//===- SparsificationAndBufferizationPass.cpp - Tensor to Memref Lowering -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" #include "mlir/Dialect/Bufferization/Transforms/Passes.h" #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/Passes.h" using namespace mlir; using namespace mlir::func; namespace mlir { namespace sparse_tensor { /// Return `true` if one of the given types is a sparse tensor type. static bool containsSparseTensor(TypeRange types) { for (Type t : types) if (getSparseTensorEncoding(t)) return true; return false; } /// A pass that lowers tensor ops to memref ops, regardless of whether they are /// dense or sparse. /// /// One-Shot Analysis is used to detect RaW conflicts and to insert buffer /// copies of the tensor level (`insertTensorCopies`). Afterwards, the lowering /// of tensor ops to memref ops follows a different code path depending on /// whether the op is sparse or dense: /// /// * Sparse tensor ops are lowered through Sparsification and follow-up pass /// that lowers sparse_tensor dialect ops. /// * Dense tensor ops are lowered through BufferizableOpInterface /// implementations. class SparsificationAndBufferizationPass : public PassWrapper> { public: SparsificationAndBufferizationPass( const bufferization::OneShotBufferizationOptions &bufferizationOptions, const SparsificationOptions &sparsificationOptions, const SparseTensorConversionOptions &sparseTensorConversionOptions, bool createSparseDeallocs, bool enableRuntimeLibrary, bool enableBufferInitialization, unsigned vectorLength, bool enableVLAVectorization, bool enableSIMDIndex32) : bufferizationOptions(bufferizationOptions), sparsificationOptions(sparsificationOptions), sparseTensorConversionOptions(sparseTensorConversionOptions), createSparseDeallocs(createSparseDeallocs), enableRuntimeLibrary(enableRuntimeLibrary), enableBufferInitialization(enableBufferInitialization), vectorLength(vectorLength), enableVLAVectorization(enableVLAVectorization), enableSIMDIndex32(enableSIMDIndex32) {} /// Bufferize all dense ops. This assumes that no further analysis is needed /// and that all required buffer copies were already inserted by /// `insertTensorCopies` in the form of `bufferization.alloc_tensor` ops. LogicalResult runDenseBufferization() { bufferization::OpFilter denseOpFilter; denseOpFilter.allowOperation([&](Operation *op) { if (containsSparseTensor(TypeRange(op->getResults())) || containsSparseTensor(TypeRange(op->getOperands()))) return false; if (auto funcOp = dyn_cast(op)) { FunctionType funcType = funcOp.getFunctionType(); if (containsSparseTensor(funcType.getInputs()) || containsSparseTensor(funcType.getResults())) return false; } return true; }); if (failed(bufferization::bufferizeOp(getOperation(), bufferizationOptions, /*copyBeforeWrite=*/false, &denseOpFilter))) return failure(); bufferization::removeBufferizationAttributesInModule(getOperation()); return success(); } void getDependentDialects(::mlir::DialectRegistry ®istry) const override { registry.insert(); registry.insert(); registry.insert(); } void runOnOperation() override { { // Run enabling transformations. OpPassManager pm("builtin.module"); pm.addPass(createPreSparsificationRewritePass()); pm.addNestedPass( bufferization::createEmptyTensorToAllocTensorPass()); if (failed(runPipeline(pm, getOperation()))) return signalPassFailure(); } // Insert tensor copies. This step runs One-Shot Analysis (which analyzes // SSA use-def chains of tensor IR) and decides where buffer copies are // needed and where buffers can be written to in-place. These decisions are // materialized in the IR in the form of `bufferization.alloc_tensor` ops. // // Note: All following steps in this pass must be careful not to modify the // structure of the IR (i.e., tensor use-def chains), as that could // invalidate the results of the analysis. From now on, only small and // localized rewrites are allowed, such as replacing a tensor op with its // memref equivalent. if (failed(bufferization::insertTensorCopies(getOperation(), bufferizationOptions))) return signalPassFailure(); // `testAnalysisOnly` is a debug/testing flag. If set, the results of // OneShotAnalysis are added to the IR via attributes. In that case, do not // continue with the remaining pipeline. if (bufferizationOptions.testAnalysisOnly) return; // Bufferize all sparse ops. No further analysis is needed. All required // buffer copies were already inserted by `insertTensorCopies` in the form // of `bufferization.alloc_tensor` ops. { OpPassManager pm("builtin.module"); pm.addPass(createSparsificationPass(sparsificationOptions)); pm.addPass(createPostSparsificationRewritePass(enableRuntimeLibrary)); if (vectorLength > 0) { pm.addPass(mlir::createLoopInvariantCodeMotionPass()); pm.addPass(createSparseVectorizationPass( vectorLength, enableVLAVectorization, enableSIMDIndex32)); } if (enableRuntimeLibrary) { pm.addPass( createSparseTensorConversionPass(sparseTensorConversionOptions)); } else { pm.addPass(createSparseTensorCodegenPass(createSparseDeallocs, enableBufferInitialization)); pm.addPass(createSparseBufferRewritePass(enableBufferInitialization)); pm.addPass(createStorageSpecifierToLLVMPass()); } if (failed(runPipeline(pm, getOperation()))) return signalPassFailure(); } // Bufferize all dense ops. if (failed(runDenseBufferization())) signalPassFailure(); } private: bufferization::OneShotBufferizationOptions bufferizationOptions; SparsificationOptions sparsificationOptions; SparseTensorConversionOptions sparseTensorConversionOptions; bool createSparseDeallocs; bool enableRuntimeLibrary; bool enableBufferInitialization; unsigned vectorLength; bool enableVLAVectorization; bool enableSIMDIndex32; }; } // namespace sparse_tensor } // namespace mlir std::unique_ptr mlir::createSparsificationAndBufferizationPass( const bufferization::OneShotBufferizationOptions &bufferizationOptions, const SparsificationOptions &sparsificationOptions, const SparseTensorConversionOptions &sparseTensorConversionOptions, bool createSparseDeallocs, bool enableRuntimeLibrary, bool enableBufferInitialization, unsigned vectorLength, bool enableVLAVectorization, bool enableSIMDIndex32) { return std::make_unique< mlir::sparse_tensor::SparsificationAndBufferizationPass>( bufferizationOptions, sparsificationOptions, sparseTensorConversionOptions, createSparseDeallocs, enableRuntimeLibrary, enableBufferInitialization, vectorLength, enableVLAVectorization, enableSIMDIndex32); }