diff options
Diffstat (limited to 'include/llvm/Target')
-rw-r--r-- | include/llvm/Target/Target.td | 18 | ||||
-rw-r--r-- | include/llvm/Target/TargetFrameLowering.h | 348 | ||||
-rw-r--r-- | include/llvm/Target/TargetInstrInfo.h | 1691 | ||||
-rw-r--r-- | include/llvm/Target/TargetLowering.h | 9 |
4 files changed, 24 insertions, 2042 deletions
diff --git a/include/llvm/Target/Target.td b/include/llvm/Target/Target.td index 048bd1f2a0cc..7dc2aec324ec 100644 --- a/include/llvm/Target/Target.td +++ b/include/llvm/Target/Target.td @@ -884,12 +884,16 @@ class InstrInfo { // Standard Pseudo Instructions. // This list must match TargetOpcodes.h and CodeGenTarget.cpp. // Only these instructions are allowed in the TargetOpcode namespace. -let isCodeGenOnly = 1, isPseudo = 1, hasNoSchedulingInfo = 1, - Namespace = "TargetOpcode" in { +// Ensure mayLoad and mayStore have a default value, so as not to break +// targets that set guessInstructionProperties=0. Any local definition of +// mayLoad/mayStore takes precedence over these default values. +let mayLoad = 0, mayStore = 0, isCodeGenOnly = 1, isPseudo = 1, + hasNoSchedulingInfo = 1, Namespace = "TargetOpcode" in { def PHI : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins variable_ops); let AsmString = "PHINODE"; + let hasSideEffects = 1; } def INLINEASM : Instruction { let OutOperandList = (outs); @@ -902,13 +906,15 @@ def CFI_INSTRUCTION : Instruction { let InOperandList = (ins i32imm:$id); let AsmString = ""; let hasCtrlDep = 1; - let isNotDuplicable = 1; + let hasSideEffects = 1; + let isNotDuplicable = 0; } def EH_LABEL : Instruction { let OutOperandList = (outs); let InOperandList = (ins i32imm:$id); let AsmString = ""; let hasCtrlDep = 1; + let hasSideEffects = 1; let isNotDuplicable = 1; } def GC_LABEL : Instruction { @@ -916,6 +922,7 @@ def GC_LABEL : Instruction { let InOperandList = (ins i32imm:$id); let AsmString = ""; let hasCtrlDep = 1; + let hasSideEffects = 1; let isNotDuplicable = 1; } def ANNOTATION_LABEL : Instruction { @@ -923,6 +930,7 @@ def ANNOTATION_LABEL : Instruction { let InOperandList = (ins i32imm:$id); let AsmString = ""; let hasCtrlDep = 1; + let hasSideEffects = 1; let isNotDuplicable = 1; } def KILL : Instruction { @@ -990,6 +998,7 @@ def BUNDLE : Instruction { let OutOperandList = (outs); let InOperandList = (ins variable_ops); let AsmString = "BUNDLE"; + let hasSideEffects = 1; } def LIFETIME_START : Instruction { let OutOperandList = (outs); @@ -1006,6 +1015,7 @@ def LIFETIME_END : Instruction { def STACKMAP : Instruction { let OutOperandList = (outs); let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops); + let hasSideEffects = 1; let isCall = 1; let mayLoad = 1; let usesCustomInserter = 1; @@ -1014,6 +1024,7 @@ def PATCHPOINT : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee, i32imm:$nargs, i32imm:$cc, variable_ops); + let hasSideEffects = 1; let isCall = 1; let mayLoad = 1; let usesCustomInserter = 1; @@ -1048,6 +1059,7 @@ def FAULTING_OP : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins variable_ops); let usesCustomInserter = 1; + let hasSideEffects = 1; let mayLoad = 1; let mayStore = 1; let isTerminator = 1; diff --git a/include/llvm/Target/TargetFrameLowering.h b/include/llvm/Target/TargetFrameLowering.h deleted file mode 100644 index 31017cbc27b8..000000000000 --- a/include/llvm/Target/TargetFrameLowering.h +++ /dev/null @@ -1,348 +0,0 @@ -//===-- llvm/Target/TargetFrameLowering.h ---------------------------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// Interface to describe the layout of a stack frame on the target machine. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TARGET_TARGETFRAMELOWERING_H -#define LLVM_TARGET_TARGETFRAMELOWERING_H - -#include "llvm/CodeGen/MachineBasicBlock.h" -#include <utility> -#include <vector> - -namespace llvm { - class BitVector; - class CalleeSavedInfo; - class MachineFunction; - class RegScavenger; - -/// Information about stack frame layout on the target. It holds the direction -/// of stack growth, the known stack alignment on entry to each function, and -/// the offset to the locals area. -/// -/// The offset to the local area is the offset from the stack pointer on -/// function entry to the first location where function data (local variables, -/// spill locations) can be stored. -class TargetFrameLowering { -public: - enum StackDirection { - StackGrowsUp, // Adding to the stack increases the stack address - StackGrowsDown // Adding to the stack decreases the stack address - }; - - // Maps a callee saved register to a stack slot with a fixed offset. - struct SpillSlot { - unsigned Reg; - int Offset; // Offset relative to stack pointer on function entry. - }; -private: - StackDirection StackDir; - unsigned StackAlignment; - unsigned TransientStackAlignment; - int LocalAreaOffset; - bool StackRealignable; -public: - TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO, - unsigned TransAl = 1, bool StackReal = true) - : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl), - LocalAreaOffset(LAO), StackRealignable(StackReal) {} - - virtual ~TargetFrameLowering(); - - // These methods return information that describes the abstract stack layout - // of the target machine. - - /// getStackGrowthDirection - Return the direction the stack grows - /// - StackDirection getStackGrowthDirection() const { return StackDir; } - - /// getStackAlignment - This method returns the number of bytes to which the - /// stack pointer must be aligned on entry to a function. Typically, this - /// is the largest alignment for any data object in the target. - /// - unsigned getStackAlignment() const { return StackAlignment; } - - /// alignSPAdjust - This method aligns the stack adjustment to the correct - /// alignment. - /// - int alignSPAdjust(int SPAdj) const { - if (SPAdj < 0) { - SPAdj = -alignTo(-SPAdj, StackAlignment); - } else { - SPAdj = alignTo(SPAdj, StackAlignment); - } - return SPAdj; - } - - /// getTransientStackAlignment - This method returns the number of bytes to - /// which the stack pointer must be aligned at all times, even between - /// calls. - /// - unsigned getTransientStackAlignment() const { - return TransientStackAlignment; - } - - /// isStackRealignable - This method returns whether the stack can be - /// realigned. - bool isStackRealignable() const { - return StackRealignable; - } - - /// Return the skew that has to be applied to stack alignment under - /// certain conditions (e.g. stack was adjusted before function \p MF - /// was called). - virtual unsigned getStackAlignmentSkew(const MachineFunction &MF) const; - - /// getOffsetOfLocalArea - This method returns the offset of the local area - /// from the stack pointer on entrance to a function. - /// - int getOffsetOfLocalArea() const { return LocalAreaOffset; } - - /// isFPCloseToIncomingSP - Return true if the frame pointer is close to - /// the incoming stack pointer, false if it is close to the post-prologue - /// stack pointer. - virtual bool isFPCloseToIncomingSP() const { return true; } - - /// assignCalleeSavedSpillSlots - Allows target to override spill slot - /// assignment logic. If implemented, assignCalleeSavedSpillSlots() should - /// assign frame slots to all CSI entries and return true. If this method - /// returns false, spill slots will be assigned using generic implementation. - /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of - /// CSI. - virtual bool - assignCalleeSavedSpillSlots(MachineFunction &MF, - const TargetRegisterInfo *TRI, - std::vector<CalleeSavedInfo> &CSI) const { - return false; - } - - /// getCalleeSavedSpillSlots - This method returns a pointer to an array of - /// pairs, that contains an entry for each callee saved register that must be - /// spilled to a particular stack location if it is spilled. - /// - /// Each entry in this array contains a <register,offset> pair, indicating the - /// fixed offset from the incoming stack pointer that each register should be - /// spilled at. If a register is not listed here, the code generator is - /// allowed to spill it anywhere it chooses. - /// - virtual const SpillSlot * - getCalleeSavedSpillSlots(unsigned &NumEntries) const { - NumEntries = 0; - return nullptr; - } - - /// targetHandlesStackFrameRounding - Returns true if the target is - /// responsible for rounding up the stack frame (probably at emitPrologue - /// time). - virtual bool targetHandlesStackFrameRounding() const { - return false; - } - - /// Returns true if the target will correctly handle shrink wrapping. - virtual bool enableShrinkWrapping(const MachineFunction &MF) const { - return false; - } - - /// Returns true if the stack slot holes in the fixed and callee-save stack - /// area should be used when allocating other stack locations to reduce stack - /// size. - virtual bool enableStackSlotScavenging(const MachineFunction &MF) const { - return false; - } - - /// emitProlog/emitEpilog - These methods insert prolog and epilog code into - /// the function. - virtual void emitPrologue(MachineFunction &MF, - MachineBasicBlock &MBB) const = 0; - virtual void emitEpilogue(MachineFunction &MF, - MachineBasicBlock &MBB) const = 0; - - /// Replace a StackProbe stub (if any) with the actual probe code inline - virtual void inlineStackProbe(MachineFunction &MF, - MachineBasicBlock &PrologueMBB) const {} - - /// Adjust the prologue to have the function use segmented stacks. This works - /// by adding a check even before the "normal" function prologue. - virtual void adjustForSegmentedStacks(MachineFunction &MF, - MachineBasicBlock &PrologueMBB) const {} - - /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in - /// the assembly prologue to explicitly handle the stack. - virtual void adjustForHiPEPrologue(MachineFunction &MF, - MachineBasicBlock &PrologueMBB) const {} - - /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee - /// saved registers and returns true if it isn't possible / profitable to do - /// so by issuing a series of store instructions via - /// storeRegToStackSlot(). Returns false otherwise. - virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - const std::vector<CalleeSavedInfo> &CSI, - const TargetRegisterInfo *TRI) const { - return false; - } - - /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee - /// saved registers and returns true if it isn't possible / profitable to do - /// so by issuing a series of load instructions via loadRegToStackSlot(). - /// If it returns true, and any of the registers in CSI is not restored, - /// it sets the corresponding Restored flag in CSI to false. - /// Returns false otherwise. - virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - std::vector<CalleeSavedInfo> &CSI, - const TargetRegisterInfo *TRI) const { - return false; - } - - /// Return true if the target needs to disable frame pointer elimination. - virtual bool noFramePointerElim(const MachineFunction &MF) const; - - /// hasFP - Return true if the specified function should have a dedicated - /// frame pointer register. For most targets