summaryrefslogtreecommitdiff
path: root/include/llvm/Target
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Target')
-rw-r--r--include/llvm/Target/Target.td18
-rw-r--r--include/llvm/Target/TargetFrameLowering.h348
-rw-r--r--include/llvm/Target/TargetInstrInfo.h1691
-rw-r--r--include/llvm/Target/TargetLowering.h9
4 files changed, 24 insertions, 2042 deletions
diff --git a/include/llvm/Target/Target.td b/include/llvm/Target/Target.td
index 048bd1f2a0cc..7dc2aec324ec 100644
--- a/include/llvm/Target/Target.td
+++ b/include/llvm/Target/Target.td
@@ -884,12 +884,16 @@ class InstrInfo {
// Standard Pseudo Instructions.
// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
// Only these instructions are allowed in the TargetOpcode namespace.
-let isCodeGenOnly = 1, isPseudo = 1, hasNoSchedulingInfo = 1,
- Namespace = "TargetOpcode" in {
+// Ensure mayLoad and mayStore have a default value, so as not to break
+// targets that set guessInstructionProperties=0. Any local definition of
+// mayLoad/mayStore takes precedence over these default values.
+let mayLoad = 0, mayStore = 0, isCodeGenOnly = 1, isPseudo = 1,
+ hasNoSchedulingInfo = 1, Namespace = "TargetOpcode" in {
def PHI : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins variable_ops);
let AsmString = "PHINODE";
+ let hasSideEffects = 1;
}
def INLINEASM : Instruction {
let OutOperandList = (outs);
@@ -902,13 +906,15 @@ def CFI_INSTRUCTION : Instruction {
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = 1;
- let isNotDuplicable = 1;
+ let hasSideEffects = 1;
+ let isNotDuplicable = 0;
}
def EH_LABEL : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = 1;
+ let hasSideEffects = 1;
let isNotDuplicable = 1;
}
def GC_LABEL : Instruction {
@@ -916,6 +922,7 @@ def GC_LABEL : Instruction {
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = 1;
+ let hasSideEffects = 1;
let isNotDuplicable = 1;
}
def ANNOTATION_LABEL : Instruction {
@@ -923,6 +930,7 @@ def ANNOTATION_LABEL : Instruction {
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = 1;
+ let hasSideEffects = 1;
let isNotDuplicable = 1;
}
def KILL : Instruction {
@@ -990,6 +998,7 @@ def BUNDLE : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "BUNDLE";
+ let hasSideEffects = 1;
}
def LIFETIME_START : Instruction {
let OutOperandList = (outs);
@@ -1006,6 +1015,7 @@ def LIFETIME_END : Instruction {
def STACKMAP : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
+ let hasSideEffects = 1;
let isCall = 1;
let mayLoad = 1;
let usesCustomInserter = 1;
@@ -1014,6 +1024,7 @@ def PATCHPOINT : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
i32imm:$nargs, i32imm:$cc, variable_ops);
+ let hasSideEffects = 1;
let isCall = 1;
let mayLoad = 1;
let usesCustomInserter = 1;
@@ -1048,6 +1059,7 @@ def FAULTING_OP : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins variable_ops);
let usesCustomInserter = 1;
+ let hasSideEffects = 1;
let mayLoad = 1;
let mayStore = 1;
let isTerminator = 1;
diff --git a/include/llvm/Target/TargetFrameLowering.h b/include/llvm/Target/TargetFrameLowering.h
deleted file mode 100644
index 31017cbc27b8..000000000000
--- a/include/llvm/Target/TargetFrameLowering.h
+++ /dev/null
@@ -1,348 +0,0 @@
-//===-- llvm/Target/TargetFrameLowering.h ---------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Interface to describe the layout of a stack frame on the target machine.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TARGET_TARGETFRAMELOWERING_H
-#define LLVM_TARGET_TARGETFRAMELOWERING_H
-
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include <utility>
-#include <vector>
-
-namespace llvm {
- class BitVector;
- class CalleeSavedInfo;
- class MachineFunction;
- class RegScavenger;
-
-/// Information about stack frame layout on the target. It holds the direction
-/// of stack growth, the known stack alignment on entry to each function, and
-/// the offset to the locals area.
-///
-/// The offset to the local area is the offset from the stack pointer on
-/// function entry to the first location where function data (local variables,
-/// spill locations) can be stored.
