summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_insert_exec_mask.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/amd/compiler/aco_insert_exec_mask.cpp')
-rw-r--r--src/amd/compiler/aco_insert_exec_mask.cpp1078
1 files changed, 1078 insertions, 0 deletions
diff --git a/src/amd/compiler/aco_insert_exec_mask.cpp b/src/amd/compiler/aco_insert_exec_mask.cpp
new file mode 100644
index 00000000000..7886a4c77e2
--- /dev/null
+++ b/src/amd/compiler/aco_insert_exec_mask.cpp
@@ -0,0 +1,1078 @@
+/*
+ * Copyright © 2019 Valve Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ */
+
+#include "aco_ir.h"
+#include "aco_builder.h"
+
+namespace aco {
+
+namespace {
+
+enum WQMState : uint8_t {
+ Unspecified = 0,
+ Exact = 1 << 0,
+ WQM = 1 << 1, /* with control flow applied */
+ Preserve_WQM = 1 << 2,
+ Exact_Branch = 1 << 3,
+};
+
+enum mask_type : uint8_t {
+ mask_type_global = 1 << 0,
+ mask_type_exact = 1 << 1,
+ mask_type_wqm = 1 << 2,
+ mask_type_loop = 1 << 3, /* active lanes of a loop */
+ mask_type_initial = 1 << 4, /* initially active lanes */
+};
+
+struct wqm_ctx {
+ Program* program;
+ /* state for WQM propagation */
+ std::set<unsigned> worklist;
+ std::vector<uint16_t> defined_in;
+ std::vector<bool> needs_wqm;
+ std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */
+ bool loop;
+ bool wqm;
+ wqm_ctx(Program* program) : program(program),
+ defined_in(program->peekAllocationId(), 0xFFFF),
+ needs_wqm(program->peekAllocationId()),
+ branch_wqm(program->blocks.size()),
+ loop(false),
+ wqm(false)
+ {
+ for (unsigned i = 0; i < program->blocks.size(); i++)
+ worklist.insert(i);
+ }
+};
+
+struct loop_info {
+ Block* loop_header;
+ uint16_t num_exec_masks;
+ uint8_t needs;
+ bool has_divergent_break;
+ bool has_divergent_continue;
+ bool has_discard;
+ loop_info(Block* b, uint16_t num, uint8_t needs, bool breaks, bool cont, bool discard) :
+ loop_header(b), num_exec_masks(num), needs(needs), has_divergent_break(breaks),
+ has_divergent_continue(cont), has_discard(discard) {}
+};
+
+struct block_info {
+ std::vector<std::pair<Temp, uint8_t>> exec;
+ std::vector<WQMState> instr_needs;
+ uint8_t block_needs;
+ uint8_t ever_again_needs;
+ /* more... */
+};
+
+struct exec_ctx {
+ Program *program;
+ std::vector<block_info> info;
+ std::vector<loop_info> loop;
+ bool handle_wqm = false;
+ exec_ctx(Program *program) : program(program), info(program->blocks.size()) {}
+};
+
+bool pred_by_exec_mask(aco_ptr<Instruction>& instr) {
+ if (instr->format == Format::SMEM || instr->isSALU())
+ return false;
+ if (instr->format == Format::PSEUDO_BARRIER)
+ return false;
+
+ if (instr->format == Format::PSEUDO) {
+ switch (instr->opcode) {
+ case aco_opcode::p_create_vector:
+ return instr->definitions[0].getTemp().type() == RegType::vgpr;
+ case aco_opcode::p_extract_vector:
+ case aco_opcode::p_split_vector:
+ return instr->operands[0].getTemp().type() == RegType::vgpr;
+ case aco_opcode::p_spill:
+ case aco_opcode::p_reload:
+ return false;
+ default:
+ break;
+ }
+ }
+
+ if (instr->opcode == aco_opcode::v_readlane_b32 ||
+ instr->opcode == aco_opcode::v_writelane_b32)
+ return false;
+
+ return true;
+}
+
+bool needs_exact(aco_ptr<Instruction>& instr) {
+ if (instr->format == Format::MUBUF) {
+ MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
+ return mubuf->disable_wqm;
+ } else if (instr->format == Format::MTBUF) {
+ MTBUF_instruction *mtbuf = static_cast<MTBUF_instruction *>(instr.get());
+ return mtbuf->disable_wqm;
+ } else if (instr->format == Format::MIMG) {
+ MIMG_instruction *mimg = static_cast<MIMG_instruction *>(instr.get());
+ return mimg->disable_wqm;
+ } else {
+ return instr->format == Format::EXP || instr->opcode == aco_opcode::p_fs_buffer_store_smem;
+ }
+}
+
+void set_needs_wqm(wqm_ctx &ctx, Temp tmp)
+{
+ if (!ctx.needs_wqm[tmp.id()]) {
+ ctx.needs_wqm[tmp.id()] = true;
+ if (ctx.defined_in[tmp.id()] != 0xFFFF)
+ ctx.worklist.insert(ctx.defined_in[tmp.id()]);
+ }
+}
+
+void mark_block_wqm(wqm_ctx &ctx, unsigned block_idx)
+{
+ if (ctx.branch_wqm[block_idx])
+ return;
+
+ ctx.branch_wqm[block_idx] = true;
+ Block& block = ctx.program->blocks[block_idx];
+ aco_ptr<Instruction>& branch = block.instructions.back();
+
+ if (branch->opcode != aco_opcode::p_branch) {
+ assert(!branch->operands.empty() && branch->operands[0].isTemp());
+ set_needs_wqm(ctx, branch->operands[0].getTemp());
+ }
+
+ /* TODO: this sets more branch conditions to WQM than it needs to
+ * it should be enough to stop at the "exec mask top level" */
+ if (block.kind & block_kind_top_level)