this is true only if the function - /// has variable sized allocas or if frame pointer elimination is disabled. - virtual bool hasFP(const MachineFunction &MF) const = 0; - - /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is - /// not required, we reserve argument space for call sites in the function - /// immediately on entry to the current function. This eliminates the need for - /// add/sub sp brackets around call sites. Returns true if the call frame is - /// included as part of the stack frame. - virtual bool hasReservedCallFrame(const MachineFunction &MF) const { - return !hasFP(MF); - } - - /// canSimplifyCallFramePseudos - When possible, it's best to simplify the - /// call frame pseudo ops before doing frame index elimination. This is - /// possible only when frame index references between the pseudos won't - /// need adjusting for the call frame adjustments. Normally, that's true - /// if the function has a reserved call frame or a frame pointer. Some - /// targets (Thumb2, for example) may have more complicated criteria, - /// however, and can override this behavior. - virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const { - return hasReservedCallFrame(MF) || hasFP(MF); - } - - // needsFrameIndexResolution - Do we need to perform FI resolution for - // this function. Normally, this is required only when the function - // has any stack objects. However, targets may want to override this. - virtual bool needsFrameIndexResolution(const MachineFunction &MF) const; - - /// getFrameIndexReference - This method should return the base register - /// and offset used to reference a frame index location. The offset is - /// returned directly, and the base register is returned via FrameReg. - virtual int getFrameIndexReference(const MachineFunction &MF, int FI, - unsigned &FrameReg) const; - - /// Same as \c getFrameIndexReference, except that the stack pointer (as - /// opposed to the frame pointer) will be the preferred value for \p - /// FrameReg. This is generally used for emitting statepoint or EH tables that - /// use offsets from RSP. If \p IgnoreSPUpdates is true, the returned - /// offset is only guaranteed to be valid with respect to the value of SP at - /// the end of the prologue. - virtual int getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI, - unsigned &FrameReg, - bool IgnoreSPUpdates) const { - // Always safe to dispatch to getFrameIndexReference. - return getFrameIndexReference(MF, FI, FrameReg); - } - - /// This method determines which of the registers reported by - /// TargetRegisterInfo::getCalleeSavedRegs() should actually get saved. - /// The default implementation checks populates the \p SavedRegs bitset with - /// all registers which are modified in the function, targets may override - /// this function to save additional registers. - /// This method also sets up the register scavenger ensuring there is a free - /// register or a frameindex available. - virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, - RegScavenger *RS = nullptr) const; - - /// processFunctionBeforeFrameFinalized - This method is called immediately - /// before the specified function's frame layout (MF.getFrameInfo()) is - /// finalized. Once the frame is finalized, MO_FrameIndex operands are - /// replaced with direct constants. This method is optional. - /// - virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF, - RegScavenger *RS = nullptr) const { - } - - virtual unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const { - report_fatal_error("WinEH not implemented for this target"); - } - - /// This method is called during prolog/epilog code insertion to eliminate - /// call frame setup and destroy pseudo instructions (but only if the Target - /// is using them). It is responsible for eliminating these instructions, - /// replacing them with concrete instructions. This method need only be - /// implemented if using call frame setup/destroy pseudo instructions. - /// Returns an iterator pointing to the instruction after the replaced one. - virtual MachineBasicBlock::iterator - eliminateCallFramePseudoInstr(MachineFunction &MF, - MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI) const { - llvm_unreachable("Call Frame Pseudo Instructions do not exist on this " - "target!"); - } - - - /// Order the symbols in the local stack frame. - /// The list of objects that we want to order is in \p objectsToAllocate as - /// indices into the MachineFrameInfo. The array can be reordered in any way - /// upon return. The contents of the array, however, may not be modified (i.e. - /// only their order may be changed). - /// By default, just maintain the original order. - virtual void - orderFrameObjects(const MachineFunction &MF, - SmallVectorImpl<int> &objectsToAllocate) const { - } - - /// Check whether or not the given \p MBB can be used as a prologue - /// for the target. - /// The prologue will be inserted first in this basic block. - /// This method is used by the shrink-wrapping pass to decide if - /// \p MBB will be correctly handled by the target. - /// As soon as the target enable shrink-wrapping without overriding - /// this method, we assume that each basic block is a valid - /// prologue. - virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const { - return true; - } - - /// Check whether or not the given \p MBB can be used as a epilogue - /// for the target. - /// The epilogue will be inserted before the first terminator of that block. - /// This method is used by the shrink-wrapping pass to decide if - /// \p MBB will be correctly handled by the target. - /// As soon as the target enable shrink-wrapping without overriding - /// this method, we assume that each basic block is a valid - /// epilogue. - virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const { - return true; - } - - /// Check if given function is safe for not having callee saved registers. - /// This is used when interprocedural register allocation is enabled. - static bool isSafeForNoCSROpt(const Function *F) { - if (!F->hasLocalLinkage() || F->hasAddressTaken() || - !F->hasFnAttribute(Attribute::NoRecurse)) - return false; - // Function should not be optimized as tail call. - for (const User *U : F->users()) - if (auto CS = ImmutableCallSite(U)) - if (CS.isTailCall()) - return false; - return true; - } -}; - -} // End llvm namespace - -#endif diff --git a/include/llvm/Target/TargetInstrInfo.h b/include/llvm/Target/TargetInstrInfo.h deleted file mode 100644 index 5d230d820dbf..000000000000 --- a/include/llvm/Target/TargetInstrInfo.h +++ /dev/null @@ -1,1691 +0,0 @@ -//===- llvm/Target/TargetInstrInfo.h - Instruction Info ---------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file describes the target machine instruction set to the code generator. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TARGET_TARGETINSTRINFO_H -#define LLVM_TARGET_TARGETINSTRINFO_H - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseMapInfo.h" -#include "llvm/ADT/None.h" -#include "llvm/CodeGen/LiveIntervalAnalysis.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineCombinerPattern.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineLoopInfo.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/PseudoSourceValue.h" -#include "llvm/MC/MCInstrInfo.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/ErrorHandling.h" -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <utility> -#include <vector> - -namespace llvm { - -class DFAPacketizer; -class InstrItineraryData; -class LiveVariables; -class MachineMemOperand; -class MachineRegisterInfo; -class MCAsmInfo; -class MCInst; -struct MCSchedModel; -class Module; -class ScheduleDAG; -class ScheduleHazardRecognizer; -class SDNode; -class SelectionDAG; -class RegScavenger; -class TargetRegisterClass; -class TargetRegisterInfo; -class TargetSchedModel; -class TargetSubtargetInfo; - -template <class T> class SmallVectorImpl; - -//--------------------------------------------------------------------------- -/// -/// TargetInstrInfo - Interface to description of machine instruction set -/// -class TargetInstrInfo : public MCInstrInfo { -public: - TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, - unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) - : CallFrameSetupOpcode(CFSetupOpcode), - CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode), - ReturnOpcode(ReturnOpcode) {} - TargetInstrInfo(const TargetInstrInfo &) = delete; - TargetInstrInfo &operator=(const TargetInstrInfo &) = delete; - virtual ~TargetInstrInfo(); - - static bool isGenericOpcode(unsigned Opc) { - return Opc <= TargetOpcode::GENERIC_OP_END; - } - - /// Given a machine instruction descriptor, returns the register - /// class constraint for OpNum, or NULL. - const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum, - const TargetRegisterInfo *TRI, - const MachineFunction &MF) const; - - /// Return true if the instruction is trivially rematerializable, meaning it - /// has no side effects and requires no operands that aren't always available. - /// This means the only allowed uses are constants and unallocatable physical - /// registers so that the instructions result is independent of the place - /// in the function. - bool isTriviallyReMaterializable(const MachineInstr &MI, - AliasAnalysis *AA = nullptr) const { - return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF || - (MI.getDesc().isRematerializable() && - (isReallyTriviallyReMaterializable(MI, AA) || - isReallyTriviallyReMaterializableGeneric(MI, AA))); - } - -protected: - /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is - /// set, this hook lets the target specify whether the instruction is actually - /// trivially rematerializable, taking into consideration its operands. This - /// predicate must return false if the instruction has any side effects other - /// than producing a value, or if it requres any address registers that are - /// not always available. - /// Requirements must be check as stated in isTriviallyReMaterializable() . - virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI, - AliasAnalysis *AA) const { - return false; - } - - /// This method commutes the operands of the given machine instruction MI. - /// The operands to be commuted are specified by their indices OpIdx1 and - /// OpIdx2. - /// - /// If a target has any instructions that are commutable but require - /// converting to different instructions or making non-trivial changes - /// to commute them, this method can be overloaded to do that. - /// The default implementation simply swaps the commutable operands. - /// - /// If NewMI is false, MI is modified in place and returned; otherwise, a - /// new machine instruction is created and returned. - /// - /// Do not call this method for a non-commutable instruction. - /// Even though the instruction is commutable, the method may still - /// fail to commute the operands, null pointer is returned in such cases. - virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, - unsigned OpIdx1, - unsigned