-class TargetFrameLowering {
-public:
- enum StackDirection {
- StackGrowsUp, // Adding to the stack increases the stack address
- StackGrowsDown // Adding to the stack decreases the stack address
- };
-
- // Maps a callee saved register to a stack slot with a fixed offset.
- struct SpillSlot {
- unsigned Reg;
- int Offset; // Offset relative to stack pointer on function entry.
- };
-private:
- StackDirection StackDir;
- unsigned StackAlignment;
- unsigned TransientStackAlignment;
- int LocalAreaOffset;
- bool StackRealignable;
-public:
- TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO,
- unsigned TransAl = 1, bool StackReal = true)
- : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl),
- LocalAreaOffset(LAO), StackRealignable(StackReal) {}
-
- virtual ~TargetFrameLowering();
-
- // These methods return information that describes the abstract stack layout
- // of the target machine.
-
- /// getStackGrowthDirection - Return the direction the stack grows
- ///
- StackDirection getStackGrowthDirection() const { return StackDir; }
-
- /// getStackAlignment - This method returns the number of bytes to which the
- /// stack pointer must be aligned on entry to a function. Typically, this
- /// is the largest alignment for any data object in the target.
- ///
- unsigned getStackAlignment() const { return StackAlignment; }
-
- /// alignSPAdjust - This method aligns the stack adjustment to the correct
- /// alignment.
- ///
- int alignSPAdjust(int SPAdj) const {
- if (SPAdj < 0) {
- SPAdj = -alignTo(-SPAdj, StackAlignment);
- } else {
- SPAdj = alignTo(SPAdj, StackAlignment);
- }
- return SPAdj;
- }
-
- /// getTransientStackAlignment - This method returns the number of bytes to
- /// which the stack pointer must be aligned at all times, even between
- /// calls.
- ///
- unsigned getTransientStackAlignment() const {
- return TransientStackAlignment;
- }
-
- /// isStackRealignable - This method returns whether the stack can be
- /// realigned.
- bool isStackRealignable() const {
- return StackRealignable;
- }
-
- /// Return the skew that has to be applied to stack alignment under
- /// certain conditions (e.g. stack was adjusted before function \p MF
- /// was called).
- virtual unsigned getStackAlignmentSkew(const MachineFunction &MF) const;
-
- /// getOffsetOfLocalArea - This method returns the offset of the local area
- /// from the stack pointer on entrance to a function.
- ///
- int getOffsetOfLocalArea() const { return LocalAreaOffset; }
-
- /// isFPCloseToIncomingSP - Return true if the frame pointer is close to
- /// the incoming stack pointer, false if it is close to the post-prologue
- /// stack pointer.
- virtual bool isFPCloseToIncomingSP() const { return true; }
-
- /// assignCalleeSavedSpillSlots - Allows target to override spill slot
- /// assignment logic. If implemented, assignCalleeSavedSpillSlots() should
- /// assign frame slots to all CSI entries and return true. If this method
- /// returns false, spill slots will be assigned using generic implementation.
- /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of
- /// CSI.
- virtual bool
- assignCalleeSavedSpillSlots(MachineFunction &MF,
- const TargetRegisterInfo *TRI,
- std::vector<CalleeSavedInfo> &CSI) const {
- return false;
- }
-
- /// getCalleeSavedSpillSlots - This method returns a pointer to an array of
- /// pairs, that contains an entry for each callee saved register that must be
- /// spilled to a particular stack location if it is spilled.
- ///
- /// Each entry in this array contains a <register,offset> pair, indicating the
- /// fixed offset from the incoming stack pointer that each register should be
- /// spilled at. If a register is not listed here, the code generator is
- /// allowed to spill it anywhere it chooses.
- ///
- virtual const SpillSlot *
- getCalleeSavedSpillSlots(unsigned &NumEntries) const {
- NumEntries = 0;
- return nullptr;
- }
-
- /// targetHandlesStackFrameRounding - Returns true if the target is
- /// responsible for rounding up the stack frame (probably at emitPrologue
- /// time).
- virtual bool targetHandlesStackFrameRounding() const {
- return false;
- }
-
- /// Returns true if the target will correctly handle shrink wrapping.
- virtual bool enableShrinkWrapping(const MachineFunction &MF) const {
- return false;
- }
-
- /// Returns true if the stack slot holes in the fixed and callee-save stack
- /// area should be used when allocating other stack locations to reduce stack
- /// size.
