summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_assembler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/amd/compiler/aco_assembler.cpp')
-rw-r--r--src/amd/compiler/aco_assembler.cpp497
1 files changed, 497 insertions, 0 deletions
diff --git a/src/amd/compiler/aco_assembler.cpp b/src/amd/compiler/aco_assembler.cpp
new file mode 100644
index 00000000000..a6bf2a3e0db
--- /dev/null
+++ b/src/amd/compiler/aco_assembler.cpp
@@ -0,0 +1,497 @@
+#include <map>
+
+#include "aco_ir.h"
+#include "common/sid.h"
+
+namespace aco {
+
+struct asm_context {
+ Program *program;
+ enum chip_class chip_class;
+ std::map<int, SOPP_instruction*> branches;
+ std::vector<unsigned> constaddrs;
+ const int16_t* opcode;
+ // TODO: keep track of branch instructions referring blocks
+ // and, when emitting the block, correct the offset in instr
+ asm_context(Program* program) : program(program), chip_class(program->chip_class) {
+ if (chip_class <= GFX9)
+ opcode = &instr_info.opcode_gfx9[0];
+ }
+};
+
+void emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
+{
+ uint32_t instr_offset = out.size() * 4u;
+
+ /* lower remaining pseudo-instructions */
+ if (instr->opcode == aco_opcode::p_constaddr) {
+ unsigned dest = instr->definitions[0].physReg();
+ unsigned offset = instr->operands[0].constantValue();
+
+ /* s_getpc_b64 dest[0:1] */
+ uint32_t encoding = (0b101111101 << 23);
+ uint32_t opcode = ctx.opcode[(int)aco_opcode::s_getpc_b64];
+ if (opcode >= 55 && ctx.chip_class <= GFX9) {
+ assert(ctx.chip_class == GFX9 && opcode < 60);
+ opcode = opcode - 4;
+ }
+ encoding |= dest << 16;
+ encoding |= opcode << 8;
+ out.push_back(encoding);
+
+ /* s_add_u32 dest[0], dest[0], ... */
+ encoding = (0b10 << 30);
+ encoding |= ctx.opcode[(int)aco_opcode::s_add_u32] << 23;
+ encoding |= dest << 16;
+ encoding |= dest;
+ encoding |= 255 << 8;
+ out.push_back(encoding);
+ ctx.constaddrs.push_back(out.size());
+ out.push_back(-(instr_offset + 4) + offset);
+
+ /* s_addc_u32 dest[1], dest[1], 0 */
+ encoding = (0b10 << 30);
+ encoding |= ctx.opcode[(int)aco_opcode::s_addc_u32] << 23;
+ encoding |= (dest + 1) << 16;
+ encoding |= dest + 1;
+ encoding |= 128 << 8;
+ out.push_back(encoding);
+ return;
+ }
+
+ uint32_t opcode = ctx.opcode[(int)instr->opcode];
+ if (opcode == (uint32_t)-1) {
+ fprintf(stderr, "Unsupported opcode: ");
+ aco_print_instr(instr, stderr);
+ abort();
+ }
+
+ switch (instr->format) {
+ case Format::SOP2: {
+ uint32_t encoding = (0b10 << 30);
+ encoding |= opcode << 23;
+ encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
+ encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0;
+ encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::SOPK: {
+ uint32_t encoding = (0b1011 << 28);
+ encoding |= opcode << 23;
+ encoding |=
+ !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ?
+ instr->definitions[0].physReg() << 16 :
+ !instr->operands.empty() && !(instr->operands[0].physReg() == scc) ?
