summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp
blob: fbbf6c18316fd3b3105c7a976602707cbf45d4da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//===- SparsificationAndBufferizationPass.cpp - Tensor to Memref Lowering -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"

#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/Passes.h"

using namespace mlir;
using namespace mlir::func;

namespace mlir {
namespace sparse_tensor {

/// Return `true` if one of the given types is a sparse tensor type.
static bool containsSparseTensor(TypeRange types) {
  for (Type t : types)
    if (getSparseTensorEncoding(t))
      return true;
  return false;
}

/// A pass that lowers tensor ops to memref ops, regardless of whether they are
/// dense or sparse.
///
/// One-Shot Analysis is used to detect RaW conflicts and to insert buffer
/// copies of the tensor level (`insertTensorCopies`). Afterwards, the lowering
/// of tensor ops to memref ops follows a different code path depending on
/// whether the op is sparse or dense:
///
/// * Sparse tensor ops are lowered through Sparsification and follow-up pass
///   that lowers sparse_tensor dialect ops.
/// * Dense tensor ops are lowered through BufferizableOpInterface
///   implementations.
class SparsificationAndBufferizationPass
    : public PassWrapper<SparsificationAndBufferizationPass,
                         OperationPass<ModuleOp>> {
public:
  SparsificationAndBufferizationPass(
      const bufferization::OneShotBufferizationOptions &bufferizationOptions,
      const SparsificationOptions &sparsificationOptions,
      const SparseTensorConversionOptions &sparseTensorConversionOptions,
      bool createSparseDeallocs, bool enableRuntimeLibrary,
      bool enableBufferInitialization, unsigned vectorLength,
      bool enableVLAVectorization, bool enableSIMDIndex32)
      : bufferizationOptions(bufferizationOptions),
        sparsificationOptions(sparsificationOptions),
        sparseTensorConversionOptions(sparseTensorConversionOptions),
        createSparseDeallocs(createSparseDeallocs),
        enableRuntimeLibrary(enableRuntimeLibrary),
        enableBufferInitialization(enableBufferInitialization),
        vectorLength(vectorLength),
        enableVLAVectorization(enableVLAVectorization),
        enableSIMDIndex32(enableSIMDIndex32) {}

  /// Bufferize all dense ops. This assumes that no further analysis is needed
  /// and that all required buffer copies were already inserted by
  /// `insertTensorCopies` in the form of `bufferization.alloc_tensor` ops.
  LogicalResult runDenseBufferization() {
    bufferization::OpFilter denseOpFilter;
    denseOpFilter.allowOperation([&](Operation *op) {
      if (containsSparseTensor(TypeRange(op->getResults())) ||
          containsSparseTensor(TypeRange(op->getOperands())))
        return false;
      if (auto funcOp = dyn_cast<func::FuncOp>(op)) {
        FunctionType funcType = funcOp.getFunctionType();
        if (containsSparseTensor(funcType.getInputs()) ||
            containsSparseTensor(funcType.getResults()))
          return false;
      }
      return true;
    });

    if (failed(bufferization::bufferizeOp(getOperation(), bufferizationOptions,
                                          /*copyBeforeWrite=*/false,
                                          &denseOpFilter)))
      return failure();

    bufferization::removeBufferizationAttributesInModule(getOperation());
    return success();
  }

  void getDependentDialects(::mlir::DialectRegistry &registry) const override {
    registry.insert<bufferization::BufferizationDialect>();
    registry.insert<gpu::GPUDialect>();
    registry.insert<LLVM::LLVMDialect>();
  }

  void runOnOperation() override {
    {
      // Run enabling transformations.
      OpPassManager pm("builtin.module");
      pm.addPass(createPreSparsificationRewritePass());
      pm.addNestedPass<func::FuncOp>(
          bufferization::createEmptyTensorToAllocTensorPass());
      if (failed(runPipeline(pm, getOperation())))
        return signalPassFailure();
    }

    // Insert tensor copies. This step runs One-Shot Analysis (which analyzes
    // SSA use-def chains of tensor IR) and decides where buffer copies are
    // needed and where buffers can be written to in-place. These decisions are
    // materialized in the IR in the form of `bufferization.alloc_tensor` ops.
    //
    // Note: All following steps in this pass must be careful not to modify the
    // structure of the IR (i.e., tensor use-def chains), as that could
    // invalidate the results of the analysis. From now on, only small and
    // localized rewrites are allowed, such as replacing a tensor op with its
    // memref equivalent.
    if (failed(bufferization::insertTensorCopies(getOperation(),
                                                 bufferizationOptions)))
      return signalPassFailure();

    // `testAnalysisOnly` is a debug/testing flag. If set, the results of
    // OneShotAnalysis are added to the IR via attributes. In that case, do not
    // continue with the remaining pipeline.
    if (bufferizationOptions.testAnalysisOnly)
      return;

    // Bufferize all sparse ops. No further analysis is needed. All required
    // buffer copies were already inserted by `insertTensorCopies` in the form
    // of `bufferization.alloc_tensor` ops.
    {
      OpPassManager pm("builtin.module");
      pm.addPass(createSparsificationPass(sparsificationOptions));
      pm.addPass(createPostSparsificationRewritePass(enableRuntimeLibrary));
      if (vectorLength > 0) {
        pm.addPass(mlir::createLoopInvariantCodeMotionPass());
        pm.addPass(createSparseVectorizationPass(
            vectorLength, enableVLAVectorization, enableSIMDIndex32));
      }
      if (enableRuntimeLibrary) {
        pm.addPass(
            createSparseTensorConversionPass(sparseTensorConversionOptions));
      } else {
        pm.addPass(createSparseTensorCodegenPass(createSparseDeallocs,
                                                 enableBufferInitialization));
        pm.addPass(createSparseBufferRewritePass(enableBufferInitialization));
        pm.addPass(createStorageSpecifierToLLVMPass());
      }
      if (failed(runPipeline(pm, getOperation())))
        return signalPassFailure();
    }

    // Bufferize all dense ops.
    if (failed(runDenseBufferization()))
      signalPassFailure();
  }

private:
  bufferization::OneShotBufferizationOptions bufferizationOptions;
  SparsificationOptions sparsificationOptions;
  SparseTensorConversionOptions sparseTensorConversionOptions;
  bool createSparseDeallocs;
  bool enableRuntimeLibrary;
  bool enableBufferInitialization;
  unsigned vectorLength;
  bool enableVLAVectorization;
  bool enableSIMDIndex32;
};

} // namespace sparse_tensor
} // namespace mlir

std::unique_ptr<Pass> mlir::createSparsificationAndBufferizationPass(
    const bufferization::OneShotBufferizationOptions &bufferizationOptions,
    const SparsificationOptions &sparsificationOptions,
    const SparseTensorConversionOptions &sparseTensorConversionOptions,
    bool createSparseDeallocs, bool enableRuntimeLibrary,
    bool enableBufferInitialization, unsigned vectorLength,
    bool enableVLAVectorization, bool enableSIMDIndex32) {
  return std::make_unique<
      mlir::sparse_tensor::SparsificationAndBufferizationPass>(
      bufferizationOptions, sparsificationOptions,
      sparseTensorConversionOptions, createSparseDeallocs, enableRuntimeLibrary,
      enableBufferInitialization, vectorLength, enableVLAVectorization,
      enableSIMDIndex32);
}