reg, ui); - spe_xor(p, rT, rA, tmp_reg); - spe_release_register(p, tmp_reg); -} - -void -spe_compare_equal_uint(struct spe_function *p, int rT, int rA, uint ui) -{ - /* If the comparison value is 9 bits or less, it fits inside a - * Compare Equal Word Immediate instruction. - */ - if ((ui & 0x000001ff) == ui) { - spe_ceqi(p, rT, rA, ui); - } - /* Otherwise, we're going to have to load a word first. */ - else { - int tmp_reg = spe_allocate_available_register(p); - spe_load_uint(p, tmp_reg, ui); - spe_ceq(p, rT, rA, tmp_reg); - spe_release_register(p, tmp_reg); - } -} - -void -spe_compare_greater_uint(struct spe_function *p, int rT, int rA, uint ui) -{ - /* If the comparison value is 10 bits or less, it fits inside a - * Compare Logical Greater Than Word Immediate instruction. - */ - if ((ui & 0x000003ff) == ui) { - spe_clgti(p, rT, rA, ui); - } - /* Otherwise, we're going to have to load a word first. */ - else { - int tmp_reg = spe_allocate_available_register(p); - spe_load_uint(p, tmp_reg, ui); - spe_clgt(p, rT, rA, tmp_reg); - spe_release_register(p, tmp_reg); - } -} - -void -spe_splat(struct spe_function *p, int rT, int rA) -{ - /* Use a temporary, just in case rT == rA */ - int tmp_reg = spe_allocate_available_register(p); - /* Duplicate bytes 0, 1, 2, and 3 across the whole register */ - spe_ila(p, tmp_reg, 0x00010203); - spe_shufb(p, rT, rA, rA, tmp_reg); - spe_release_register(p, tmp_reg); -} - - -void -spe_complement(struct spe_function *p, int rT, int rA) -{ - spe_nor(p, rT, rA, rA); -} - - -void -spe_move(struct spe_function *p, int rT, int rA) -{ - /* Use different instructions depending on the instruction address - * to take advantage of the dual pipelines. - */ - if (p->num_inst & 1) - spe_shlqbyi(p, rT, rA, 0); /* odd pipe */ - else - spe_ori(p, rT, rA, 0); /* even pipe */ -} - - -void -spe_zero(struct spe_function *p, int rT) -{ - spe_xor(p, rT, rT, rT); -} - - -void -spe_splat_word(struct spe_function *p, int rT, int rA, int word) -{ - assert(word >= 0); - assert(word <= 3); - - if (word == 0) { - int tmp1 = rT; - spe_ila(p, tmp1, 66051); - spe_shufb(p, rT, rA, rA, tmp1); - } - else { - /* XXX review this, we may not need the rotqbyi instruction */ - int tmp1 = rT; - int tmp2 = spe_allocate_available_register(p); - - spe_ila(p, tmp1, 66051); - spe_rotqbyi(p, tmp2, rA, 4 * word); - spe_shufb(p, rT, tmp2, tmp2, tmp1); - - spe_release_register(p, tmp2); - } -} - -/** - * For each 32-bit float element of rA and rB, choose the smaller of the - * two, compositing them into the rT register. - * - * The Float Compare Greater Than (fcgt) instruction will put 1s into - * compare_reg where rA > rB, and 0s where rA <= rB. - * - * Then the Select Bits (selb) instruction will take bits from rA where - * compare_reg is 0, and from rB where compare_reg is 1; i.e., from rA - * where rA <= rB and from rB where rB > rA, which is exactly the - * "min" operation. - * - * The compare_reg could in many cases be the same as rT, unless - * rT == rA || rt == rB. But since this is common in constructions - * like "x = min(x, a)", we always allocate a new register to be safe. - */ -void -spe_float_min(struct spe_function *p, int rT, int rA, int rB) -{ - int compare_reg = spe_allocate_available_register(p); - spe_fcgt(p, compare_reg, rA, rB); - spe_selb(p, rT, rA, rB, compare_reg); - spe_release_register(p, compare_reg); -} - -/** - * For each 32-bit float element of rA and rB, choose the greater of the - * two, compositing them into the rT register. - * - * The logic is similar to that of spe_float_min() above; the only - * difference is that the registers on spe_selb() have been reversed, - * so that the larger of the two is selected instead of the smaller. - */ -void -spe_float_max(struct spe_function *p, int rT, int rA, int rB) -{ - int compare_reg = spe_allocate_available_register(p); - spe_fcgt(p, compare_reg, rA, rB); - spe_selb(p, rT, rB, rA, compare_reg); - spe_release_register(p, compare_reg); -} - -#endif /* GALLIUM_CELL */ diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h deleted file mode 100644 index 65d9c774154..00000000000 --- a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h +++ /dev/null @@ -1,433 +0,0 @@ -/* - * (C) Copyright IBM Corporation 2008 - * All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * on the rights to use, copy, modify, merge, publish, distribute, sub - * license, and/or sell copies of the Software, and to permit persons to whom - * the Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice (including the next - * paragraph) shall be included in all copies or substantial portions of the - * Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL - * AUTHORS, COPYRIGHT HOLDERS, AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, - * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR - * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE - * USE OR OTHER DEALINGS IN THE SOFTWARE. - */ - -/** - * \file - * Real-time assembly generation interface for Cell B.E. SPEs. - * For details, see /opt/cell/sdk/docs/arch/SPU_ISA_v1.2_27Jan2007_pub.pdf - * - * \author Ian Romanick <idr@us.ibm.com> - * \author Brian Paul - */ - -#ifndef RTASM_PPC_SPE_H -#define RTASM_PPC_SPE_H - -/** 4 bytes per instruction */ -#define SPE_INST_SIZE 4 - -/** number of general-purpose SIMD registers */ -#define SPE_NUM_REGS 128 - -/** Return Address register (aka $lr / Link Register) */ -#define SPE_REG_RA 0 - -/** Stack Pointer register (aka $sp) */ -#define SPE_REG_SP 1 - - -struct spe_function -{ - uint32_t *store; /**< instruction buffer */ - uint num_inst; - uint max_inst; - - /** - * The "set count" reflects the number of nested register sets - * are allowed. In the unlikely case that we exceed the set count, - * register allocation will start to be confused, which is critical - * enough that we check for it. - */ - unsigned char set_count; - - /** - * Flags for used and unused registers. Each byte corresponds to a - * register; a 0 in that byte means that the register is available. - * A value of 1 means that the register was allocated in the current - * register set. Any other value N means that the register was allocated - * N register sets ago. - * - * \sa - * spe_allocate_register, spe_allocate_available_register, - * spe_allocate_register_set, spe_release_register_set, spe_release_register, - */ - unsigned char regs[SPE_NUM_REGS]; - - boolean print; /**< print/dump instructions as they're emitted? */ - int indent; /**< number of spaces to indent */ -}; - - -extern void spe_init_func(struct spe_function *p, uint code_size); -extern void