OpIdx2) const; - - /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable - /// operand indices to (ResultIdx1, ResultIdx2). - /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be - /// predefined to some indices or be undefined (designated by the special - /// value 'CommuteAnyOperandIndex'). - /// The predefined result indices cannot be re-defined. - /// The function returns true iff after the result pair redefinition - /// the fixed result pair is equal to or equivalent to the source pair of - /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that - /// the pairs (x,y) and (y,x) are equivalent. - static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, - unsigned CommutableOpIdx1, - unsigned CommutableOpIdx2); - -private: - /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is - /// set and the target hook isReallyTriviallyReMaterializable returns false, - /// this function does target-independent tests to determine if the - /// instruction is really trivially rematerializable. - bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI, - AliasAnalysis *AA) const; - -public: - /// These methods return the opcode of the frame setup/destroy instructions - /// if they exist (-1 otherwise). Some targets use pseudo instructions in - /// order to abstract away the difference between operating with a frame - /// pointer and operating without, through the use of these two instructions. - /// - unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } - unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } - - /// Returns true if the argument is a frame pseudo instruction. - bool isFrameInstr(const MachineInstr &I) const { - return I.getOpcode() == getCallFrameSetupOpcode() || - I.getOpcode() == getCallFrameDestroyOpcode(); - } - - /// Returns true if the argument is a frame setup pseudo instruction. - bool isFrameSetup(const MachineInstr &I) const { - return I.getOpcode() == getCallFrameSetupOpcode(); - } - - /// Returns size of the frame associated with the given frame instruction. - /// For frame setup instruction this is frame that is set up space set up - /// after the instruction. For frame destroy instruction this is the frame - /// freed by the caller. - /// Note, in some cases a call frame (or a part of it) may be prepared prior - /// to the frame setup instruction. It occurs in the calls that involve - /// inalloca arguments. This function reports only the size of the frame part - /// that is set up between the frame setup and destroy pseudo instructions. - int64_t getFrameSize(const MachineInstr &I) const { - assert(isFrameInstr(I) && "Not a frame instruction"); - assert(I.getOperand(0).getImm() >= 0); - return I.getOperand(0).getImm(); - } - - /// Returns the total frame size, which is made up of the space set up inside - /// the pair of frame start-stop instructions and the space that is set up - /// prior to the pair. - int64_t getFrameTotalSize(const MachineInstr &I) const { - if (isFrameSetup(I)) { - assert(I.getOperand(1).getImm() >= 0 && - "Frame size must not be negative"); - return getFrameSize(I) + I.getOperand(1).getImm(); - } - return getFrameSize(I); - } - - unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } - unsigned getReturnOpcode() const { return ReturnOpcode; } - - /// Returns the actual stack pointer adjustment made by an instruction - /// as part of a call sequence. By default, only call frame setup/destroy - /// instructions adjust the stack, but targets may want to override this - /// to enable more fine-grained adjustment, or adjust by a different value. - virtual int getSPAdjust(const MachineInstr &MI) const; - - /// Return true if the instruction is a "coalescable" extension instruction. - /// That is, it's like a copy where it's legal for the source to overlap the - /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's - /// expected the pre-extension value is available as a subreg of the result - /// register. This also returns the sub-register index in SubIdx. - virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, - unsigned &DstReg, unsigned &SubIdx) const { - return false; - } - - /// If the specified machine instruction is a direct - /// load from a stack slot, return the virtual or physical register number of - /// the destination along with the FrameIndex of the loaded stack slot. If - /// not, return 0. This predicate must return 0 if the instruction has - /// any side effects other than loading from the stack slot. - virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, - int &FrameIndex) const { - return 0; - } - - /// Check for post-frame ptr elimination stack locations as well. - /// This uses a heuristic so it isn't reliable for correctness. - virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, - int &FrameIndex) const { - return 0; - } - - /// If the specified machine instruction has a load from a stack slot, - /// return true along with the FrameIndex of the loaded stack slot and the - /// machine mem operand containing the reference. - /// If not, return false. Unlike isLoadFromStackSlot, this returns true for - /// any instructions that loads from the stack. This is just a hint, as some - /// cases may be missed. - virtual bool hasLoadFromStackSlot(const MachineInstr &MI, - const MachineMemOperand *&MMO, - int &FrameIndex) const; - - /// If the specified machine instruction is a direct - /// store to a stack slot, return the virtual or physical register number of - /// the source reg along with the FrameIndex of the loaded stack slot. If - /// not, return 0. This predicate must return 0 if the instruction has - /// any side effects other than storing to the stack slot. - virtual unsigned isStoreToStackSlot(const MachineInstr &MI, - int &FrameIndex) const { - return 0; - } - - /// Check for post-frame ptr elimination stack locations as well. - /// This uses a heuristic, so it isn't reliable for correctness. - virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, - int &FrameIndex) const { - return 0; - } - - /// If the specified machine instruction has a store to a stack slot, - /// return true along with the FrameIndex of the loaded stack slot and the - /// machine mem operand containing the reference. - /// If not, return false. Unlike isStoreToStackSlot, - /// this returns true for any instructions that stores to the - /// stack. This is just a hint, as some cases may be missed. - virtual bool hasStoreToStackSlot(const MachineInstr &MI, - const MachineMemOperand *&MMO, - int &FrameIndex) const; - - /// Return true if the specified machine instruction - /// is a copy of one stack slot to another and has no other effect. - /// Provide the identity of the two frame indices. - virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, - int &SrcFrameIndex) const { - return false; - } - - /// Compute the size in bytes and offset within a stack slot of a spilled - /// register or subregister. - /// - /// \param [out] Size in bytes of the spilled value. - /// \param [out] Offset in bytes within the stack slot. - /// \returns true if both Size and Offset are successfully computed. - /// - /// Not all subregisters have computable spill slots. For example, - /// subregisters registers may not be byte-sized, and a pair of discontiguous - /// subregisters has no single offset. - /// - /// Targets with nontrivial bigendian implementations may need to override - /// this, particularly to support spilled vector registers. - virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, - unsigned &Size, unsigned &Offset, - const MachineFunction &MF) const; - - /// Returns the size in bytes of the specified MachineInstr, or ~0U - /// when this function is not implemented by a target. - virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const { - return ~0U; - } - - /// Return true if the instruction is as cheap as a move instruction. - /// - /// Targets for different archs need to override this, and different - /// micro-architectures can also be finely tuned inside. - virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { - return MI.isAsCheapAsAMove(); - } - - /// Return true if the instruction should be sunk by MachineSink. - /// - /// MachineSink determines on its own whether the instruction is safe to sink; - /// this gives the target a hook to override the default behavior with regards - /// to which instructions should be sunk. - virtual bool shouldSink(const MachineInstr &MI) const { return true; } - - /// Re-issue the specified 'original' instruction at the - /// specific location targeting a new destination register. - /// The register in Orig->getOperand(0).getReg() will be substituted by - /// DestReg:SubIdx. Any existing subreg index is preserved or composed with - /// SubIdx. - virtual void reMaterialize(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, unsigned DestReg, - unsigned SubIdx, const MachineInstr &Orig, - const TargetRegisterInfo &TRI) const; - - /// \brief Clones instruction or the whole instruction bundle \p Orig and - /// insert into \p MBB before \p InsertBefore. The target may update operands - /// that are required to be unique. - /// - /// \p Orig must not return true for MachineInstr::isNotDuplicable(). - virtual MachineInstr &duplicate(MachineBasicBlock &MBB, - MachineBasicBlock::iterator InsertBefore, - const MachineInstr &Orig) const; - - /// This method must be implemented by targets that - /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target - /// may be able to convert a two-address instruction into one or more true - /// three-address instructions on demand. This allows the X86 target (for - /// example) to convert ADD and SHL instructions into LEA instructions if they - /// would require register copies due to two-addressness. - /// - /// This method returns a null pointer if the transformation cannot be - /// performed, otherwise it returns the last new instruction. - /// - virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, - MachineInstr &MI, - LiveVariables *LV) const { - return nullptr; - } - - // This constant can be used as an input value of operand index passed to - // the method findCommutedOpIndices() to tell the method that the - // corresponding operand index is not pre-defined and that the method - // can pick any commutable operand. - static const unsigned CommuteAnyOperandIndex = ~0U; - - /// This method commutes the operands of the given machine instruction MI. - /// - /// The operands to be commuted are specified by their indices OpIdx1 and - /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value - /// 'CommuteAnyOperandIndex', which means that the method is free to choose - /// any arbitrarily chosen commutable operand. If both arguments are set to - /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable - /// operands; then commutes them if such operands could be found. - /// - /// If NewMI is false, MI is modified in place and returned; otherwise, a - /// new machine instruction is created and returned. - /// - /// Do not call this method for a non-commutable instruction or - /// for non-commuable operands. - /// Even though the instruction is commutable, the method may still - /// fail to commute the operands, null pointer is returned in such cases. - MachineInstr * - commuteInstruction(MachineInstr &MI, bool NewMI = false, - unsigned OpIdx1 = CommuteAnyOperandIndex, - unsigned OpIdx2 = CommuteAnyOperandIndex) const; - - /// Returns true iff the routine could find two commutable operands in the - /// given machine instruction. - /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. - /// If any of the INPUT values is set to the special value - /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable - /// operand, then returns its index in the corresponding argument. - /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method - /// looks for 2 commutable operands. - /// If INPUT values refer to some operands of MI, then the method simply - /// returns true if the corresponding operands are commutable and returns - /// false otherwise. - /// - /// For example, calling this method this way: - /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; - /// findCommutedOpIndices(MI, Op1, Op2); - /// can be interpreted as a query asking to find an operand that would be - /// commutable with the operand#1. - virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, - unsigned &SrcOpIdx2) const; - - /// A pair composed of a register and a sub-register index. - /// Used to give some type checking when modeling Reg:SubReg. - struct RegSubRegPair { - unsigned Reg; - unsigned SubReg; - - RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0) - : Reg(Reg), SubReg(SubReg) {} - }; - - /// A pair composed of a pair of a register and a sub-register index, - /// and another sub-register index. - /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. - struct RegSubRegPairAndIdx : RegSubRegPair { - unsigned SubIdx; - - RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0, - unsigned SubIdx = 0) - : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} - }; - - /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI - /// and \p DefIdx. - /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of - /// the list is modeled as <Reg:SubReg, SubIdx>. - /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce - /// two elements: - /// - vreg1:sub1, sub0 - /// - vreg2<:0>, sub1 - /// - /// \returns true if it is possible to build such an input sequence - /// with the pair \p MI, \p DefIdx. False otherwise. - /// - /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). - /// - /// \note The generic implementation does not provide any support for - /// MI.isRegSequenceLike(). In other words, one has to override - /// getRegSequenceLikeInputs for target specific instructions. - bool - getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, - SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; - - /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI - /// and \p DefIdx. - /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. - /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce: - /// - vreg1:sub1, sub0 - /// - /// \returns true if it is possible to build such an input sequence - /// with the pair \p MI, \p DefIdx. False otherwise. - /// - /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). - /// - /// \note The generic implementation does not provide any support for - /// MI.isExtractSubregLike(). In other words, one has to override - /// getExtractSubregLikeInputs for target specific instructions. - bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, - RegSubRegPairAndIdx &InputReg) const; - - /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI - /// and \p DefIdx. - /// \p [out] BaseReg and \p [out] InsertedReg contain - /// the equivalent inputs of INSERT_SUBREG. - /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce: - /// - BaseReg: vreg0:sub0 - /// - InsertedReg: vreg1:sub1, sub3 - /// - /// \returns true if it is possible to build such an input sequence - /// with the pair \p MI, \p DefIdx. False otherwise. - /// - /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). - /// - /// \note The generic implementation does not provide any support for - /// MI.isInsertSubregLike(). In other words, one has to override - /// getInsertSubregLikeInputs for target specific instructions. - bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, - RegSubRegPair &BaseReg, - RegSubRegPairAndIdx &InsertedReg) const; - - /// Return true if two machine instructions would produce identical values. - /// By default, this is only true when the two instructions - /// are deemed identical except for defs. If this function is called when the - /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for - /// aggressive checks. - virtual bool produceSameValue(const MachineInstr &MI0, - const MachineInstr &MI1, - const MachineRegisterInfo *MRI = nullptr) const; - - /// \returns true if a branch from an instruction with opcode \p BranchOpc - /// bytes is capable of jumping to a position \p BrOffset bytes away. - virtual bool isBranchOffsetInRange(unsigned BranchOpc, - int64_t BrOffset) const { - llvm_unreachable("target did not implement"); - } - - /// \returns The block that branch instruction \p MI jumps to. - virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const { - llvm_unreachable("target did not implement"); - } - - /// Insert an unconditional indirect branch at the end of \p MBB to \p - /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to - /// the offset of the position to insert the new branch. - /// - /// \returns The number of bytes added to the block. - virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB, - MachineBasicBlock &NewDestBB, - const DebugLoc &DL, - int64_t BrOffset = 0, - RegScavenger *RS = nullptr) const { - llvm_unreachable("target did not implement"); - } - - /// Analyze the branching code at the end of MBB, returning - /// true if it cannot be understood (e.g. it's a switch dispatch or isn't - /// implemented for a target). Upon success, this returns false and returns - /// with the following information in various cases: - /// - /// 1. If this block ends with no branches (it just falls through to its succ) - /// just return false, leaving TBB/FBB null. - /// 2. If this block ends with only an unconditional branch, it sets TBB to be - /// the destination block. - /// 3. If this block ends with a conditional branch and it falls through to a - /// successor block, it sets TBB to be the branch destination block and a - /// list of operands that evaluate the condition. These operands can be - /// passed to other TargetInstrInfo methods to create new branches. - /// 4. If this block ends with a conditional branch followed by an - /// unconditional branch, it returns the 'true' destination in TBB, the - /// 'false' destination in FBB, and a list of operands that evaluate the - /// condition. These operands can be passed to other TargetInstrInfo - /// methods to create new branches. - /// - /// Note that removeBranch and insertBranch must be implemented to support - /// cases where this method returns success. - /// - /// If AllowModify is true, then this routine is allowed to modify the basic - /// block (e.g. delete instructions after the unconditional branch). - /// - /// The CFG information in MBB.Predecessors and MBB.Successors must be valid - /// before calling this function. - virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, - MachineBasicBlock *&FBB, - SmallVectorImpl<MachineOperand> &Cond, - bool AllowModify = false) const { - return true; - } - - /// Represents a predicate at the MachineFunction level. The control flow a - /// MachineBranchPredicate represents is: - /// - /// Reg <def>= LHS `Predicate` RHS == ConditionDef - /// if Reg then goto TrueDest else goto FalseDest - /// - struct MachineBranchPredicate { - enum ComparePredicate { - PRED_EQ, // True if two values are equal - PRED_NE, // True if two values are not equal - PRED_INVALID // Sentinel value - }; - - ComparePredicate Predicate = PRED_INVALID; - MachineOperand LHS = MachineOperand::CreateImm(0); - MachineOperand RHS = MachineOperand::CreateImm(0); - MachineBasicBlock *TrueDest = nullptr; - MachineBasicBlock *FalseDest = nullptr; - MachineInstr *ConditionDef = nullptr; - - /// SingleUseCondition is true if ConditionDef is dead except for the - /// branch(es) at the end of the basic block. - /// - bool SingleUseCondition = false; - - explicit MachineBranchPredicate() = default; - }; - - /// Analyze the branching code at the end of MBB and parse it into the - /// MachineBranchPredicate structure if possible. Returns false on success - /// and true on failure. - /// - /// If AllowModify is true, then this routine is allowed to modify the basic - /// block (e.g. delete instructions after the unconditional branch). - /// - virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, - MachineBranchPredicate &MBP, - bool AllowModify = false) const { - return true; - } - - /// Remove the branching code at the end of the specific MBB. - /// This is only invoked in cases where AnalyzeBranch returns success. It - /// returns the number of instructions that were removed. - /// If \p BytesRemoved is non-null, report the change in code size from the - /// removed instructions. - virtual unsigned removeBranch(MachineBasicBlock &MBB, - int *BytesRemoved = nullptr) const { - llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!"); - } - - /// Insert branch code into the end of the specified MachineBasicBlock. The - /// operands to this method are the same as those returned by AnalyzeBranch. - /// This is only invoked in cases where AnalyzeBranch returns success. It - /// returns the number of instructions inserted. If \p BytesAdded is non-null, - /// report the change in code size from the added instructions. - /// - /// It is also invoked by tail merging to add unconditional branches in - /// cases where AnalyzeBranch doesn't apply because there was no original - /// branch to analyze. At least this much must be implemented, else tail - /// merging needs to be disabled. - /// - /// The CFG information in MBB.Predecessors and MBB.Successors must be valid - /// before calling this function. - virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, - MachineBasicBlock *FBB, - ArrayRef<MachineOperand> Cond, - const DebugLoc &DL, - int *BytesAdded = nullptr) const { - llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!"); - } - - unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, - MachineBasicBlock *DestBB, - const DebugLoc &DL, - int *BytesAdded = nullptr) const { - return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL, - BytesAdded); - } - - /// Analyze the loop code, return true if it cannot be understoo. Upon - /// success, this function returns false and returns information about the - /// induction variable and compare instruction used at the end. - virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, - MachineInstr *&CmpInst) const { - return true; - } - - /// Generate code to reduce