- virtual bool enableStackSlotScavenging(const MachineFunction &MF) const {
- return false;
- }
-
- /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
- /// the function.
- virtual void emitPrologue(MachineFunction &MF,
- MachineBasicBlock &MBB) const = 0;
- virtual void emitEpilogue(MachineFunction &MF,
- MachineBasicBlock &MBB) const = 0;
-
- /// Replace a StackProbe stub (if any) with the actual probe code inline
- virtual void inlineStackProbe(MachineFunction &MF,
- MachineBasicBlock &PrologueMBB) const {}
-
- /// Adjust the prologue to have the function use segmented stacks. This works
- /// by adding a check even before the "normal" function prologue.
- virtual void adjustForSegmentedStacks(MachineFunction &MF,
- MachineBasicBlock &PrologueMBB) const {}
-
- /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
- /// the assembly prologue to explicitly handle the stack.
- virtual void adjustForHiPEPrologue(MachineFunction &MF,
- MachineBasicBlock &PrologueMBB) const {}
-
- /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
- /// saved registers and returns true if it isn't possible / profitable to do
- /// so by issuing a series of store instructions via
- /// storeRegToStackSlot(). Returns false otherwise.
- virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- const std::vector<CalleeSavedInfo> &CSI,
- const TargetRegisterInfo *TRI) const {
- return false;
- }
-
- /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
- /// saved registers and returns true if it isn't possible / profitable to do
- /// so by issuing a series of load instructions via loadRegToStackSlot().
- /// If it returns true, and any of the registers in CSI is not restored,
- /// it sets the corresponding Restored flag in CSI to false.
- /// Returns false otherwise.
- virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- std::vector<CalleeSavedInfo> &CSI,
- const TargetRegisterInfo *TRI) const {
- return false;
- }
-
- /// Return true if the target needs to disable frame pointer elimination.
- virtual bool noFramePointerElim(const MachineFunction &MF) const;
-
- /// hasFP - Return true if the specified function should have a dedicated
- /// frame pointer register. For most targets this is true only if the function
- /// has variable sized allocas or if frame pointer elimination is disabled.
- virtual bool hasFP(const MachineFunction &MF) const = 0;
-
- /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
- /// not required, we reserve argument space for call sites in the function
- /// immediately on entry to the current function. This eliminates the need for
- /// add/sub sp brackets around call sites. Returns true if the call frame is
- /// included as part of the stack frame.
- virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
- return !hasFP(MF);
- }
-
- /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
- /// call frame pseudo ops before doing frame index elimination. This is
- /// possible only when frame index references between the pseudos won't
- /// need adjusting for the call frame adjustments. Normally, that's true
- /// if the function has a reserved call frame or a frame pointer. Some
- /// targets (Thumb2, for example) may have more complicated criteria,
- /// however, and can override this behavior.
- virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
- return hasReservedCallFrame(MF) || hasFP(MF);
- }
-
- // needsFrameIndexResolution - Do we need to perform FI resolution for
- // this function. Normally, this is required only when the function
- // has any stack objects. However, targets may want to override this.
- virtual bool needsFrameIndexResolution(const MachineFunction &MF) const;
-
- /// getFrameIndexReference - This method should return the base register
- /// and offset used to reference a frame index location. The offset is
- /// returned directly, and the base register is returned via FrameReg.
- virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
- unsigned &FrameReg) const;
-
- /// Same as \c getFrameIndexReference, except that the stack pointer (as
- /// opposed to the frame pointer) will be the preferred value for \p
- /// FrameReg. This is generally used for emitting statepoint or EH tables that
- /// use offsets from RSP. If \p IgnoreSPUpdates is true, the returned
- /// offset is only guaranteed to be valid with respect to the value of SP at
- /// the end of the prologue.
- virtual int getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI,
- unsigned &FrameReg,
- bool IgnoreSPUpdates) const {
- // Always safe to dispatch to getFrameIndexReference.
- return getFrameIndexReference(MF, FI, FrameReg);
- }
-
- /// This method determines which of the registers reported by
- /// TargetRegisterInfo::getCalleeSavedRegs() should actually get saved.
- /// The default implementation checks populates the \p SavedRegs bitset with
- /// all registers which are modified in the function, targets may override
- /// this function to save additional registers.
- /// This method also sets up the register scavenger ensuring there is a free
- /// register or a frameindex available.
- virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs,
- RegScavenger *RS = nullptr) const;
-
- /// processFunctionBeforeFrameFinalized - This method is called immediately
- /// before the specified function's frame layout (MF.getFrameInfo()) is
- /// finalized. Once the frame is finalized, MO_FrameIndex operands are
- /// replaced with direct constants. This method is optional.
- ///
- virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF,
- RegScavenger *RS = nullptr) const {
- }
-
- virtual unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const {
- report_fatal_error("WinEH not implemented for this target");
- }
-
- /// This method is called during prolog/epilog code insertion to eliminate
- /// call frame setup and destroy pseudo instructions (but only if the Target
- /// is using them). It is responsible for eliminating these instructions,
- /// replacing them with concrete instructions. This method need only be
- /// implemented if using call frame setup/destroy pseudo instructions.
- /// Returns an iterator pointing to the instruction after the replaced one.
- virtual MachineBasicBlock::iterator
- eliminateCallFramePseudoInstr(MachineFunction &MF,
- MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI) const {
- llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
- "target!");
- }
-
-
- /// Order the symbols in the local stack frame.
- /// The list of objects that we want to order is in \p objectsToAllocate as
- /// indices into the MachineFrameInfo. The array can be reordered in any way
- /// upon return. The contents of the array, however, may not be modified (i.e.
- /// only their order may be changed).
- /// By default, just maintain the original order.
- virtual void
- orderFrameObjects(const MachineFunction &MF,
- SmallVectorImpl<int> &objectsToAllocate) const {
- }
-
- /// Check whether or not the given \p MBB can be used as a prologue
- /// for the target.
- /// The prologue will be inserted first in this basic block.
- /// This method is used by the shrink-wrapping pass to decide if
- /// \p MBB will be correctly handled by the target.
- /// As soon as the target enable shrink-wrapping without overriding
- /// this method, we assume that each basic block is a valid
- /// prologue.
- virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const {
- return true;
- }
-
- /// Check whether or not the given \p MBB can be used as a epilogue
- /// for the target.
- /// The epilogue will be inserted before the first terminator of that block.
- /// This method is used by the shrink-wrapping pass to decide if
- /// \p MBB will be correctly handled by the target.
- /// As soon as the target enable shrink-wrapping without overriding
- /// this method, we assume that each basic block is a valid
- /// epilogue.
- virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const {
- return true;
- }
-
- /// Check if given function is safe for not having callee saved registers.
- /// This is used when interprocedural register allocation is enabled.
- static bool isSafeForNoCSROpt(const Function *F) {
- if (!F->hasLocalLinkage() || F->hasAddressTaken() ||
- !F->hasFnAttribute(Attribute::NoRecurse))
- return false;
- // Function should not be optimized as tail call.
- for (const User *U : F->users())
- if (auto CS = ImmutableCallSite(U))
- if (CS.isTailCall())
- return false;
- return true;
- }
-};
-
-} // End llvm namespace
-
-#endif
diff --git a/include/llvm/Target/TargetInstrInfo.h b/include/llvm/Target/TargetInstrInfo.h
deleted file mode 100644
index 5d230d820dbf..000000000000
--- a/include/llvm/Target/TargetInstrInfo.h
+++ /dev/null
@@ -1,1691 +0,0 @@
-//===- llvm/Target/TargetInstrInfo.h - Instruction Info ---------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file describes the target machine instruction set to the code generator.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TARGET_TARGETINSTRINFO_H
-#define LLVM_TARGET_TARGETINSTRINFO_H
-
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseMapInfo.h"
-#include "llvm/ADT/None.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineCombinerPattern.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/MC/MCInstrInfo.h"
-#include "llvm/Support/BranchProbability.h"
-#include "llvm/Support/ErrorHandling.h"
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <utility>
-#include <vector>
-
-namespace llvm {
-
-class DFAPacketizer;
-class InstrItineraryData;
-class LiveVariables;
-class MachineMemOperand;
-class MachineRegisterInfo;
-class MCAsmInfo;
-class MCInst;
-struct MCSchedModel;
-class Module;
-class ScheduleDAG;
-class ScheduleHazardRecognizer;
-class SDNode;
-class SelectionDAG;
-class RegScavenger;
-class TargetRegisterClass;
-class TargetRegisterInfo;
-class TargetSchedModel;
-class TargetSubtargetInfo;
-
-template <class T> class SmallVectorImpl;
-
-//---------------------------------------------------------------------------
-///
-/// TargetInstrInfo - Interface to description of machine instruction set
-///
-class TargetInstrInfo : public MCInstrInfo {
-public:
- TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
- unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
- : CallFrameSetupOpcode(CFSetupOpcode),
- CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
- ReturnOpcode(ReturnOpcode) {}
- TargetInstrInfo(const TargetInstrInfo &) = delete;
- TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
- virtual ~TargetInstrInfo();
-
- static bool isGenericOpcode(unsigned Opc) {
- return Opc <= TargetOpcode::GENERIC_OP_END;
- }
-
- /// Given a machine instruction descriptor, returns the register
- /// class constraint for OpNum, or NULL.