spe_release_func(struct spe_function *p); -extern uint spe_code_size(const struct spe_function *p); - -extern int spe_allocate_available_register(struct spe_function *p); -extern int spe_allocate_register(struct spe_function *p, int reg); -extern void spe_release_register(struct spe_function *p, int reg); -extern void spe_allocate_register_set(struct spe_function *p); -extern void spe_release_register_set(struct spe_function *p); - -extern uint spe_get_registers_used(const struct spe_function *p, ubyte used[]); - -extern void spe_print_code(struct spe_function *p, boolean enable); -extern void spe_indent(struct spe_function *p, int spaces); -extern void spe_comment(struct spe_function *p, int rel_indent, const char *s); - - -#endif /* RTASM_PPC_SPE_H */ - -#ifndef EMIT -#define EMIT(_name, _op) \ - extern void _name (struct spe_function *p); -#define EMIT_(_name, _op) \ - extern void _name (struct spe_function *p, int rT); -#define EMIT_R(_name, _op) \ - extern void _name (struct spe_function *p, int rT, int rA); -#define EMIT_RR(_name, _op) \ - extern void _name (struct spe_function *p, int rT, int rA, int rB); -#define EMIT_RRR(_name, _op) \ - extern void _name (struct spe_function *p, int rT, int rA, int rB, int rC); -#define EMIT_RI7(_name, _op) \ - extern void _name (struct spe_function *p, int rT, int rA, int imm); -#define EMIT_RI8(_name, _op, bias) \ - extern void _name (struct spe_function *p, int rT, int rA, int imm); -#define EMIT_RI10(_name, _op) \ - extern void _name (struct spe_function *p, int rT, int rA, int imm); -#define EMIT_RI10s(_name, _op) \ - extern void _name (struct spe_function *p, int rT, int rA, int imm); -#define EMIT_RI16(_name, _op) \ - extern void _name (struct spe_function *p, int rT, int imm); -#define EMIT_RI18(_name, _op) \ - extern void _name (struct spe_function *p, int rT, int imm); -#define EMIT_I16(_name, _op) \ - extern void _name (struct spe_function *p, int imm); -#define UNDEF_EMIT_MACROS -#endif /* EMIT */ - - -/* Memory load / store instructions - */ -EMIT_RR (spe_lqx, 0x1c4) -EMIT_RI16(spe_lqa, 0x061) -EMIT_RI16(spe_lqr, 0x067) -EMIT_RR (spe_stqx, 0x144) -EMIT_RI16(spe_stqa, 0x041) -EMIT_RI16(spe_stqr, 0x047) -EMIT_RI7 (spe_cbd, 0x1f4) -EMIT_RR (spe_cbx, 0x1d4) -EMIT_RI7 (spe_chd, 0x1f5) -EMIT_RI7 (spe_chx, 0x1d5) -EMIT_RI7 (spe_cwd, 0x1f6) -EMIT_RI7 (spe_cwx, 0x1d6) -EMIT_RI7 (spe_cdd, 0x1f7) -EMIT_RI7 (spe_cdx, 0x1d7) - - -/* Constant formation instructions - */ -EMIT_RI16(spe_ilh, 0x083) -EMIT_RI16(spe_ilhu, 0x082) -EMIT_RI16(spe_il, 0x081) -EMIT_RI18(spe_ila, 0x021) -EMIT_RI16(spe_iohl, 0x0c1) -EMIT_RI16(spe_fsmbi, 0x065) - - - -/* Integer and logical instructions - */ -EMIT_RR (spe_ah, 0x0c8) -EMIT_RI10(spe_ahi, 0x01d) -EMIT_RR (spe_a, 0x0c0) -EMIT_RI10s(spe_ai, 0x01c) -EMIT_RR (spe_sfh, 0x048) -EMIT_RI10(spe_sfhi, 0x00d) -EMIT_RR (spe_sf, 0x040) -EMIT_RI10(spe_sfi, 0x00c) -EMIT_RR (spe_addx, 0x340) -EMIT_RR (spe_cg, 0x0c2) -EMIT_RR (spe_cgx, 0x342) -EMIT_RR (spe_sfx, 0x341) -EMIT_RR (spe_bg, 0x042) -EMIT_RR (spe_bgx, 0x343) -EMIT_RR (spe_mpy, 0x3c4) -EMIT_RR (spe_mpyu, 0x3cc) -EMIT_RI10(spe_mpyi, 0x074) -EMIT_RI10(spe_mpyui, 0x075) -EMIT_RRR (spe_mpya, 0x00c) -EMIT_RR (spe_mpyh, 0x3c5) -EMIT_RR (spe_mpys, 0x3c7) -EMIT_RR (spe_mpyhh, 0x3c6) -EMIT_RR (spe_mpyhha, 0x346) -EMIT_RR (spe_mpyhhu, 