+ return;
+
+ for (unsigned pred_idx : block.logical_preds)
+ mark_block_wqm(ctx, pred_idx);
+}
+
+void get_block_needs(wqm_ctx &ctx, exec_ctx &exec_ctx, Block* block)
+{
+ block_info& info = exec_ctx.info[block->index];
+
+ std::vector<WQMState> instr_needs(block->instructions.size());
+
+ if (block->kind & block_kind_top_level) {
+ if (ctx.loop && ctx.wqm) {
+ /* mark all break conditions as WQM */
+ unsigned block_idx = block->index + 1;
+ while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level)) {
+ if (ctx.program->blocks[block_idx].kind & block_kind_break)
+ mark_block_wqm(ctx, block_idx);
+ block_idx++;
+ }
+ } else if (ctx.loop && !ctx.wqm) {
+ /* Ensure a branch never results in an exec mask with only helper
+ * invocations (which can cause a loop to repeat infinitively if it's
+ * break branches are done in exact). */
+ unsigned block_idx = block->index;
+ do {
+ if ((ctx.program->blocks[block_idx].kind & block_kind_branch))
+ exec_ctx.info[block_idx].block_needs |= Exact_Branch;
+ block_idx++;
+ } while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level));
+ }
+
+ ctx.loop = false;
+ ctx.wqm = false;
+ }
+
+ for (int i = block->instructions.size() - 1; i >= 0; --i)
+ {
+ aco_ptr<Instruction>& instr = block->instructions[i];
+
+ WQMState needs = needs_exact(instr) ? Exact : Unspecified;
+ bool propagate_wqm = instr->opcode == aco_opcode::p_wqm;
+ bool preserve_wqm = instr->opcode == aco_opcode::p_discard_if;
+ bool pred_by_exec = pred_by_exec_mask(instr);
+ for (const Definition& definition : instr->definitions) {
+ if (!definition.isTemp())
+ continue;
+ const unsigned def = definition.tempId();
+ ctx.defined_in[def] = block->index;
+ if (needs == Unspecified && ctx.needs_wqm[def]) {
+ needs = pred_by_exec ? WQM : Unspecified;
+ propagate_wqm = true;
+ }
+ }
+
+ if (propagate_wqm) {
+ for (const Operand& op : instr->operands) {
+ if (op.isTemp()) {
+ set_needs_wqm(ctx, op.getTemp());
+ }
+ }
+ } else if (preserve_wqm && info.block_needs & WQM) {
+ needs = Preserve_WQM;
+ }
+
+ /* ensure the condition controlling the control flow for this phi is in WQM */
+ if (needs == WQM && instr->opcode == aco_opcode::p_phi) {
+ for (unsigned pred_idx : block->logical_preds)
+ mark_block_wqm(ctx, pred_idx);
+ }
+
+ instr_needs[i] = needs;
+ info.block_needs |= needs;
+ }
+
+ info.instr_needs = instr_needs;
+
+ /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>",
+ * <cond> should be computed in WQM */
+ if (info.block_needs & WQM && !(block->kind & block_kind_top_level)) {
+ for (unsigned pred_idx : block->logical_preds)
+ mark_block_wqm(ctx, pred_idx);
+ ctx.wqm = true;
+ }
+ if (block->kind & block_kind_loop_header)
+ ctx.loop = true;
+}
+
+void calculate_wqm_needs(exec_ctx& exec_ctx)
+{
+ wqm_ctx ctx(exec_ctx.program);
+
+ while (!ctx.worklist.empty()) {
+ unsigned block_index = *std::prev(ctx.worklist.end());
+ ctx.worklist.erase(std::prev(ctx.worklist.end()));
+
+ get_block_needs(ctx, exec_ctx, &exec_ctx.program->blocks[block_index]);
+ }
+
+ uint8_t ever_again_needs = 0;
+ for (int i = exec_ctx.program->blocks.size() - 1; i >= 0; i--) {
+ exec_ctx.info[i].ever_again_needs = ever_again_needs;
+ Block& block = exec_ctx.program->blocks[i];
+
+ if (block.kind & block_kind_needs_lowering)
+ exec_ctx.info[i].block_needs |= Exact;
+
+ /* if discard is used somewhere in nested CF, we need to preserve the WQM mask */
+ if ((block.kind & block_kind_discard ||
+ block.kind & block_kind_uses_discard_if) &&
+ ever_again_needs & WQM)
+ exec_ctx.info[i].block_needs |= Preserve_WQM;
+
+ ever_again_needs |= exec_ctx.info[i].block_needs & ~Exact_Branch;
+ if (block.kind & block_kind_discard ||
+ block.kind & block_kind_uses_discard_if)
+ ever_again_needs |= Exact;
+
+ /* don't propagate WQM preservation further than the next top_level block */
+ if (block.kind & block_kind_top_level)
+ ever_again_needs &= ~Preserve_WQM;
+ else
+ exec_ctx.info[i].block_needs &= ~Preserve_WQM;
+ }
+ exec_ctx.handle_wqm = true;
+}
+
+void transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx)
+{
+ if (ctx.info[idx].exec.back().second & mask_type_wqm)
+ return;
+ if (ctx.info[idx].exec.back().second & mask_type_global) {
+ Temp exec_mask = ctx.info[idx].exec.back().first;
+ exec_mask = bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2, exec), bld.def(s1, scc), exec_mask);
+ ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm);
+ return;
+ }
+ /* otherwise, the WQM mask should be one below the current mask */
+ ctx.info[idx].exec.pop_back();