+ instr->operands[0].physReg() << 16 : 0;
+ encoding |= static_cast<SOPK_instruction*>(instr)->imm;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::SOP1: {
+ uint32_t encoding = (0b101111101 << 23);
+ if (opcode >= 55 && ctx.chip_class <= GFX9) {
+ assert(ctx.chip_class == GFX9 && opcode < 60);
+ opcode = opcode - 4;
+ }
+ encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
+ encoding |= opcode << 8;
+ encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::SOPC: {
+ uint32_t encoding = (0b101111110 << 23);
+ encoding |= opcode << 16;
+ encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0;
+ encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::SOPP: {
+ SOPP_instruction* sopp = static_cast<SOPP_instruction*>(instr);
+ uint32_t encoding = (0b101111111 << 23);
+ encoding |= opcode << 16;
+ encoding |= (uint16_t) sopp->imm;
+ if (sopp->block != -1)
+ ctx.branches.insert({out.size(), sopp});
+ out.push_back(encoding);
+ break;
+ }
+ case Format::SMEM: {
+ SMEM_instruction* smem = static_cast<SMEM_instruction*>(instr);
+ uint32_t encoding = (0b110000 << 26);
+ encoding |= opcode << 18;
+ if (instr->operands.size() >= 2)
+ encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0;
+ bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
+ assert(!soe || ctx.chip_class >= GFX9);
+ encoding |= soe ? 1 << 14 : 0;
+ encoding |= smem->glc ? 1 << 16 : 0;
+ if (!instr->definitions.empty() || instr->operands.size() >= 3)
+ encoding |= (!instr->definitions.empty() ? instr->definitions[0].physReg() : instr->operands[2].physReg().reg) << 6;
+ if (instr->operands.size() >= 1)
+ encoding |= instr->operands[0].physReg() >> 1;
+ out.push_back(encoding);
+ encoding = 0;
+ if (instr->operands.size() >= 2)
+ encoding |= instr->operands[1].isConstant() ? instr->operands[1].constantValue() : instr->operands[1].physReg().reg;
+ encoding |= soe ? instr->operands.back().physReg() << 25 : 0;
+ out.push_back(encoding);
+ return;
+ }
+ case Format::VOP2: {
+ uint32_t encoding = 0;
+ encoding |= opcode << 25;
+ encoding |= (0xFF & instr->definitions[0].physReg().reg) << 17;
+ encoding |= (0xFF & instr->operands[1].physReg().reg) << 9;
+ encoding |= instr->operands[0].physReg().reg;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::VOP1: {
+ uint32_t encoding = (0b0111111 << 25);
+ encoding |= (0xFF & instr->definitions[0].physReg().reg) << 17;
+ encoding |= opcode << 9;
+ encoding |= instr->operands[0].physReg().reg;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::VOPC: {
+ uint32_t encoding = (0b0111110 << 25);
+ encoding |= opcode << 17;
+ encoding |= (0xFF & instr->operands[1].physReg().reg) << 9;
+ encoding |= instr->operands[0].physReg().reg;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::VINTRP: {
+ Interp_instruction* interp = static_cast<Interp_instruction*>(instr);
+ uint32_t encoding = (0b110101 << 26);
+ encoding |= (0xFF & instr->definitions[0].physReg().reg) << 18;
+ encoding |= opcode << 16;
+ encoding |= interp->attribute << 10;
+ encoding |= interp->component << 8;
+ if (instr->opcode == aco_opcode::v_interp_mov_f32)
+ encoding |= (0x3 & instr->operands[0].constantValue());
+ else
+ encoding |= (0xFF & instr->operands[0].physReg().reg);
+ out.push_back(encoding);
+ break;
+ }
+ case Format::DS: {
+ DS_instruction* ds = static_cast<DS_instruction*>(instr);
+ uint32_t encoding = (0b110110 << 26);
+ encoding |= opcode << 17;
+ encoding |= (ds->gds ? 1 : 0) << 16;
+ encoding |= ((0xFF & ds->offset1) << 8);