the loop iteration by one and check if the loop is - /// finished. Return the value/register of the the new loop count. We need - /// this function when peeling off one or more iterations of a loop. This - /// function assumes the nth iteration is peeled first. - virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar, - MachineInstr &Cmp, - SmallVectorImpl<MachineOperand> &Cond, - SmallVectorImpl<MachineInstr *> &PrevInsts, - unsigned Iter, unsigned MaxIter) const { - llvm_unreachable("Target didn't implement ReduceLoopCount"); - } - - /// Delete the instruction OldInst and everything after it, replacing it with - /// an unconditional branch to NewDest. This is used by the tail merging pass. - virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, - MachineBasicBlock *NewDest) const; - - /// Return true if it's legal to split the given basic - /// block at the specified instruction (i.e. instruction would be the start - /// of a new basic block). - virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MBBI) const { - return true; - } - - /// Return true if it's profitable to predicate - /// instructions with accumulated instruction latency of "NumCycles" - /// of the specified basic block, where the probability of the instructions - /// being executed is given by Probability, and Confidence is a measure - /// of our confidence that it will be properly predicted. - virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, - unsigned ExtraPredCycles, - BranchProbability Probability) const { - return false; - } - - /// Second variant of isProfitableToIfCvt. This one - /// checks for the case where two basic blocks from true and false path - /// of a if-then-else (diamond) are predicated on mutally exclusive - /// predicates, where the probability of the true path being taken is given - /// by Probability, and Confidence is a measure of our confidence that it - /// will be properly predicted. - virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, - unsigned ExtraTCycles, - MachineBasicBlock &FMBB, unsigned NumFCycles, - unsigned ExtraFCycles, - BranchProbability Probability) const { - return false; - } - - /// Return true if it's profitable for if-converter to duplicate instructions - /// of specified accumulated instruction latencies in the specified MBB to - /// enable if-conversion. - /// The probability of the instructions being executed is given by - /// Probability, and Confidence is a measure of our confidence that it - /// will be properly predicted. - virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, - unsigned NumCycles, - BranchProbability Probability) const { - return false; - } - - /// Return true if it's profitable to unpredicate - /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually - /// exclusive predicates. - /// e.g. - /// subeq r0, r1, #1 - /// addne r0, r1, #1 - /// => - /// sub r0, r1, #1 - /// addne r0, r1, #1 - /// - /// This may be profitable is conditional instructions are always executed. - virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, - MachineBasicBlock &FMBB) const { - return false; - } - - /// Return true if it is possible to insert a select - /// instruction that chooses between TrueReg and FalseReg based on the - /// condition code in Cond. - /// - /// When successful, also return the latency in cycles from TrueReg, - /// FalseReg, and Cond to the destination register. In most cases, a select - /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 - /// - /// Some x86 implementations have 2-cycle cmov instructions. - /// - /// @param MBB Block where select instruction would be inserted. - /// @param Cond Condition returned by AnalyzeBranch. - /// @param TrueReg Virtual register to select when Cond is true. - /// @param FalseReg Virtual register to select when Cond is false. - /// @param CondCycles Latency from Cond+Branch to select output. - /// @param TrueCycles Latency from TrueReg to select output. - /// @param FalseCycles Latency from FalseReg to select output. - virtual bool canInsertSelect(const MachineBasicBlock &MBB, - ArrayRef<MachineOperand> Cond, unsigned TrueReg, - unsigned FalseReg, int &CondCycles, - int &TrueCycles, int &FalseCycles) const { - return false; - } - - /// Insert a select instruction into MBB before I that will copy TrueReg to - /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. - /// - /// This function can only be called after canInsertSelect() returned true. - /// The condition in Cond comes from AnalyzeBranch, and it can be assumed - /// that the same flags or registers required by Cond are available at the - /// insertion point. - /// - /// @param MBB Block where select instruction should be inserted. - /// @param I Insertion point. - /// @param DL Source location for debugging. - /// @param DstReg Virtual register to be defined by select instruction. - /// @param Cond Condition as computed by AnalyzeBranch. - /// @param TrueReg Virtual register to copy when Cond is true. - /// @param FalseReg Virtual register to copy when Cons is false. - virtual void insertSelect(MachineBasicBlock &MBB, - MachineBasicBlock::iterator I, const DebugLoc &DL, - unsigned DstReg, ArrayRef<MachineOperand> Cond, - unsigned TrueReg, unsigned FalseReg) const { - llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); - } - - /// Analyze the given select instruction, returning true if - /// it cannot be understood. It is assumed that MI->isSelect() is true. - /// - /// When successful, return the controlling condition and the operands that - /// determine the true and false result values. - /// - /// Result = SELECT Cond, TrueOp, FalseOp - /// - /// Some targets can optimize select instructions, for example by predicating - /// the instruction defining one of the operands. Such targets should set - /// Optimizable. - /// - /// @param MI Select instruction to analyze. - /// @param Cond Condition controlling the select. - /// @param TrueOp Operand number of the value selected when Cond is true. - /// @param FalseOp Operand number of the value selected when Cond is false. - /// @param Optimizable Returned as true if MI is optimizable. - /// @returns False on success. - virtual bool analyzeSelect(const MachineInstr &MI, - SmallVectorImpl<MachineOperand> &Cond, - unsigned &TrueOp, unsigned &FalseOp, - bool &Optimizable) const { - assert(MI.getDesc().isSelect() && "MI must be a select instruction"); - return true; - } - - /// Given a select instruction that was understood by - /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by - /// merging it with one of its operands. Returns NULL on failure. - /// - /// When successful, returns the new select instruction. The client is - /// responsible for deleting MI. - /// - /// If both sides of the select can be optimized, PreferFalse is used to pick - /// a side. - /// - /// @param MI Optimizable select instruction. - /// @param NewMIs Set that record all MIs in the basic block up to \p - /// MI. Has to be updated with any newly created MI or deleted ones. - /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. - /// @returns Optimized instruction or NULL. - virtual MachineInstr *optimizeSelect(MachineInstr &MI, - SmallPtrSetImpl<MachineInstr *> &NewMIs, - bool PreferFalse = false) const { - // This function must be implemented if Optimizable is ever set. - llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); - } - - /// Emit instructions to copy a pair of physical registers. - /// - /// This function should support copies within any legal register class as - /// well as any cross-class copies created during instruction selection. - /// - /// The source and destination registers may overlap, which may require a - /// careful implementation when multiple copy instructions are required for - /// large registers. See for example the ARM target. - virtual void copyPhysReg(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, const DebugLoc &DL, - unsigned DestReg, unsigned SrcReg, - bool KillSrc) const { - llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); - } - - /// Store the specified register of the given register class to the specified - /// stack frame index. The store instruction is to be added to the given - /// machine basic block before the specified machine instruction. If isKill - /// is true, the register operand is the last use and must be marked kill. - virtual void storeRegToStackSlot(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - unsigned SrcReg, bool isKill, int FrameIndex, - const TargetRegisterClass *RC, - const TargetRegisterInfo *TRI) const { - llvm_unreachable("Target didn't implement " - "TargetInstrInfo::storeRegToStackSlot!"); - } - - /// Load the specified register of the given register class from the specified - /// stack frame index. The load instruction is to be added to the given - /// machine basic block before the specified machine instruction. - virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - unsigned DestReg, int FrameIndex, - const TargetRegisterClass *RC, - const TargetRegisterInfo *TRI) const { - llvm_unreachable("Target didn't implement " - "TargetInstrInfo::loadRegFromStackSlot!"); - } - - /// This function is called for all pseudo instructions - /// that remain after register allocation. Many pseudo instructions are - /// created to help register allocation. This is the place to convert them - /// into real instructions. The target can edit MI in place, or it can insert - /// new instructions and erase MI. The function should return true if - /// anything was changed. - virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } - - /// Check whether the target can fold a load that feeds a subreg operand - /// (or a subreg operand that feeds a store). - /// For example, X86 may want to return true if it can fold - /// movl (%esp), %eax - /// subb, %al, ... - /// Into: - /// subb (%esp), ... - /// - /// Ideally, we'd like the target implementation of foldMemoryOperand() to - /// reject subregs - but since this behavior used to be enforced in the - /// target-independent code, moving this responsibility to the targets - /// has the potential of causing nasty silent breakage in out-of-tree targets. - virtual bool isSubregFoldable() const { return false; } - - /// Attempt to fold a load or store of the specified stack - /// slot into the specified machine instruction for the specified operand(s). - /// If this is possible, a new instruction is returned with the specified - /// operand folded, otherwise NULL is returned. - /// The new instruction is inserted before MI, and the client is responsible - /// for removing the old instruction. - MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, - int FrameIndex, - LiveIntervals *LIS = nullptr) const; - - /// Same as the previous version except it allows folding of any load and - /// store from / to any address, not just from a specific stack slot. - MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, - MachineInstr &LoadMI, - LiveIntervals *LIS = nullptr) const; - - /// Return true when there is potentially