+ assert(ctx.info[idx].exec.back().second & mask_type_wqm);
+ ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec),
+ ctx.info[idx].exec.back().first);
+}
+
+void transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx)
+{
+ if (ctx.info[idx].exec.back().second & mask_type_exact)
+ return;
+ if (ctx.info[idx].exec.back().second & mask_type_global) {
+ ctx.info[idx].exec.pop_back();
+ assert(ctx.info[idx].exec.back().second & mask_type_exact);
+ ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec),
+ ctx.info[idx].exec.back().first);
+ return;
+ }
+ /* otherwise, we create an exact mask and push to the stack */
+ Temp wqm = ctx.info[idx].exec.back().first;
+ Temp exact = bld.tmp(s2);
+ wqm = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc),
+ bld.exec(Definition(exact)), ctx.info[idx].exec[0].first, bld.exec(wqm));
+ ctx.info[idx].exec.back().first = wqm;
+ ctx.info[idx].exec.emplace_back(exact, mask_type_exact);
+}
+
+unsigned add_coupling_code(exec_ctx& ctx, Block* block,
+ std::vector<aco_ptr<Instruction>>& instructions)
+{
+ unsigned idx = block->index;
+ Builder bld(ctx.program, &instructions);
+ std::vector<unsigned>& preds = block->linear_preds;
+
+ /* start block */
+ if (idx == 0) {
+ aco_ptr<Instruction>& startpgm = block->instructions[0];
+ assert(startpgm->opcode == aco_opcode::p_startpgm);
+ Temp exec_mask = startpgm->definitions.back().getTemp();
+ bld.insert(std::move(startpgm));
+
+ if (ctx.handle_wqm) {
+ ctx.info[0].exec.emplace_back(exec_mask, mask_type_global | mask_type_exact | mask_type_initial);
+ /* if this block only needs WQM, initialize already */
+ if (ctx.info[0].block_needs == WQM)
+ transition_to_WQM(ctx, bld, 0);
+ } else {
+ uint8_t mask = mask_type_global;
+ if (ctx.program->needs_wqm) {
+ exec_mask = bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2, exec), bld.def(s1, scc), bld.exec(exec_mask));
+ mask |= mask_type_wqm;
+ } else {
+ mask |= mask_type_exact;
+ }
+ ctx.info[0].exec.emplace_back(exec_mask, mask);
+ }
+
+ return 1;
+ }
+
+ /* loop entry block */
+ if (block->kind & block_kind_loop_header) {
+ assert(preds[0] == idx - 1);
+ ctx.info[idx].exec = ctx.info[idx - 1].exec;
+ loop_info& info = ctx.loop.back();
+ while (ctx.info[idx].exec.size() > info.num_exec_masks)
+ ctx.info[idx].exec.pop_back();
+
+ /* create ssa names for outer exec masks */
+ if (info.has_discard) {
+ aco_ptr<Pseudo_instruction> phi;
+ for (int i = 0; i < info.num_exec_masks - 1; i++) {
+ phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1));
+ phi->definitions[0] = bld.def(s2);
+ phi->operands[0] = Operand(ctx.info[preds[0]].exec[i].first);
+ ctx.info[idx].exec[i].first = bld.insert(std::move(phi));
+ }
+ }
+
+ /* create ssa name for restore mask */
+ if (info.has_divergent_break) {
+ /* this phi might be trivial but ensures a parallelcopy on the loop header */
+ aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
+ phi->definitions[0] = bld.def(s2);
+ phi->operands[0] = Operand(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first);
+ ctx.info[idx].exec.back().first = bld.insert(std::move(phi));
+ }
+
+ /* create ssa name for loop active mask */
+ aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
+ if (info.has_divergent_continue)
+ phi->definitions[0] = bld.def(s2);
+ else
+ phi->definitions[0] = bld.def(s2, exec);
+ phi->operands[0] = Operand(ctx.info[preds[0]].exec.back().first);
+ Temp loop_active = bld.insert(std::move(phi));
+
+ if (info.has_divergent_break) {
+ uint8_t mask_type = (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop;
+ ctx.info[idx].exec.emplace_back(loop_active, mask_type);
+ } else {
+ ctx.info[idx].exec.back().first = loop_active;
+ ctx.info[idx].exec.back().second |= mask_type_loop;
+ }
+
+ /* create a parallelcopy to move the active mask to exec */
+ unsigned i = 0;
+ if (info.has_divergent_continue) {
+ while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
+ bld.insert(std::move(block->instructions[i]));
+ i++;
+ }
+ uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
+ ctx.info[idx].exec.emplace_back(bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec),
+ ctx.info[idx].exec.back().first), mask_type);
+ }
+
+ return i;
+ }
+
+ /* loop exit block */
+ if (block->kind & block_kind_loop_exit) {
+ Block* header = ctx.loop.back().loop_header;
+ loop_info& info = ctx.loop.back();
+
+ for (ASSERTED unsigned pred : preds)
+ assert(ctx.info[pred].exec.size() >= info.num_exec_masks);
+
+ /* fill the loop header phis */
+ std::vector<unsigned>& header_preds = header->linear_preds;