+ encoding |= (0xFFFF & ds->offset0);
+ out.push_back(encoding);
+ encoding = 0;
+ unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0;
+ encoding |= (0xFF & reg) << 24;
+ reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0) ? instr->operands[2].physReg() : 0;
+ encoding |= (0xFF & reg) << 16;
+ reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0) ? instr->operands[1].physReg() : 0;
+ encoding |= (0xFF & reg) << 8;
+ encoding |= (0xFF & instr->operands[0].physReg().reg);
+ out.push_back(encoding);
+ break;
+ }
+ case Format::MUBUF: {
+ MUBUF_instruction* mubuf = static_cast<MUBUF_instruction*>(instr);
+ uint32_t encoding = (0b111000 << 26);
+ encoding |= opcode << 18;
+ encoding |= (mubuf->slc ? 1 : 0) << 17;
+ encoding |= (mubuf->lds ? 1 : 0) << 16;
+ encoding |= (mubuf->glc ? 1 : 0) << 14;
+ encoding |= (mubuf->idxen ? 1 : 0) << 13;
+ encoding |= (mubuf->offen ? 1 : 0) << 12;
+ encoding |= 0x0FFF & mubuf->offset;
+ out.push_back(encoding);
+ encoding = 0;
+ encoding |= instr->operands[2].physReg() << 24;
+ encoding |= (mubuf->tfe ? 1 : 0) << 23;
+ encoding |= (instr->operands[1].physReg() >> 2) << 16;
+ unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg().reg;
+ encoding |= (0xFF & reg) << 8;
+ encoding |= (0xFF & instr->operands[0].physReg().reg);
+ out.push_back(encoding);
+ break;
+ }
+ case Format::MTBUF: {
+ MTBUF_instruction* mtbuf = static_cast<MTBUF_instruction*>(instr);
+ uint32_t encoding = (0b111010 << 26);
+ encoding |= opcode << 15;
+ encoding |= (mtbuf->glc ? 1 : 0) << 14;
+ encoding |= (mtbuf->idxen ? 1 : 0) << 13;
+ encoding |= (mtbuf->offen ? 1 : 0) << 12;
+ encoding |= 0x0FFF & mtbuf->offset;
+ encoding |= (0xF & mtbuf->dfmt) << 19;
+ encoding |= (0x7 & mtbuf->nfmt) << 23;
+ out.push_back(encoding);
+ encoding = 0;
+ encoding |= instr->operands[2].physReg().reg << 24;
+ encoding |= (mtbuf->tfe ? 1 : 0) << 23;
+ encoding |= (mtbuf->slc ? 1 : 0) << 22;
+ encoding |= (instr->operands[1].physReg().reg >> 2) << 16;
+ unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg().reg : instr->definitions[0].physReg().reg;
+ encoding |= (0xFF & reg) << 8;
+ encoding |= (0xFF & instr->operands[0].physReg().reg);
+ out.push_back(encoding);
+ break;
+ }
+ case Format::MIMG: {
+ MIMG_instruction* mimg = static_cast<MIMG_instruction*>(instr);
+ uint32_t encoding = (0b111100 << 26);
+ encoding |= mimg->slc ? 1 << 25 : 0;
+ encoding |= opcode << 18;
+ encoding |= mimg->lwe ? 1 << 17 : 0;
+ encoding |= mimg->tfe ? 1 << 16 : 0;
+ encoding |= mimg->r128 ? 1 << 15 : 0;
+ encoding |= mimg->da ? 1 << 14 : 0;
+ encoding |= mimg->glc ? 1 << 13 : 0;
+ encoding |= mimg->unrm ? 1 << 12 : 0;
+ encoding |= (0xF & mimg->dmask) << 8;
+ out.push_back(encoding);
+ encoding = (0xFF & instr->operands[0].physReg().reg); /* VADDR */
+ if (!instr->definitions.empty()) {
+ encoding |= (0xFF & instr->definitions[0].physReg().reg) << 8; /* VDATA */
+ } else if (instr->operands.size() == 4) {
+ encoding |= (0xFF & instr->operands[3].physReg().reg) << 8; /* VDATA */
+ }
+ encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 16; /* T# (resource) */
+ if (instr->operands.size() > 2)
+ encoding |= (0x1F & (instr->operands[2].physReg() >> 2)) << 21; /* sampler */
+ // TODO VEGA: D16
+ out.push_back(encoding);
+ break;
+ }
+ case Format::FLAT:
+ case Format::SCRATCH:
+ case Format::GLOBAL: {
+ FLAT_instruction *flat = static_cast<FLAT_instruction*>(instr);
+ uint32_t encoding = (0b110111 << 26);
+ encoding |= opcode << 18;