0x3ce) -EMIT_RR (spe_mpyhhau, 0x34e) -EMIT_R (spe_clz, 0x2a5) -EMIT_R (spe_cntb, 0x2b4) -EMIT_R (spe_fsmb, 0x1b6) -EMIT_R (spe_fsmh, 0x1b5) -EMIT_R (spe_fsm, 0x1b4) -EMIT_R (spe_gbb, 0x1b2) -EMIT_R (spe_gbh, 0x1b1) -EMIT_R (spe_gb, 0x1b0) -EMIT_RR (spe_avgb, 0x0d3) -EMIT_RR (spe_absdb, 0x053) -EMIT_RR (spe_sumb, 0x253) -EMIT_R (spe_xsbh, 0x2b6) -EMIT_R (spe_xshw, 0x2ae) -EMIT_R (spe_xswd, 0x2a6) -EMIT_RR (spe_and, 0x0c1) -EMIT_RR (spe_andc, 0x2c1) -EMIT_RI10s(spe_andbi, 0x016) -EMIT_RI10s(spe_andhi, 0x015) -EMIT_RI10s(spe_andi, 0x014) -EMIT_RR (spe_or, 0x041) -EMIT_RR (spe_orc, 0x2c9) -EMIT_RI10s(spe_orbi, 0x006) -EMIT_RI10s(spe_orhi, 0x005) -EMIT_RI10s(spe_ori, 0x004) -EMIT_R (spe_orx, 0x1f0) -EMIT_RR (spe_xor, 0x241) -EMIT_RI10s(spe_xorbi, 0x046) -EMIT_RI10s(spe_xorhi, 0x045) -EMIT_RI10s(spe_xori, 0x044) -EMIT_RR (spe_nand, 0x0c9) -EMIT_RR (spe_nor, 0x049) -EMIT_RR (spe_eqv, 0x249) -EMIT_RRR (spe_selb, 0x008) -EMIT_RRR (spe_shufb, 0x00b) - - -/* Shift and rotate instructions - */ -EMIT_RR (spe_shlh, 0x05f) -EMIT_RI7 (spe_shlhi, 0x07f) -EMIT_RR (spe_shl, 0x05b) -EMIT_RI7 (spe_shli, 0x07b) -EMIT_RR (spe_shlqbi, 0x1db) -EMIT_RI7 (spe_shlqbii, 0x1fb) -EMIT_RR (spe_shlqby, 0x1df) -EMIT_RI7 (spe_shlqbyi, 0x1ff) -EMIT_RR (spe_shlqbybi, 0x1cf) -EMIT_RR (spe_roth, 0x05c) -EMIT_RI7 (spe_rothi, 0x07c) -EMIT_RR (spe_rot, 0x058) -EMIT_RI7 (spe_roti, 0x078) -EMIT_RR (spe_rotqby, 0x1dc) -EMIT_RI7 (spe_rotqbyi, 0x1fc) -EMIT_RR (spe_rotqbybi, 0x1cc) -EMIT_RR (spe_rotqbi, 0x1d8) -EMIT_RI7 (spe_rotqbii, 0x1f8) -EMIT_RR (spe_rothm, 0x05d) -EMIT_RI7 (spe_rothmi, 0x07d) -EMIT_RR (spe_rotm, 0x059) -EMIT_RI7 (spe_rotmi, 0x079) -EMIT_RR (spe_rotqmby, 0x1dd) -EMIT_RI7 (spe_rotqmbyi, 0x1fd) -EMIT_RR (spe_rotqmbybi, 0x1cd) -EMIT_RR (spe_rotqmbi, 0x1c9) -EMIT_RI7 (spe_rotqmbii, 0x1f9) -EMIT_RR (spe_rotmah, 0x05e) -EMIT_RI7 (spe_rotmahi, 0x07e) -EMIT_RR (spe_rotma, 0x05a) -EMIT_RI7 (spe_rotmai, 0x07a) - - -/* Compare, branch, and halt instructions - */ -EMIT_RR (spe_heq, 0x3d8) -EMIT_RI10(spe_heqi, 0x07f) -EMIT_RR (spe_hgt, 0x258) -EMIT_RI10(spe_hgti, 0x04f) -EMIT_RR (spe_hlgt, 0x2d8) -EMIT_RI10(spe_hlgti, 0x05f) -EMIT_RR (spe_ceqb, 0x3d0) -EMIT_RI10(spe_ceqbi, 0x07e) -EMIT_RR (spe_ceqh, 0x3c8) -EMIT_RI10(spe_ceqhi, 0x07d) -EMIT_RR (spe_ceq, 0x3c0) -EMIT_RI10(spe_ceqi, 0x07c) -EMIT_RR (spe_cgtb, 0x250) -EMIT_RI10(spe_cgtbi, 0x04e) -EMIT_RR (spe_cgth, 0x248) -EMIT_RI10(spe_cgthi, 0x04d) -EMIT_RR (spe_cgt, 0x240) -EMIT_RI10(spe_cgti, 0x04c) -EMIT_RR (spe_clgtb, 0x2d0) -EMIT_RI10(spe_clgtbi, 0x05e) -EMIT_RR (spe_clgth, 0x2c8) -EMIT_RI10(spe_clgthi, 0x05d) -EMIT_RR (spe_clgt, 0x2c0) -EMIT_RI10(spe_clgti, 0x05c) -EMIT_I16 (spe_br, 0x064) -EMIT_I16 (spe_bra, 0x060) -EMIT_RI16(spe_brsl, 0x066) -EMIT_RI16(spe_brasl, 0x062) -EMIT_RI16(spe_brnz, 0x042) -EMIT_RI16(spe_brz, 0x040) -EMIT_RI16(spe_brhnz, 0x046) -EMIT_RI16(spe_brhz, 0x044) - -/* Control instructions - */ -EMIT (spe_lnop, 0x001) - -extern void -spe_lqd(struct spe_function *p, int rT, int rA, int offset); - -extern void -spe_stqd(struct spe_function *p, int rT, int rA, int offset); - -extern void spe_bi(struct spe_function *p, int rA, int d, int e); -extern void spe_iret(struct spe_function *p, int rA, int d, int e); -extern void spe_bisled(struct spe_function *p, int rT, int rA, - int d, int e); -extern void spe_bisl(struct