+ int k = 0;
+ if (info.has_discard) {
+ while (k < info.num_exec_masks - 1) {
+ aco_ptr<Instruction>& phi = header->instructions[k];
+ assert(phi->opcode == aco_opcode::p_linear_phi);
+ for (unsigned i = 1; i < phi->operands.size(); i++)
+ phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[k].first);
+ k++;
+ }
+ }
+ aco_ptr<Instruction>& phi = header->instructions[k++];
+ assert(phi->opcode == aco_opcode::p_linear_phi);
+ for (unsigned i = 1; i < phi->operands.size(); i++)
+ phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first);
+
+ if (info.has_divergent_break) {
+ aco_ptr<Instruction>& phi = header->instructions[k];
+ assert(phi->opcode == aco_opcode::p_linear_phi);
+ for (unsigned i = 1; i < phi->operands.size(); i++)
+ phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks].first);
+ }
+
+ assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2);
+
+ /* create the loop exit phis if not trivial */
+ for (unsigned k = 0; k < info.num_exec_masks; k++) {
+ Temp same = ctx.info[preds[0]].exec[k].first;
+ uint8_t type = ctx.info[header_preds[0]].exec[k].second;
+ bool trivial = true;
+
+ for (unsigned i = 1; i < preds.size() && trivial; i++) {
+ if (ctx.info[preds[i]].exec[k].first != same)
+ trivial = false;
+ }
+
+ if (trivial) {
+ ctx.info[idx].exec.emplace_back(same, type);
+ } else {
+ /* create phi for loop footer */
+ aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
+ phi->definitions[0] = bld.def(s2);
+ for (unsigned i = 0; i < phi->operands.size(); i++)
+ phi->operands[i] = Operand(ctx.info[preds[i]].exec[k].first);
+ ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type);
+ }
+ }
+ assert(ctx.info[idx].exec.size() == info.num_exec_masks);
+
+ /* create a parallelcopy to move the live mask to exec */
+ unsigned i = 0;
+ while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
+ bld.insert(std::move(block->instructions[i]));
+ i++;
+ }
+
+ if (ctx.handle_wqm) {
+ if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
+ if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
+ (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
+ ctx.info[idx].exec.back().second |= mask_type_global;
+ transition_to_Exact(ctx, bld, idx);
+ ctx.handle_wqm = false;
+ }
+ }
+ if (ctx.info[idx].block_needs == WQM)
+ transition_to_WQM(ctx, bld, idx);
+ else if (ctx.info[idx].block_needs == Exact)
+ transition_to_Exact(ctx, bld, idx);
+ }
+
+ ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec),
+ ctx.info[idx].exec.back().first);
+
+ ctx.loop.pop_back();
+ return i;
+ }
+
+ if (preds.size() == 1) {
+ ctx.info[idx].exec = ctx.info[preds[0]].exec;
+ } else {
+ assert(preds.size() == 2);
+ /* if one of the predecessors ends in exact mask, we pop it from stack */
+ unsigned num_exec_masks = std::min(ctx.info[preds[0]].exec.size(),
+ ctx.info[preds[1]].exec.size());
+ if (block->kind & block_kind_top_level && !(block->kind & block_kind_merge))
+ num_exec_masks = std::min(num_exec_masks, 2u);
+
+ /* create phis for diverged exec masks */
+ for (unsigned i = 0; i < num_exec_masks; i++) {
+ bool in_exec = i == num_exec_masks - 1 && !(block->kind & block_kind_merge);
+ if (!in_exec && ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) {
+ assert(ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second);
+ ctx.info[idx].exec.emplace_back(ctx.info[preds[0]].exec[i]);
+ continue;
+ }
+
+ Temp phi = bld.pseudo(aco_opcode::p_linear_phi, in_exec ? bld.def(s2, exec) : bld.def(s2),
+ ctx.info[preds[0]].exec[i].first,
+ ctx.info[preds[1]].exec[i].first);
+ uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
+ ctx.info[idx].exec.emplace_back(phi, mask_type);
+ }
+ }
+
+ unsigned i = 0;
+ while (block->instructions[i]->opcode == aco_opcode::p_phi ||
+ block->instructions[i]->opcode == aco_opcode::p_linear_phi) {
+ bld.insert(std::move(block->instructions[i]));
+ i++;
+ }
+
+ if (block->kind & block_kind_merge)
+ ctx.info[idx].exec.pop_back();
+
+ if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 3) {
+ assert(ctx.info[idx].exec.back().second == mask_type_exact);
+ assert(block->kind & block_kind_merge);
+ ctx.info[idx].exec.pop_back();
+ }
+
+ /* try to satisfy the block's needs */
+ if (ctx.handle_wqm) {
+ if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
+ if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
+ (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
+ ctx.info[idx].exec.back().second |= mask_type_global;
+ transition_to_Exact(ctx, bld, idx);
+ ctx.handle_wqm = false;
+ }
+ }
+ if (ctx.info[idx].block_needs == WQM)