a faster code sequence - /// for an instruction chain ending in \p Root. All potential patterns are - /// returned in the \p Pattern vector. Pattern should be sorted in priority - /// order since the pattern evaluator stops checking as soon as it finds a - /// faster sequence. - /// \param Root - Instruction that could be combined with one of its operands - /// \param Patterns - Vector of possible combination patterns - virtual bool getMachineCombinerPatterns( - MachineInstr &Root, - SmallVectorImpl<MachineCombinerPattern> &Patterns) const; - - /// Return true when a code sequence can improve throughput. It - /// should be called only for instructions in loops. - /// \param Pattern - combiner pattern - virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const; - - /// Return true if the input \P Inst is part of a chain of dependent ops - /// that are suitable for reassociation, otherwise return false. - /// If the instruction's operands must be commuted to have a previous - /// instruction of the same type define the first source operand, \P Commuted - /// will be set to true. - bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; - - /// Return true when \P Inst is both associative and commutative. - virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const { - return false; - } - - /// Return true when \P Inst has reassociable operands in the same \P MBB. - virtual bool hasReassociableOperands(const MachineInstr &Inst, - const MachineBasicBlock *MBB) const; - - /// Return true when \P Inst has reassociable sibling. - bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const; - - /// When getMachineCombinerPatterns() finds patterns, this function generates - /// the instructions that could replace the original code sequence. The client - /// has to decide whether the actual replacement is beneficial or not. - /// \param Root - Instruction that could be combined with one of its operands - /// \param Pattern - Combination pattern for Root - /// \param InsInstrs - Vector of new instructions that implement P - /// \param DelInstrs - Old instructions, including Root, that could be - /// replaced by InsInstr - /// \param InstrIdxForVirtReg - map of virtual register to instruction in - /// InsInstr that defines it - virtual void genAlternativeCodeSequence( - MachineInstr &Root, MachineCombinerPattern Pattern, - SmallVectorImpl<MachineInstr *> &InsInstrs, - SmallVectorImpl<MachineInstr *> &DelInstrs, - DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; - - /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to - /// reduce critical path length. - void reassociateOps(MachineInstr &Root, MachineInstr &Prev, - MachineCombinerPattern Pattern, - SmallVectorImpl<MachineInstr *> &InsInstrs, - SmallVectorImpl<MachineInstr *> &DelInstrs, - DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; - - /// This is an architecture-specific helper function of reassociateOps. - /// Set special operand attributes for new instructions after reassociation. - virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, - MachineInstr &NewMI1, - MachineInstr &NewMI2) const {} - - /// Return true when a target supports MachineCombiner. - virtual bool useMachineCombiner() const { return false; } - -protected: - /// Target-dependent implementation for foldMemoryOperand. - /// Target-independent code in foldMemoryOperand will - /// take care of adding a MachineMemOperand to the newly created instruction. - /// The instruction and any auxiliary instructions necessary will be inserted - /// at InsertPt. - virtual MachineInstr * - foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, - ArrayRef<unsigned> Ops, - MachineBasicBlock::iterator InsertPt, int FrameIndex, - LiveIntervals *LIS = nullptr) const { - return nullptr; - } - - /// Target-dependent implementation for foldMemoryOperand. - /// Target-independent code in foldMemoryOperand will - /// take care of adding a MachineMemOperand to the newly created instruction. - /// The instruction and any auxiliary instructions necessary will be inserted - /// at InsertPt. - virtual MachineInstr *foldMemoryOperandImpl( - MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, - MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, - LiveIntervals *LIS = nullptr) const { - return nullptr; - } - - /// \brief Target-dependent implementation of getRegSequenceInputs. - /// - /// \returns true if it is possible to build the equivalent - /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. - /// - /// \pre MI.isRegSequenceLike(). - /// - /// \see TargetInstrInfo::getRegSequenceInputs. - virtual bool getRegSequenceLikeInputs( - const MachineInstr &MI, unsigned DefIdx, - SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { - return false; - } - - /// \brief Target-dependent implementation of getExtractSubregInputs. - /// - /// \returns true if it is possible to build the equivalent - /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. - /// - /// \pre MI.isExtractSubregLike(). - /// - /// \see TargetInstrInfo::getExtractSubregInputs. - virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, - unsigned DefIdx, - RegSubRegPairAndIdx &InputReg) const { - return false; - } - - /// \brief Target-dependent implementation of getInsertSubregInputs. - /// - /// \returns true if it is possible to build the equivalent - /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. - /// - /// \pre MI.isInsertSubregLike(). - /// - /// \see TargetInstrInfo::getInsertSubregInputs. - virtual bool - getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, - RegSubRegPair &BaseReg, - RegSubRegPairAndIdx &InsertedReg) const { - return false; - } - -public: - /// getAddressSpaceForPseudoSourceKind - Given the kind of memory - /// (e.g. stack) the target returns the corresponding address space. - virtual unsigned - getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind) const { - return 0; - } - - /// unfoldMemoryOperand - Separate a single instruction which folded a load or - /// a store or a load and a store into two or more instruction. If this is - /// possible, returns true as well as the new instructions by reference. - virtual bool - unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, - bool UnfoldLoad, bool UnfoldStore, - SmallVectorImpl<MachineInstr *> &NewMIs) const { - return false; - } - - virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, - SmallVectorImpl<SDNode *> &NewNodes) const { - return false; - } - - /// Returns the opcode of the would be new - /// instruction after load / store are unfolded from an instruction of the - /// specified opcode. It returns zero if the specified unfolding is not - /// possible. If LoadRegIndex is non-null, it is filled in with the operand - /// index of the operand which will hold the register holding the loaded - /// value. - virtual unsigned - getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, - unsigned *LoadRegIndex = nullptr) const { - return 0; - } - - /// This is used by the pre-regalloc scheduler to determine if two loads are - /// loading from the same base address. It should only return true if the base - /// pointers are the same and the only differences between the two addresses - /// are the offset. It also returns the offsets by reference. - virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, - int64_t &Offset1, - int64_t &Offset2) const { - return false; - } - - /// This is a used by the pre-regalloc scheduler to determine (in conjunction - /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. - /// On some targets if two loads are loading from - /// addresses in the same cache line, it's better if they are scheduled - /// together. This function takes two integers that represent the load offsets - /// from the common base address. It returns true if it decides it's desirable - /// to schedule the two loads together. "NumLoads" is the number of loads that - /// have already been scheduled after Load1. - virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, - int64_t Offset1, int64_t Offset2, - unsigned NumLoads) const { - return false; - } - - /// Get the base register and byte offset of an instruction that reads/writes - /// memory. - virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, - int64_t &Offset, - const TargetRegisterInfo *TRI) const { - return false; - } - - /// Return true if the instruction contains a base register and offset. If - /// true, the function also sets the operand position in the instruction - /// for the base register and offset. - virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, - unsigned &BasePos, - unsigned &OffsetPos) const { - return false; - } - - /// If the instruction is an increment of a constant value, return the amount. - virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const { - return false; - } - - /// Returns true if the two given memory operations should be scheduled - /// adjacent. Note that you have to add: - /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); - /// or - /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); - /// to TargetPassConfig::createMachineScheduler() to have an effect. - virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1, - MachineInstr &SecondLdSt, unsigned BaseReg2, - unsigned NumLoads) const { - llvm_unreachable("target did not implement shouldClusterMemOps()"); - } - - /// Reverses the branch condition of the specified condition list, - /// returning false on success and true if it cannot be reversed. - virtual bool - reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { - return true; - } - - /// Insert a noop into the instruction stream at the specified point. - virtual void insertNoop(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI) const; - - /// Return the noop instruction to use for a noop. - virtual void getNoop(MCInst &NopInst) const; - - /// Return true for post-incremented instructions. - virtual bool isPostIncrement(const MachineInstr &MI) const { return false; } - - /// Returns true if the instruction is already predicated. - virtual bool isPredicated(const MachineInstr &MI) const { return false; } - - /// Returns true if the instruction is a - /// terminator instruction that has not been predicated. - virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const; - - /// Returns true if MI is an unconditional tail call. - virtual bool isUnconditionalTailCall(const MachineInstr &MI) const { - return false; - } - - /// Returns true if the tail call can be made conditional on BranchCond. - virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, - const MachineInstr &TailCall) const { - return false; - } - - /// Replace the conditional branch in MBB with a conditional tail call. - virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, - SmallVectorImpl<MachineOperand> &Cond, - const MachineInstr &TailCall) const { - llvm_unreachable("Target didn't implement replaceBranchWithTailCall!"); - } - - /// Convert the instruction into a predicated instruction. - /// It returns true if the operation was