- const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum,
- const TargetRegisterInfo *TRI,
- const MachineFunction &MF) const;
-
- /// Return true if the instruction is trivially rematerializable, meaning it
- /// has no side effects and requires no operands that aren't always available.
- /// This means the only allowed uses are constants and unallocatable physical
- /// registers so that the instructions result is independent of the place
- /// in the function.
- bool isTriviallyReMaterializable(const MachineInstr &MI,
- AliasAnalysis *AA = nullptr) const {
- return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
- (MI.getDesc().isRematerializable() &&
- (isReallyTriviallyReMaterializable(MI, AA) ||
- isReallyTriviallyReMaterializableGeneric(MI, AA)));
- }
-
-protected:
- /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
- /// set, this hook lets the target specify whether the instruction is actually
- /// trivially rematerializable, taking into consideration its operands. This
- /// predicate must return false if the instruction has any side effects other
- /// than producing a value, or if it requres any address registers that are
- /// not always available.
- /// Requirements must be check as stated in isTriviallyReMaterializable() .
- virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
- AliasAnalysis *AA) const {
- return false;
- }
-
- /// This method commutes the operands of the given machine instruction MI.
- /// The operands to be commuted are specified by their indices OpIdx1 and
- /// OpIdx2.
- ///
- /// If a target has any instructions that are commutable but require
- /// converting to different instructions or making non-trivial changes
- /// to commute them, this method can be overloaded to do that.
- /// The default implementation simply swaps the commutable operands.
- ///
- /// If NewMI is false, MI is modified in place and returned; otherwise, a
- /// new machine instruction is created and returned.
- ///
- /// Do not call this method for a non-commutable instruction.
- /// Even though the instruction is commutable, the method may still
- /// fail to commute the operands, null pointer is returned in such cases.
- virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
- unsigned OpIdx1,
- unsigned OpIdx2) const;
-
- /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
- /// operand indices to (ResultIdx1, ResultIdx2).
- /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
- /// predefined to some indices or be undefined (designated by the special
- /// value 'CommuteAnyOperandIndex').
- /// The predefined result indices cannot be re-defined.
- /// The function returns true iff after the result pair redefinition
- /// the fixed result pair is equal to or equivalent to the source pair of
- /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
- /// the pairs (x,y) and (y,x) are equivalent.
- static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
- unsigned CommutableOpIdx1,
- unsigned CommutableOpIdx2);
-
-private:
- /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
- /// set and the target hook isReallyTriviallyReMaterializable returns false,
- /// this function does target-independent tests to determine if the
- /// instruction is really trivially rematerializable.
- bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
- AliasAnalysis *AA) const;
-
-public:
- /// These methods return the opcode of the frame setup/destroy instructions
- /// if they exist (-1 otherwise). Some targets use pseudo instructions in
- /// order to abstract away the difference between operating with a frame
- /// pointer and operating without, through the use of these two instructions.
- ///
- unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
- unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
-
- /// Returns true if the argument is a frame pseudo instruction.
- bool isFrameInstr(const MachineInstr &I) const {
- return I.getOpcode() == getCallFrameSetupOpcode() ||
- I.getOpcode() == getCallFrameDestroyOpcode();
- }
-
- /// Returns true if the argument is a frame setup pseudo instruction.
- bool isFrameSetup(const MachineInstr &I) const {
- return I.getOpcode() == getCallFrameSetupOpcode();
- }
-
- /// Returns size of the frame associated with the given frame instruction.
- /// For frame setup instruction this is frame that is set up space set up
- /// after the instruction. For frame destroy instruction this is the frame
- /// freed by the caller.
- /// Note, in some cases a call frame (or a part of it) may be prepared prior
- /// to the frame setup instruction. It occurs in the calls that involve
- /// inalloca arguments. This function reports only the size of the frame part
- /// that is set up between the frame setup and destroy pseudo instructions.