+ transition_to_WQM(ctx, bld, idx);
+ else if (ctx.info[idx].block_needs == Exact)
+ transition_to_Exact(ctx, bld, idx);
+ }
+
+ if (block->kind & block_kind_merge) {
+ Temp restore = ctx.info[idx].exec.back().first;
+ ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), restore);
+ }
+
+ return i;
+}
+
+void lower_fs_buffer_store_smem(Builder& bld, bool need_check, aco_ptr<Instruction>& instr, Temp cur_exec)
+{
+ Operand offset = instr->operands[1];
+ if (need_check) {
+ /* if exec is zero, then use UINT32_MAX as an offset and make this store a no-op */
+ Temp nonempty = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), cur_exec, Operand(0u));
+
+ if (offset.isLiteral())
+ offset = bld.sop1(aco_opcode::s_mov_b32, bld.def(s1), offset);
+
+ offset = bld.sop2(aco_opcode::s_cselect_b32, bld.hint_m0(bld.def(s1)),
+ offset, Operand(UINT32_MAX), bld.scc(nonempty));
+ } else if (offset.isConstant() && offset.constantValue() > 0xFFFFF) {
+ offset = bld.sop1(aco_opcode::s_mov_b32, bld.hint_m0(bld.def(s1)), offset);
+ }
+ if (!offset.isConstant())
+ offset.setFixed(m0);
+
+ switch (instr->operands[2].size()) {
+ case 1:
+ instr->opcode = aco_opcode::s_buffer_store_dword;
+ break;
+ case 2:
+ instr->opcode = aco_opcode::s_buffer_store_dwordx2;
+ break;
+ case 4:
+ instr->opcode = aco_opcode::s_buffer_store_dwordx4;
+ break;
+ default:
+ unreachable("Invalid SMEM buffer store size");
+ }
+ instr->operands[1] = offset;
+ /* as_uniform() needs to be done here so it's done in exact mode and helper
+ * lanes don't contribute. */
+ instr->operands[2] = Operand(bld.as_uniform(instr->operands[2]));
+}
+
+void process_instructions(exec_ctx& ctx, Block* block,
+ std::vector<aco_ptr<Instruction>>& instructions,
+ unsigned idx)
+{
+ WQMState state;
+ if (ctx.info[block->index].exec.back().second & mask_type_wqm)
+ state = WQM;
+ else {
+ assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact);
+ state = Exact;
+ }
+
+ /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */
+ bool process = (ctx.handle_wqm &&
+ (ctx.info[block->index].block_needs & state) !=
+ (ctx.info[block->index].block_needs & (WQM | Exact))) ||
+ block->kind & block_kind_uses_discard_if ||
+ block->kind & block_kind_needs_lowering;
+ if (!process) {
+ std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx);
+ instructions.insert(instructions.end(),
+ std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it),
+ std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
+ return;
+ }
+
+ Builder bld(ctx.program, &instructions);
+
+ for (; idx < block->instructions.size(); idx++) {
+ aco_ptr<Instruction> instr = std::move(block->instructions[idx]);
+
+ WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified;
+
+ if (instr->opcode == aco_opcode::p_discard_if) {
+ if (ctx.info[block->index].block_needs & Preserve_WQM) {
+ assert(block->kind & block_kind_top_level);
+ transition_to_WQM(ctx, bld, block->index);
+ ctx.info[block->index].exec.back().second &= ~mask_type_global;
+ }
+ unsigned num = ctx.info[block->index].exec.size();
+ assert(num);
+ Operand cond = instr->operands[0];
+ instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1));
+ for (unsigned i = 0; i < num; i++) {
+ instr->operands[i] = Operand(ctx.info[block->index].exec[i].first);
+ if (i == num - 1)
+ instr->operands[i].setFixed(exec);
+ Temp new_mask = bld.tmp(s2);
+ instr->definitions[i] = Definition(new_mask);
+ ctx.info[block->index].exec[i].first = new_mask;
+ }
+ assert((ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
+ instr->definitions[num - 1].setFixed(exec);
+ instr->operands[num] = cond;
+ instr->definitions[num] = bld.def(s1, scc);
+
+ } else if (needs == WQM && state != WQM) {
+ transition_to_WQM(ctx, bld, block->index);
+ state = WQM;
+ } else if (needs == Exact && state != Exact) {
+ transition_to_Exact(ctx, bld, block->index);
+ state = Exact;
+ }
+
+ if (instr->opcode == aco_opcode::p_is_helper || instr->opcode == aco_opcode::p_load_helper) {
+ Definition dst = instr->definitions[0];
+ if (state == Exact) {
+ instr.reset(create_instruction<SOP1_instruction>(aco_opcode::s_mov_b64, Format::SOP1, 1, 1));
+ instr->operands[0] = Operand(0u);
+ instr->definitions[0] = dst;
+ } else {
+ std::pair<Temp, uint8_t>& exact_mask = ctx.info[block->index].exec[0];
+ if (instr->opcode == aco_opcode::p_load_helper &&
+ !(ctx.info[block->index].exec[0].second & mask_type_initial)) {
+ /* find last initial exact mask */
+ for (int i = block->index; i >= 0; i--) {
+ if (ctx.program->blocks[i].kind & block_kind_top_level &&