spe_function *p, int rT, int rA, - int d, int e); -extern void spe_biz(struct spe_function *p, int rT, int rA, - int d, int e); -extern void spe_binz(struct spe_function *p, int rT, int rA, - int d, int e); -extern void spe_bihz(struct spe_function *p, int rT, int rA, - int d, int e); -extern void spe_bihnz(struct spe_function *p, int rT, int rA, - int d, int e); - - -/** Load/splat immediate float into rT. */ -extern void -spe_load_float(struct spe_function *p, int rT, float x); - -/** Load/splat immediate int into rT. */ -extern void -spe_load_int(struct spe_function *p, int rT, int i); - -/** Load/splat immediate unsigned int into rT. */ -extern void -spe_load_uint(struct spe_function *p, int rT, uint ui); - -/** And immediate value into rT. */ -extern void -spe_and_uint(struct spe_function *p, int rT, int rA, uint ui); - -/** Xor immediate value into rT. */ -extern void -spe_xor_uint(struct spe_function *p, int rT, int rA, uint ui); - -/** Compare equal with immediate value. */ -extern void -spe_compare_equal_uint(struct spe_function *p, int rT, int rA, uint ui); - -/** Compare greater with immediate value. */ -extern void -spe_compare_greater_uint(struct spe_function *p, int rT, int rA, uint ui); - -/** Replicate word 0 of rA across rT. */ -extern void -spe_splat(struct spe_function *p, int rT, int rA); - -/** rT = complement_all_bits(rA). */ -extern void -spe_complement(struct spe_function *p, int rT, int rA); - -/** rT = rA. */ -extern void -spe_move(struct spe_function *p, int rT, int rA); - -/** rT = {0,0,0,0}. */ -extern void -spe_zero(struct spe_function *p, int rT); - -/** rT = splat(rA, word) */ -extern void -spe_splat_word(struct spe_function *p, int rT, int rA, int word); - -/** rT = float min(rA, rB) */ -extern void -spe_float_min(struct spe_function *p, int rT, int rA, int rB); - -/** rT = float max(rA, rB) */ -extern void -spe_float_max(struct spe_function *p, int rT, int rA, int rB); - - -/* Floating-point instructions - */ -EMIT_RR (spe_fa, 0x2c4) -EMIT_RR (spe_dfa, 0x2cc) -EMIT_RR (spe_fs, 0x2c5) -EMIT_RR (spe_dfs, 0x2cd) -EMIT_RR (spe_fm, 0x2c6) -EMIT_RR (spe_dfm, 0x2ce) -EMIT_RRR (spe_fma, 0x00e) -EMIT_RR (spe_dfma, 0x35c) -EMIT_RRR (spe_fnms, 0x00d) -EMIT_RR (spe_dfnms, 0x35e) -EMIT_RRR (spe_fms, 0x00f) -EMIT_RR (spe_dfms, 0x35d) -EMIT_RR (spe_dfnma, 0x35f) -EMIT_R (spe_frest, 0x1b8) -EMIT_R (spe_frsqest, 0x1b9) -EMIT_RR (spe_fi, 0x3d4) -EMIT_RI8 (spe_csflt, 0x1da, 155) -EMIT_RI8 (spe_cflts, 0x1d8, 173) -EMIT_RI8 (spe_cuflt, 0x1db, 155) -EMIT_RI8 (spe_cfltu, 0x1d9, 173) -EMIT_R (spe_frds, 0x3b9) -EMIT_R (spe_fesd, 0x3b8) -EMIT_RR (spe_dfceq, 0x3c3) -EMIT_RR (spe_dfcmeq, 0x3cb) -EMIT_RR (spe_dfcgt, 0x2c3) -EMIT_RR (spe_dfcmgt, 0x2cb) -EMIT_RI7 (spe_dftsv, 0x3bf) -EMIT_RR (spe_fceq, 0x3c2) -EMIT_RR (spe_fcmeq, 0x3ca) -EMIT_RR (spe_fcgt, 0x2c2) -EMIT_RR (spe_fcmgt, 0x2ca) -EMIT_R (spe_fscrwr, 0x3ba) -EMIT_ (spe_fscrrd, 0x398) - - -/* Channel instructions - */ -EMIT_R (spe_rdch, 0x00d) -EMIT_R (spe_rdchcnt, 0x00f) -EMIT_R (spe_wrch, 0x10d) - - -#ifdef UNDEF_EMIT_MACROS -#undef EMIT -#undef EMIT_ -#undef EMIT_R -#undef EMIT_RR -#undef EMIT_RRR -#undef EMIT_RI7 -#undef EMIT_RI8 -#undef EMIT_RI10 -#undef EMIT_RI10s -#undef EMIT_RI16 -#undef EMIT_RI18 -#undef EMIT_I16 -#undef UNDEF_EMIT_MACROS -#endif /* EMIT_ */ |