+ encoding |= flat->offset & 0x1fff;
+ if (instr->format == Format::SCRATCH)
+ encoding |= 1 << 14;
+ else if (instr->format == Format::GLOBAL)
+ encoding |= 2 << 14;
+ encoding |= flat->lds ? 1 << 13 : 0;
+ encoding |= flat->glc ? 1 << 13 : 0;
+ encoding |= flat->slc ? 1 << 13 : 0;
+ out.push_back(encoding);
+ encoding = (0xFF & instr->operands[0].physReg().reg);
+ if (!instr->definitions.empty())
+ encoding |= (0xFF & instr->definitions[0].physReg().reg) << 24;
+ else
+ encoding |= (0xFF & instr->operands[2].physReg().reg) << 8;
+ if (!instr->operands[1].isUndefined()) {
+ assert(instr->operands[1].physReg() != 0x7f);
+ assert(instr->format != Format::FLAT);
+ encoding |= instr->operands[1].physReg() << 16;
+ } else if (instr->format != Format::FLAT) {
+ encoding |= 0x7F << 16;
+ }
+ encoding |= flat->nv ? 1 << 23 : 0;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::EXP: {
+ Export_instruction* exp = static_cast<Export_instruction*>(instr);
+ uint32_t encoding = (0b110001 << 26);
+ encoding |= exp->valid_mask ? 0b1 << 12 : 0;
+ encoding |= exp->done ? 0b1 << 11 : 0;
+ encoding |= exp->compressed ? 0b1 << 10 : 0;
+ encoding |= exp->dest << 4;
+ encoding |= exp->enabled_mask;
+ out.push_back(encoding);
+ encoding = 0xFF & exp->operands[0].physReg().reg;
+ encoding |= (0xFF & exp->operands[1].physReg().reg) << 8;
+ encoding |= (0xFF & exp->operands[2].physReg().reg) << 16;
+ encoding |= (0xFF & exp->operands[3].physReg().reg) << 24;
+ out.push_back(encoding);
+ break;
+ }
+ case Format::PSEUDO:
+ case Format::PSEUDO_BARRIER:
+ unreachable("Pseudo instructions should be lowered before assembly.");
+ default:
+ if ((uint16_t) instr->format & (uint16_t) Format::VOP3A) {
+ VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);
+
+ if ((uint16_t) instr->format & (uint16_t) Format::VOP2)
+ opcode = opcode + 0x100;
+ else if ((uint16_t) instr->format & (uint16_t) Format::VOP1)
+ opcode = opcode + 0x140;
+ else if ((uint16_t) instr->format & (uint16_t) Format::VOPC)
+ opcode = opcode + 0x0;
+ else if ((uint16_t) instr->format & (uint16_t) Format::VINTRP)
+ opcode = opcode + 0x270;
+
+ // TODO: op_sel
+ uint32_t encoding = (0b110100 << 26);
+ encoding |= opcode << 16;
+ encoding |= (vop3->clamp ? 1 : 0) << 15;
+ for (unsigned i = 0; i < 3; i++)
+ encoding |= vop3->abs[i] << (8+i);
+ if (instr->definitions.size() == 2)
+ encoding |= instr->definitions[1].physReg() << 8;
+ encoding |= (0xFF & instr->definitions[0].physReg().reg);
+ out.push_back(encoding);
+ encoding = 0;
+ if (instr->opcode == aco_opcode::v_interp_mov_f32) {
+ encoding = 0x3 & instr->operands[0].constantValue();
+ } else {
+ for (unsigned i = 0; i < instr->operands.size(); i++)
+ encoding |= instr->operands[i].physReg() << (i * 9);
+ }
+ encoding |= vop3->omod << 27;
+ for (unsigned i = 0; i < 3; i++)
+ encoding |= vop3->neg[i] << (29+i);
+ out.push_back(encoding);
+ return;
+
+ } else if (instr->isDPP()){
+ /* first emit the instruction without the DPP operand */
+ Operand dpp_op = instr->operands[0];
+ instr->operands[0] = Operand(PhysReg{250}, v1);
+ instr->format = (Format) ((uint32_t) instr->format & ~(1 << 14));
+ emit_instruction(ctx, out, instr);
+ DPP_instruction* dpp = static_cast<DPP_instruction*>(instr);
+ uint32_t encoding = (0xF & dpp->row_mask) << 28;
+ encoding |= (0xF & dpp->bank_mask) << 24;
+ encoding |= dpp->abs[1] << 23;
+ encoding |= dpp->neg[1] << 22;
+ encoding |= dpp->abs[0] << 21;
+ encoding |= dpp->neg[0] << 20;