+ ctx.info[i].exec[0].second & mask_type_initial) {
+ exact_mask = ctx.info[i].exec[0];
+ break;
+ }
+ }
+ }
+
+ assert(instr->opcode == aco_opcode::p_is_helper || exact_mask.second & mask_type_initial);
+ assert(exact_mask.second & mask_type_exact);
+
+ instr.reset(create_instruction<SOP2_instruction>(aco_opcode::s_andn2_b64, Format::SOP2, 2, 2));
+ instr->operands[0] = Operand(ctx.info[block->index].exec.back().first); /* current exec */
+ instr->operands[1] = Operand(exact_mask.first);
+ instr->definitions[0] = dst;
+ instr->definitions[1] = bld.def(s1, scc);
+ }
+ } else if (instr->opcode == aco_opcode::p_demote_to_helper) {
+ /* turn demote into discard_if with only exact masks */
+ assert((ctx.info[block->index].exec[0].second & (mask_type_exact | mask_type_global)) == (mask_type_exact | mask_type_global));
+ ctx.info[block->index].exec[0].second &= ~mask_type_initial;
+
+ int num = 0;
+ Temp cond;
+ if (instr->operands.empty()) {
+ /* transition to exact and set exec to zero */
+ Temp old_exec = ctx.info[block->index].exec.back().first;
+ Temp new_exec = bld.tmp(s2);
+ cond = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc),
+ bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec));
+ if (ctx.info[block->index].exec.back().second & mask_type_exact) {
+ ctx.info[block->index].exec.back().first = new_exec;
+ } else {
+ ctx.info[block->index].exec.back().first = cond;
+ ctx.info[block->index].exec.emplace_back(new_exec, mask_type_exact);
+ }
+ } else {
+ /* demote_if: transition to exact */
+ transition_to_Exact(ctx, bld, block->index);
+ assert(instr->operands[0].isTemp());
+ cond = instr->operands[0].getTemp();
+ num = 1;
+ }
+
+ for (unsigned i = 0; i < ctx.info[block->index].exec.size() - 1; i++)
+ num += ctx.info[block->index].exec[i].second & mask_type_exact ? 1 : 0;
+ instr.reset(create_instruction<Instruction>(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1));
+ int k = 0;
+ for (unsigned i = 0; k < num; i++) {
+ if (ctx.info[block->index].exec[i].second & mask_type_exact) {
+ instr->operands[k] = Operand(ctx.info[block->index].exec[i].first);
+ Temp new_mask = bld.tmp(s2);
+ instr->definitions[k] = Definition(new_mask);
+ if (i == ctx.info[block->index].exec.size() - 1)
+ instr->definitions[k].setFixed(exec);
+ k++;
+ ctx.info[block->index].exec[i].first = new_mask;
+ }
+ }
+ assert(k == num);
+ instr->definitions[num] = bld.def(s1, scc);
+ instr->operands[num] = Operand(cond);
+ state = Exact;
+
+ } else if (instr->opcode == aco_opcode::p_fs_buffer_store_smem) {
+ bool need_check = ctx.info[block->index].exec.size() != 1 &&
+ !(ctx.info[block->index].exec[ctx.info[block->index].exec.size() - 2].second & Exact);
+ lower_fs_buffer_store_smem(bld, need_check, instr, ctx.info[block->index].exec.back().first);
+ }
+
+ bld.insert(std::move(instr));
+ }
+}
+
+void add_branch_code(exec_ctx& ctx, Block* block)
+{
+ unsigned idx = block->index;
+ Builder bld(ctx.program, block);
+
+ if (idx == ctx.program->blocks.size() - 1)
+ return;
+
+ /* try to disable wqm handling */
+ if (ctx.handle_wqm && block->kind & block_kind_top_level) {
+ if (ctx.info[idx].exec.size() == 3) {
+ assert(ctx.info[idx].exec[1].second == mask_type_wqm);
+ ctx.info[idx].exec.pop_back();
+ }
+ assert(ctx.info[idx].exec.size() <= 2);
+
+ if (ctx.info[idx].ever_again_needs == 0 ||
+ ctx.info[idx].ever_again_needs == Exact) {
+ /* transition to Exact */
+ aco_ptr<Instruction> branch = std::move(block->instructions.back());
+ block->instructions.pop_back();
+ ctx.info[idx].exec.back().second |= mask_type_global;
+ transition_to_Exact(ctx, bld, idx);
+ bld.insert(std::move(branch));
+ ctx.handle_wqm = false;
+
+ } else if (ctx.info[idx].block_needs & Preserve_WQM) {
+ /* transition to WQM and remove global flag */
+ aco_ptr<Instruction> branch = std::move(block->instructions.back());
+ block->instructions.pop_back();
+ transition_to_WQM(ctx, bld, idx);
+ ctx.info[idx].exec.back().second &= ~mask_type_global;
+ bld.insert(std::move(branch));
+ }
+ }
+
+ if (block->kind & block_kind_loop_preheader) {
+ /* collect information about the succeeding loop */
+ bool has_divergent_break = false;
+ bool has_divergent_continue = false;
+ bool has_discard = false;
+ uint8_t needs = 0;
+ unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth;
+
+ for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) {
+ Block& loop_block = ctx.program->blocks[i];
+ needs |= ctx.info[i].block_needs;
+
+ if (loop_block.kind & block_kind_uses_discard_if ||
+ loop_block.kind & block_kind_discard)