successful. - virtual bool PredicateInstruction(MachineInstr &MI, - ArrayRef<MachineOperand> Pred) const; - - /// Returns true if the first specified predicate - /// subsumes the second, e.g. GE subsumes GT. - virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, - ArrayRef<MachineOperand> Pred2) const { - return false; - } - - /// If the specified instruction defines any predicate - /// or condition code register(s) used for predication, returns true as well - /// as the definition predicate(s) by reference. - virtual bool DefinesPredicate(MachineInstr &MI, - std::vector<MachineOperand> &Pred) const { - return false; - } - - /// Return true if the specified instruction can be predicated. - /// By default, this returns true for every instruction with a - /// PredicateOperand. - virtual bool isPredicable(const MachineInstr &MI) const { - return MI.getDesc().isPredicable(); - } - - /// Return true if it's safe to move a machine - /// instruction that defines the specified register class. - virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { - return true; - } - - /// Test if the given instruction should be considered a scheduling boundary. - /// This primarily includes labels and terminators. - virtual bool isSchedulingBoundary(const MachineInstr &MI, - const MachineBasicBlock *MBB, - const MachineFunction &MF) const; - - /// Measure the specified inline asm to determine an approximation of its - /// length. - virtual unsigned getInlineAsmLength(const char *Str, - const MCAsmInfo &MAI) const; - - /// Allocate and return a hazard recognizer to use for this target when - /// scheduling the machine instructions before register allocation. - virtual ScheduleHazardRecognizer * - CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, - const ScheduleDAG *DAG) const; - - /// Allocate and return a hazard recognizer to use for this target when - /// scheduling the machine instructions before register allocation. - virtual ScheduleHazardRecognizer * - CreateTargetMIHazardRecognizer(const InstrItineraryData *, - const ScheduleDAG *DAG) const; - - /// Allocate and return a hazard recognizer to use for this target when - /// scheduling the machine instructions after register allocation. - virtual ScheduleHazardRecognizer * - CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, - const ScheduleDAG *DAG) const; - - /// Allocate and return a hazard recognizer to use for by non-scheduling - /// passes. - virtual ScheduleHazardRecognizer * - CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { - return nullptr; - } - - /// Provide a global flag for disabling the PreRA hazard recognizer that - /// targets may choose to honor. - bool usePreRAHazardRecognizer() const; - - /// For a comparison instruction, return the source registers - /// in SrcReg and SrcReg2 if having two register operands, and the value it - /// compares against in CmpValue. Return true if the comparison instruction - /// can be analyzed. - virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, - unsigned &SrcReg2, int &Mask, int &Value) const { - return false; - } - - /// See if the comparison instruction can be converted - /// into something more efficient. E.g., on ARM most instructions can set the - /// flags register, obviating the need for a separate CMP. - virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, - unsigned SrcReg2, int Mask, int Value, - const MachineRegisterInfo *MRI) const { - return false; - } - virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } - - /// Try to remove the load by folding it to a register operand at the use. - /// We fold the load instructions if and only if the - /// def and use are in the same BB. We only look at one load and see - /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register - /// defined by the load we are trying to fold. DefMI returns the machine - /// instruction that defines FoldAsLoadDefReg, and the function returns - /// the machine instruction generated due to folding. - virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, - const MachineRegisterInfo *MRI, - unsigned &FoldAsLoadDefReg, - MachineInstr *&DefMI) const { - return nullptr; - } - - /// 'Reg' is known to be defined by a move immediate instruction, - /// try to fold the immediate into the use instruction. - /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, - /// then the caller may assume that DefMI has been erased from its parent - /// block. The caller may assume that it will not be erased by this - /// function otherwise. - virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, - unsigned Reg, MachineRegisterInfo *MRI) const { - return false; - } - - /// Return the number of u-operations the given machine - /// instruction will be decoded to on the target cpu. The itinerary's - /// IssueWidth is the number of microops that can be dispatched each - /// cycle. An instruction with zero microops takes no dispatch resources. - virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, - const MachineInstr &MI) const; - - /// Return true for pseudo instructions that don't consume any - /// machine resources in their current form. These are common cases that the - /// scheduler should consider free, rather than conservatively handling them - /// as instructions with no itinerary. - bool isZeroCost(unsigned Opcode) const { - return Opcode <= TargetOpcode::COPY; - } - - virtual int getOperandLatency(const InstrItineraryData *ItinData, - SDNode *DefNode, unsigned DefIdx, - SDNode *UseNode, unsigned UseIdx) const; - - /// Compute and return the use operand latency of a given pair of def and use. - /// In most cases, the static scheduling itinerary was enough to determine the - /// operand latency. But it may not be possible for instructions with variable - /// number of defs / uses. - /// - /// This is a raw interface to the itinerary that may be directly overridden - /// by a target. Use computeOperandLatency to get the best estimate of - /// latency. - virtual int getOperandLatency(const InstrItineraryData *ItinData, - const MachineInstr &DefMI, unsigned DefIdx, - const MachineInstr &UseMI, - unsigned UseIdx) const; - - /// Compute the instruction latency of a given instruction. - /// If the instruction has higher cost when predicated, it's returned via - /// PredCost. - virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, - const MachineInstr &MI, - unsigned *PredCost = nullptr) const; - - virtual unsigned getPredicationCost(const MachineInstr &MI) const; - - virtual int getInstrLatency(const InstrItineraryData *ItinData, - SDNode *Node) const; - - /// Return the default expected latency for a def based on its opcode. - unsigned defaultDefLatency(const MCSchedModel &SchedModel, - const MachineInstr &DefMI) const; - - int computeDefOperandLatency(const InstrItineraryData *ItinData, - const MachineInstr &DefMI) const; - - /// Return true if this opcode has high latency to its result. - virtual bool isHighLatencyDef(int opc) const { return false; } - - /// Compute operand latency between a def of 'Reg' - /// and a use in the current loop. Return true if the target considered - /// it 'high'. This is used by optimization passes such as machine LICM to - /// determine whether it makes sense to hoist an instruction out even in a - /// high register pressure situation. - virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, - const MachineRegisterInfo *MRI, - const MachineInstr &DefMI, unsigned DefIdx, - const MachineInstr &UseMI, - unsigned UseIdx) const { - return false; - } - - /// Compute operand latency of a def of 'Reg'. Return true - /// if the target considered it 'low'. - virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, - const MachineInstr &DefMI, - unsigned DefIdx) const; - - /// Perform target-specific instruction verification. - virtual bool verifyInstruction(const MachineInstr &MI, - StringRef &ErrInfo) const { - return true; - } - - /// Return the current execution domain and bit mask of - /// possible domains for instruction. - /// - /// Some micro-architectures have multiple execution domains, and multiple - /// opcodes that perform the same operation in different domains. For - /// example, the x86 architecture provides the por, orps, and orpd - /// instructions that all do the same thing. There is a latency penalty if a - /// register is written in one domain and read in another. - /// - /// This function returns a pair (domain, mask) containing the execution - /// domain of MI, and a bit mask of possible domains. The setExecutionDomain - /// function can be used to change the opcode to one of the domains in the - /// bit mask. Instructions whose execution domain can't be changed should - /// return a 0 mask. - /// - /// The execution domain numbers don't have any special meaning except domain - /// 0 is used for instructions that are not associated with any interesting - /// execution domain. - /// - virtual std::pair<uint16_t, uint16_t> - getExecutionDomain(const MachineInstr &MI) const { - return std::make_pair(0, 0); - } - - /// Change the opcode of MI to execute in Domain. - /// - /// The bit (1 << Domain) must be set in the mask returned from - /// getExecutionDomain(MI). - virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} - - /// Returns the preferred minimum clearance - /// before an instruction with an unwanted partial register update. - /// - /// Some instructions only write part of a register, and implicitly need to - /// read the other parts of the register. This may cause unwanted stalls - /// preventing otherwise unrelated instructions from executing in parallel in - /// an out-of-order CPU. - /// - /// For example, the x86 instruction cvtsi2ss writes its result to bits - /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so - /// the instruction needs to wait for the old value of the register to become - /// available: - /// - /// addps %xmm1, %xmm0 - /// movaps %xmm0, (%rax) - /// cvtsi2ss %rbx, %xmm0 - /// - /// In the code above, the cvtsi2ss instruction needs to wait for the addps - /// instruction before it can issue, even though the high bits of %xmm0 - /// probably aren't needed. - /// - /// This hook returns the preferred clearance before MI, measured in - /// instructions. Other defs of MI's operand OpNum are avoided in the last N - /// instructions before MI. It should only return a positive value for - /// unwanted dependencies. If the old bits of the defined register have - /// useful values, or if MI is determined to otherwise read the dependency, - /// the hook should return 0. - /// - /// The unwanted dependency may be handled by: - /// - /// 1. Allocating the same register for an MI def and use. That makes the - /// unwanted dependency identical to a required dependency. - /// - /// 2. Allocating a register for the def that has no defs in the previous N - /// instructions. - /// - /// 3. Calling breakPartialRegDependency() with the same arguments. This - /// allows the target to insert a dependency breaking instruction. - /// - virtual unsigned - getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, - const TargetRegisterInfo *TRI) const { - // The default implementation returns 0 for no partial register dependency. - return 0; - } - - /// \brief Return the minimum clearance before an instruction that reads an - /// unused register. - /// - /// For example, AVX instructions may copy part of a register operand into - /// the unused high bits of the destination register. - /// - /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14 - /// - /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a - /// false dependence on any previous write to %xmm0. - /// - /// This hook works similarly to getPartialRegUpdateClearance, except that it - /// does not take an operand index. Instead sets \p OpNum to the index of the - /// unused register. - virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, - const TargetRegisterInfo *TRI) const { - // The default implementation returns 0 for no undef register dependency. - return 0; - } - - /// Insert a dependency-breaking instruction - /// before MI to eliminate an unwanted dependency on OpNum. - /// - /// If it wasn't possible to avoid a def in the last N instructions before MI - /// (see getPartialRegUpdateClearance), this hook will be called to break the - /// unwanted dependency. - /// - /// On x86, an xorps instruction can be used as a dependency breaker: - /// - /// addps %xmm1, %xmm0 - /// movaps %xmm0, (%rax) - /// xorps %xmm0, %xmm0 - /// cvtsi2ss %rbx, %xmm0 - /// - /// An <imp-kill> operand should be added to MI if an instruction was - /// inserted. This ties the instructions together in the post-ra scheduler. - /// - virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, - const TargetRegisterInfo *TRI) const {} - - /// Create machine specific model for scheduling. - virtual DFAPacketizer * - CreateTargetScheduleState(const TargetSubtargetInfo &) const { - return nullptr; - } - - /// Sometimes, it is possible for the target - /// to tell, even without aliasing information, that two MIs access different - /// memory addresses. This function returns true if two MIs access different - /// memory addresses and false otherwise. - /// - /// Assumes any physical registers used to compute addresses have the same - /// value for both instructions. (This is the most useful assumption for - /// post-RA scheduling.) - /// - /// See also MachineInstr::mayAlias, which is implemented on top of this - /// function. - virtual bool - areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, - AliasAnalysis *AA = nullptr) const { - assert((MIa.mayLoad() || MIa.mayStore()) && - "MIa must load from or modify a memory location"); - assert((MIb.mayLoad() || MIb.mayStore()) && - "MIb must load from or modify a memory location"); - return false; - } - - /// \brief Return the value to use for the MachineCSE's LookAheadLimit, - /// which is a heuristic used for CSE'ing phys reg defs. - virtual unsigned getMachineCSELookAheadLimit() const { - // The default lookahead is small to prevent unprofitable quadratic - // behavior. - return 5; - } - - /// Return an array that contains the ids of the target indices (used for the - /// TargetIndex machine operand) and their names. - /// - /// MIR Serialization is able to serialize only the target indices that are - /// defined by this method. - virtual ArrayRef<std::pair<int, const char *>> - getSerializableTargetIndices() const { - return None; - } - - /// Decompose the machine operand's target flags into two values - the direct - /// target flag value and any of bit flags that are applied. - virtual std::pair<unsigned, unsigned> - decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { - return std::make_pair(0u, 0u); - } - - /// Return an array that contains the direct target flag values and their - /// names. - /// - /// MIR Serialization is able to serialize only the target flags that are - /// defined by this method. - virtual ArrayRef<std::pair<unsigned, const char *>> - getSerializableDirectMachineOperandTargetFlags() const { - return None; - } - - /// Return an array that contains the bitmask target flag values and their - /// names. - /// - /// MIR Serialization is able to serialize only the target flags that are - /// defined by this method. - virtual ArrayRef<std::pair<unsigned, const char *>> - getSerializableBitmaskMachineOperandTargetFlags() const { - return None; - } - - /// Return an array that contains the MMO target flag values and their - /// names. - /// - /// MIR Serialization is able to serialize only the MMO target flags that are - /// defined by this method. - virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> - getSerializableMachineMemOperandTargetFlags() const { - return None; - } - - /// Determines whether \p Inst is a tail call instruction. Override this - /// method on targets that do not properly set MCID::Return and MCID::Call on - /// tail call instructions." - virtual bool isTailCall(const MachineInstr &Inst) const { - return Inst.isReturn() && Inst.isCall(); - } - - /// True if the instruction is bound to the top of its basic block and no - /// other instructions shall be inserted before it. This can be implemented - /// to prevent register allocator to insert spills before such instructions. - virtual bool isBasicBlockPrologue(const MachineInstr &MI) const { - return false; - } - - /// \brief Describes the number of instructions that it will take to call and - /// construct a frame for a given outlining candidate. - struct MachineOutlinerInfo { - /// Number of instructions to call an outlined function for this candidate. - unsigned CallOverhead; - - /// \brief Number of instructions to construct an outlined function frame - /// for this candidate. - unsigned FrameOverhead; - - /// \brief Represents the specific instructions that must be emitted to - /// construct a call to this candidate. - unsigned CallConstructionID; - - /// \brief Represents the specific instructions that must be emitted to - /// construct a frame for this candidate's outlined function. - unsigned FrameConstructionID; - - MachineOutlinerInfo() {} - MachineOutlinerInfo(unsigned CallOverhead, unsigned FrameOverhead, - unsigned CallConstructionID, - unsigned FrameConstructionID) - : CallOverhead(CallOverhead), FrameOverhead(FrameOverhead), - CallConstructionID(CallConstructionID), - FrameConstructionID(FrameConstructionID) {} - }; - - /// \brief Returns a \p MachineOutlinerInfo struct containing target-specific - /// information for a set of outlining candidates. - virtual MachineOutlinerInfo getOutlininingCandidateInfo( - std::vector< - std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> - &RepeatedSequenceLocs) const { - llvm_unreachable( - "Target didn't implement TargetInstrInfo::getOutliningOverhead!"); - } - - /// Represents how an instruction should be mapped by the outliner. - /// \p Legal instructions are those which are safe to outline. - /// \p Illegal instructions are those which cannot be outlined. - /// \p Invisible instructions are instructions which can be outlined, but - /// shouldn't actually impact the outlining result. - enum MachineOutlinerInstrType { Legal, Illegal, Invisible }; - - /// Returns how or if \p MI should be outlined. - virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const { - llvm_unreachable( - "Target didn't implement TargetInstrInfo::getOutliningType!"); - } - - /// Insert a custom epilogue for outlined functions. - /// This may be empty, in which case no epilogue or return statement will be - /// emitted. - virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB, - MachineFunction &MF, - const MachineOutlinerInfo &MInfo) const { - llvm_unreachable( - "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!"); - } - - /// Insert a call to an outlined function into the program. - /// Returns an iterator to the spot where we inserted the call. This must be - /// implemented by the target. - virtual MachineBasicBlock::iterator - insertOutlinedCall(Module &M, MachineBasicBlock &MBB, - MachineBasicBlock::iterator &It, MachineFunction &MF, - const MachineOutlinerInfo &MInfo) const { - llvm_unreachable( - "Target didn't implement TargetInstrInfo::insertOutlinedCall!"); - } - - /// Insert a custom prologue for outlined functions. - /// This may be empty, in which case no prologue will be emitted. - virtual void insertOutlinerPrologue(MachineBasicBlock &MBB, - MachineFunction &MF, - const MachineOutlinerInfo &MInfo) const { - llvm_unreachable( - "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!"); - } - - /// Return true if the function can safely be outlined from. - /// A function \p MF is considered safe for outlining if an outlined function - /// produced from instructions in F will produce a program which produces the - /// same output for any set of given inputs. - virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, - bool OutlineFromLinkOnceODRs) const { - llvm_unreachable("Target didn't implement " - "TargetInstrInfo::isFunctionSafeToOutlineFrom!"); - } - -private: - unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; - unsigned CatchRetOpcode; - unsigned ReturnOpcode; -}; - -/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. -template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { - using RegInfo = DenseMapInfo<unsigned>; - - static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { - return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), - RegInfo::getEmptyKey()); - } - - static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { - return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), - RegInfo::getTombstoneKey()); - } - - /// \brief Reuse getHashValue implementation from - /// std::pair<unsigned, unsigned>. - static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { - std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg); - return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); - } - - static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, - const TargetInstrInfo::RegSubRegPair &RHS) { - return RegInfo::isEqual(LHS.Reg, RHS.Reg) && - RegInfo::isEqual(LHS.SubReg, RHS.SubReg); - } -}; - -} // end namespace llvm - -#endif // LLVM_TARGET_TARGETINSTRINFO_H diff --git a/include/llvm/Target/TargetLowering.h b/include/llvm/Target/TargetLowering.h index c1d0b32f7d75..994480ebc90e 100644 --- a/include/llvm/Target/TargetLowering.h +++ b/include/llvm/Target/TargetLowering.h @@ -2678,6 +2678,15 @@ public: const SelectionDAG &DAG, unsigned Depth = 0) const; + /// Determine which of the bits of FrameIndex \p FIOp are known to be 0. + /// Default implementation computes low bits based on alignment + /// information. This should preserve known bits passed into it. + virtual void computeKnownBitsForFrameIndex(const SDValue FIOp, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth = 0) const; + /// This method can be implemented by targets that want to expose additional /// information about sign bits to the DAG Combiner. The DemandedElts /// argument allows us to only collect the minimum sign bits that are shared |