+ encoding |= dpp->bound_ctrl << 19;
+ encoding |= dpp->dpp_ctrl << 8;
+ encoding |= (0xFF) & dpp_op.physReg().reg;
+ out.push_back(encoding);
+ return;
+ } else {
+ unreachable("unimplemented instruction format");
+ }
+ }
+
+ /* append literal dword */
+ for (const Operand& op : instr->operands) {
+ if (op.isLiteral()) {
+ out.push_back(op.constantValue());
+ break;
+ }
+ }
+}
+
+void emit_block(asm_context& ctx, std::vector<uint32_t>& out, Block& block)
+{
+ for (aco_ptr<Instruction>& instr : block.instructions) {
+#if 0
+ int start_idx = out.size();
+ std::cerr << "Encoding:\t" << std::endl;
+ aco_print_instr(&*instr, stderr);
+ std::cerr << std::endl;
+#endif
+ emit_instruction(ctx, out, instr.get());
+#if 0
+ for (int i = start_idx; i < out.size(); i++)
+ std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl;
+#endif
+ }
+}
+
+void fix_exports(asm_context& ctx, std::vector<uint32_t>& out, Program* program)
+{
+ for (int idx = program->blocks.size() - 1; idx >= 0; idx--) {
+ Block& block = program->blocks[idx];
+ std::vector<aco_ptr<Instruction>>::reverse_iterator it = block.instructions.rbegin();
+ bool endBlock = false;
+ bool exported = false;
+ while ( it != block.instructions.rend())
+ {
+ if ((*it)->format == Format::EXP && endBlock) {
+ Export_instruction* exp = static_cast<Export_instruction*>((*it).get());
+ if (program->stage & hw_vs) {
+ if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= (V_008DFC_SQ_EXP_POS + 3)) {
+ exp->done = true;
+ exported = true;
+ break;
+ }
+ } else {
+ exp->done = true;
+ exp->valid_mask = true;
+ exported = true;
+ break;
+ }
+ } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec)
+ break;
+ else if ((*it)->opcode == aco_opcode::s_endpgm) {
+ if (endBlock)
+ break;
+ endBlock = true;
+ }
+ ++it;
+ }
+ if (!endBlock || exported)
+ continue;
+ /* we didn't find an Export instruction and have to insert a null export */
+ aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
+ for (unsigned i = 0; i < 4; i++)
+ exp->operands[i] = Operand(v1);
+ exp->enabled_mask = 0;
+ exp->compressed = false;
+ exp->done = true;
+ exp->valid_mask = program->stage & hw_fs;
+ if (program->stage & hw_fs)
+ exp->dest = 9; /* NULL */
+ else
+ exp->dest = V_008DFC_SQ_EXP_POS;
+ /* insert the null export 1 instruction before endpgm */
+ block.instructions.insert(block.instructions.end() - 1, std::move(exp));
+ }
+}
+
+void fix_branches(asm_context& ctx, std::vector<uint32_t>& out)
+{
+ for (std::pair<int, SOPP_instruction*> branch : ctx.branches)
+ {
+ int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1;
+ out[branch.first] |= (uint16_t) offset;
+ }
+}
+
+void fix_constaddrs(asm_context& ctx, std::vector<uint32_t>& out)
+{
+ for (unsigned addr : ctx.constaddrs)
+ out[addr] += out.size() * 4u;
+}
+
+unsigned emit_program(Program* program,
+ std::vector<uint32_t>& code)
+{
+ asm_context ctx(program);
+
+ if (program->stage & (hw_vs | hw_fs))
+ fix_exports(ctx, code, program);
+
+ for (Block& block : program->blocks) {
+ block.offset = code.size();
+ emit_block(ctx, code, block);
+ }
+
+ fix_branches(ctx, code);
+ fix_constaddrs(ctx, code);
+
+ unsigned constant_data_offset = code.size() * sizeof(uint32_t);
+ while (program->constant_data.size() % 4u)
+ program->constant_data.push_back(0);
+ /* Copy constant data */
+ code.insert(code.end(), (uint32_t*)program->constant_data.data(),
+ (uint32_t*)(program->constant_data.data() + program->constant_data.size()));
+
+ return constant_data_offset;
+}
+
+}