+ has_discard = true;
+ if (loop_block.loop_nest_depth != loop_nest_depth)
+ continue;
+
+ if (loop_block.kind & block_kind_uniform)
+ continue;
+ else if (loop_block.kind & block_kind_break)
+ has_divergent_break = true;
+ else if (loop_block.kind & block_kind_continue)
+ has_divergent_continue = true;
+ }
+
+ if (ctx.handle_wqm) {
+ if (needs & WQM) {
+ aco_ptr<Instruction> branch = std::move(block->instructions.back());
+ block->instructions.pop_back();
+ transition_to_WQM(ctx, bld, idx);
+ bld.insert(std::move(branch));
+ } else {
+ aco_ptr<Instruction> branch = std::move(block->instructions.back());
+ block->instructions.pop_back();
+ transition_to_Exact(ctx, bld, idx);
+ bld.insert(std::move(branch));
+ }
+ }
+
+ unsigned num_exec_masks = ctx.info[idx].exec.size();
+ if (block->kind & block_kind_top_level)
+ num_exec_masks = std::min(num_exec_masks, 2u);
+
+ ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]],
+ num_exec_masks,
+ needs,
+ has_divergent_break,
+ has_divergent_continue,
+ has_discard);
+ }
+
+ if (block->kind & block_kind_discard) {
+
+ assert(block->instructions.back()->format == Format::PSEUDO_BRANCH);
+ aco_ptr<Instruction> branch = std::move(block->instructions.back());
+ block->instructions.pop_back();
+
+ /* create a discard_if() instruction with the exec mask as condition */
+ unsigned num = 0;
+ if (ctx.loop.size()) {
+ /* if we're in a loop, only discard from the outer exec masks */
+ num = ctx.loop.back().num_exec_masks;
+ } else {
+ num = ctx.info[idx].exec.size() - 1;
+ }
+
+ Temp old_exec = ctx.info[idx].exec.back().first;
+ Temp new_exec = bld.tmp(s2);
+ Temp cond = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc),
+ bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec));
+ ctx.info[idx].exec.back().first = new_exec;
+
+ aco_ptr<Pseudo_instruction> discard{create_instruction<Pseudo_instruction>(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1)};
+ for (unsigned i = 0; i < num; i++) {
+ discard->operands[i] = Operand(ctx.info[block->index].exec[i].first);
+ Temp new_mask = bld.tmp(s2);
+ discard->definitions[i] = Definition(new_mask);
+ ctx.info[block->index].exec[i].first = new_mask;
+ }
+ assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
+ discard->operands[num] = Operand(cond);
+ discard->definitions[num] = bld.def(s1, scc);
+
+ bld.insert(std::move(discard));
+ if ((block->kind & (block_kind_break | block_kind_uniform)) == block_kind_break)
+ ctx.info[idx].exec.back().first = cond;
+ bld.insert(std::move(branch));
+ /* no return here as it can be followed by a divergent break */
+ }
+
+ if (block->kind & block_kind_continue_or_break) {
+ assert(block->instructions.back()->opcode == aco_opcode::p_branch);
+ block->instructions.pop_back();
+
+ /* because of how linear_succs is created, this needs to be swapped */
+ std::swap(block->linear_succs[0], block->linear_succs[1]);
+
+ assert(ctx.program->blocks[block->linear_succs[1]].kind & block_kind_loop_header);
+ assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & block_kind_loop_exit);
+
+ if (ctx.info[idx].exec.back().second & mask_type_loop) {
+ bld.branch(aco_opcode::p_cbranch_nz, bld.exec(ctx.info[idx].exec.back().first), block->linear_succs[1], block->linear_succs[0]);
+ } else {
+ Temp cond = Temp();
+ for (int exec_idx = ctx.info[idx].exec.size() - 1; exec_idx >= 0; exec_idx--) {
+ if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) {
+ cond = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), ctx.info[idx].exec[exec_idx].first, Operand(0u));
+ break;
+ }
+ }
+ assert(cond != Temp());
+
+ bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]);
+ }
+ return;
+ }
+
+ if (block->kind & block_kind_uniform) {
+ Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(block->instructions.back().get());
+ if (branch->opcode == aco_opcode::p_branch) {
+ branch->target[0] = block->linear_succs[0];
+ } else {
+ branch->target[0] = block->linear_succs[1];
+ branch->target[1] = block->linear_succs[0];
+ }
+ return;
+ }
+
+ if (block->kind & block_kind_branch) {
+
+ if (ctx.handle_wqm &&
+ ctx.info[idx].exec.size() >= 2 &&
+ ctx.info[idx].exec.back().second == mask_type_exact &&
+ !(ctx.info[idx].block_needs & Exact_Branch) &&
+ ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].second & mask_type_wqm) {
+ /* return to wqm before branching */
+ ctx.info[idx].exec.pop_back();
+ }
+
+ // orig = s_and_saveexec_b64
+ assert(block->linear_succs.size() == 2);
+ assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z);
+ Temp cond = block->instructions.back()->operands[0].getTemp();
+ block->instructions.pop_back();
+
+ if (ctx.info[idx].block_needs & Exact_Branch)
+ transition_to_Exact(ctx, bld, idx);
+
+ Temp current_exec = ctx.info[idx].exec.back().first;
+ uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
+
+ Temp then_mask = bld.tmp(s2);
+ Temp old_exec = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc),
+ bld.exec(Definition(then_mask)), cond, bld.exec(current_exec));
+
+ ctx.info[idx].exec.back().first = old_exec;
+
+ /* add next current exec to the stack */
+ ctx.info[idx].exec.emplace_back(then_mask, mask_type);
+
+ bld.branch(aco_opcode::p_cbranch_z, bld.exec(then_mask), block->linear_succs[1], block->linear_succs[0]);
+ return;
+ }
+
+ if (block->kind & block_kind_invert) {
+ // exec = s_andn2_b64 (original_exec, exec)
+ assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_nz);
+ block->instructions.pop_back();
+ Temp then_mask = ctx.info[idx].exec.back().first;
+ uint8_t mask_type = ctx.info[idx].exec.back().second;
+ ctx.info[idx].exec.pop_back();
+ Temp orig_exec = ctx.info[idx].exec.back().first;
+ Temp else_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2, exec),
+ bld.def(s1, scc), orig_exec, bld.exec(then_mask));
+
+ /* add next current exec to the stack */
+ ctx.info[idx].exec.emplace_back(else_mask, mask_type);
+
+ bld.branch(aco_opcode::p_cbranch_z, bld.exec(else_mask), block->linear_succs[1], block->linear_succs[0]);
+ return;
+ }
+
+ if (block->kind & block_kind_break) {
+ // loop_mask = s_andn2_b64 (loop_mask, exec)
+ assert(block->instructions.back()->opcode == aco_opcode::p_branch);
+ block->instructions.pop_back();
+
+ Temp current_exec = ctx.info[idx].exec.back().first;
+ Temp cond = Temp();
+ for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
+ cond = bld.tmp(s1);
+ Temp exec_mask = ctx.info[idx].exec[exec_idx].first;
+ exec_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.scc(Definition(cond)),
+ exec_mask, current_exec);
+ ctx.info[idx].exec[exec_idx].first = exec_mask;
+ if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
+ break;
+ }
+
+ /* check if the successor is the merge block, otherwise set exec to 0 */
+ // TODO: this could be done better by directly branching to the merge block
+ unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
+ Block& succ = ctx.program->blocks[succ_idx];
+ if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
+ ctx.info[idx].exec.back().first = bld.sop1(aco_opcode::s_mov_b64, bld.def(s2, exec), Operand(0u));
+ }
+
+ bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]);
+ return;
+ }
+
+ if (block->kind & block_kind_continue) {
+ assert(block->instructions.back()->opcode == aco_opcode::p_branch);
+ block->instructions.pop_back();
+
+ Temp current_exec = ctx.info[idx].exec.back().first;
+ Temp cond = Temp();
+ for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
+ if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
+ break;
+ cond = bld.tmp(s1);
+ Temp exec_mask = ctx.info[idx].exec[exec_idx].first;
+ exec_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.scc(Definition(cond)),
+ exec_mask, bld.exec(current_exec));
+ ctx.info[idx].exec[exec_idx].first = exec_mask;
+ }
+ assert(cond != Temp());
+
+ /* check if the successor is the merge block, otherwise set exec to 0 */
+ // TODO: this could be done better by directly branching to the merge block
+ unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
+ Block& succ = ctx.program->blocks[succ_idx];
+ if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
+ ctx.info[idx].exec.back().first = bld.sop1(aco_opcode::s_mov_b64, bld.def(s2, exec), Operand(0u));
+ }
+
+ bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]);
+ return;
+ }
+}
+
+void process_block(exec_ctx& ctx, Block* block)
+{
+ std::vector<aco_ptr<Instruction>> instructions;
+ instructions.reserve(block->instructions.size());
+
+ unsigned idx = add_coupling_code(ctx, block, instructions);
+
+ assert(block->index != ctx.program->blocks.size() - 1 ||
+ ctx.info[block->index].exec.size() <= 2);
+
+ process_instructions(ctx, block, instructions, idx);
+
+ block->instructions = std::move(instructions);
+
+ add_branch_code(ctx, block);
+
+ block->live_out_exec = ctx.info[block->index].exec.back().first;
+}
+
+} /* end namespace */
+
+
+void insert_exec_mask(Program *program)
+{
+ exec_ctx ctx(program);
+
+ if (program->needs_wqm && program->needs_exact)
+ calculate_wqm_needs(ctx);
+
+ for (Block& block : program->blocks)
+ process_block(ctx, &block);
+
+}
+
+}
+