- int64_t getFrameSize(const MachineInstr &I) const {
- assert(isFrameInstr(I) && "Not a frame instruction");
- assert(I.getOperand(0).getImm() >= 0);
- return I.getOperand(0).getImm();
- }
-
- /// Returns the total frame size, which is made up of the space set up inside
- /// the pair of frame start-stop instructions and the space that is set up
- /// prior to the pair.
- int64_t getFrameTotalSize(const MachineInstr &I) const {
- if (isFrameSetup(I)) {
- assert(I.getOperand(1).getImm() >= 0 &&
- "Frame size must not be negative");
- return getFrameSize(I) + I.getOperand(1).getImm();
- }
- return getFrameSize(I);
- }
-
- unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
- unsigned getReturnOpcode() const { return ReturnOpcode; }
-
- /// Returns the actual stack pointer adjustment made by an instruction
- /// as part of a call sequence. By default, only call frame setup/destroy
- /// instructions adjust the stack, but targets may want to override this
- /// to enable more fine-grained adjustment, or adjust by a different value.
- virtual int getSPAdjust(const MachineInstr &MI) const;
-
- /// Return true if the instruction is a "coalescable" extension instruction.
- /// That is, it's like a copy where it's legal for the source to overlap the
- /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
- /// expected the pre-extension value is available as a subreg of the result
- /// register. This also returns the sub-register index in SubIdx.
- virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
- unsigned &DstReg, unsigned &SubIdx) const {
- return false;
- }
-
- /// If the specified machine instruction is a direct
- /// load from a stack slot, return the virtual or physical register number of
- /// the destination along with the FrameIndex of the loaded stack slot. If
- /// not, return 0. This predicate must return 0 if the instruction has
- /// any side effects other than loading from the stack slot.
- virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
- int &FrameIndex) const {
- return 0;
- }
-
- /// Check for post-frame ptr elimination stack locations as well.
- /// This uses a heuristic so it isn't reliable for correctness.
- virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
- int &FrameIndex) const {
- return 0;
- }
-
- /// If the specified machine instruction has a load from a stack slot,
- /// return true along with the FrameIndex of the loaded stack slot and the
- /// machine mem operand containing the reference.
- /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
- /// any instructions that loads from the stack. This is just a hint, as some
- /// cases may be missed.
- virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const;
-
- /// If the specified machine instruction is a direct
- /// store to a stack slot, return the virtual or physical register number of
- /// the source reg along with the FrameIndex of the loaded stack slot. If
- /// not, return 0. This predicate must return 0 if the instruction has
- /// any side effects other than storing to the stack slot.
- virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
- int &FrameIndex) const {
- return 0;
- }
-
- /// Check for post-frame ptr elimination stack locations as well.
- /// This uses a heuristic, so it isn't reliable for correctness.
- virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
- int &FrameIndex) const {
- return 0;
- }
-
- /// If the specified machine instruction has a store to a stack slot,
- /// return true along with the FrameIndex of the loaded stack slot and the
- /// machine mem operand containing the reference.
- /// If not, return false. Unlike isStoreToStackSlot,
- /// this returns true for any instructions that stores to the
- /// stack. This is just a hint, as some cases may be missed.
- virtual bool hasStoreToStackSlot(const MachineInstr &MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const;
-
- /// Return true if the specified machine instruction
- /// is a copy of one stack slot to another and has no other effect.
- /// Provide the identity of the two frame indices.
- virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
- int &SrcFrameIndex) const {
- return false;
- }
-
- /// Compute the size in bytes and offset within a stack slot of a spilled
- /// register or subregister.
- ///
- /// \param [out] Size in bytes of the spilled value.
- /// \param [out] Offset in bytes within the stack slot.
- /// \returns true if both Size and Offset are successfully computed.
- ///
- /// Not all subregisters have computable spill slots. For example,
- /// subregisters registers may not be byte-sized, and a pair of discontiguous
- /// subregisters has no single offset.
- ///
- /// Targets with nontrivial bigendian implementations may need to override
- /// this, particularly to support spilled vector registers.
- virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
- unsigned &Size, unsigned &Offset,
- const MachineFunction &MF) const;
-
- /// Returns the size in bytes of the specified MachineInstr, or ~0U
- /// when this function is not implemented by a target.
- virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
- return ~0U;
- }
-
- /// Return true if the instruction is as cheap as a move instruction.
- ///
- /// Targets for different archs need to override this, and different
- /// micro-architectures can also be finely tuned inside.
- virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
- return MI.isAsCheapAsAMove();
- }
-
- /// Return true if the instruction should be sunk by MachineSink.
- ///
- /// MachineSink determines on its own whether the instruction is safe to sink;
- /// this gives the target a hook to override the default behavior with regards
- /// to which instructions should be sunk.
- virtual bool shouldSink(const MachineInstr &MI) const { return true; }
-
- /// Re-issue the specified 'original' instruction at the
- /// specific location targeting a new destination register.
- /// The register in Orig->getOperand(0).getReg() will be substituted by
- /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
- /// SubIdx.
- virtual void reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI, unsigned DestReg,
- unsigned SubIdx, const MachineInstr &Orig,
- const TargetRegisterInfo &TRI) const;
-
- /// \brief Clones instruction or the whole instruction bundle \p Orig and
- /// insert into \p MBB before \p InsertBefore. The target may update operands
- /// that are required to be unique.
- ///
- /// \p Orig must not return true for MachineInstr::isNotDuplicable().
- virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator InsertBefore,
- const MachineInstr &Orig) const;
-
- /// This method must be implemented by targets that
- /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
- /// may be able to convert a two-address instruction into one or more true
- /// three-address instructions on demand. This allows the X86 target (for
- /// example) to convert ADD and SHL instructions into LEA instructions if they
- /// would require register copies due to two-addressness.
- ///
- /// This method returns a null pointer if the transformation cannot be
- /// performed, otherwise it returns the last new instruction.
- ///
- virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
- MachineInstr &MI,
- LiveVariables *LV) const {
- return nullptr;
- }
-
- // This constant can be used as an input value of operand index passed to
- // the method findCommutedOpIndices() to tell the method that the
- // corresponding operand index is not pre-defined and that the method
- // can pick any commutable operand.
- static const unsigned CommuteAnyOperandIndex = ~0U;
-
- /// This method commutes the operands of the given machine instruction MI.
- ///
- /// The operands to be commuted are specified by their indices OpIdx1 and
- /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
- /// 'CommuteAnyOperandIndex', which means that the method is free to choose
- /// any arbitrarily chosen commutable operand. If both arguments are set to
- /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
- /// operands; then commutes them if such operands could be found.
- ///
- /// If NewMI is false, MI is modified in place and returned; otherwise, a
- /// new machine instruction is created and returned.
- ///
- /// Do not call this method for a non-commutable instruction or
- /// for non-commuable operands.
- /// Even though the instruction is commutable, the method may still
- /// fail to commute the operands, null pointer is returned in such cases.
- MachineInstr *
- commuteInstruction(MachineInstr &MI, bool NewMI = false,
- unsigned OpIdx1 = CommuteAnyOperandIndex,
- unsigned OpIdx2 = CommuteAnyOperandIndex) const;
-
- /// Returns true iff the routine could find two commutable operands in the
- /// given machine instruction.
- /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
- /// If any of the INPUT values is set to the special value
- /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
- /// operand, then returns its index in the corresponding argument.
- /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
- /// looks for 2 commutable operands.
- /// If INPUT values refer to some operands of MI, then the method simply
- /// returns true if the corresponding operands are commutable and returns
- /// false otherwise.
- ///
- /// For example, calling this method this way:
- /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
- /// findCommutedOpIndices(MI, Op1, Op2);
- /// can be interpreted as a query asking to find an operand that would be
- /// commutable with the operand#1.
- virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const;
-
- /// A pair composed of a register and a sub-register index.
- /// Used to give some type checking when modeling Reg:SubReg.
- struct RegSubRegPair {
- unsigned Reg;
- unsigned SubReg;
-
- RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
- : Reg(Reg), SubReg(SubReg) {}
- };
-
- /// A pair composed of a pair of a register and a sub-register index,
- /// and another sub-register index.
- /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
- struct RegSubRegPairAndIdx : RegSubRegPair {
- unsigned SubIdx;
-
- RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
- unsigned SubIdx = 0)
- : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
- };
-
- /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
- /// and \p DefIdx.
- /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
- /// the list is modeled as <Reg:SubReg, SubIdx>.
- /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
- /// two elements:
- /// - vreg1:sub1, sub0
- /// - vreg2<:0>, sub1
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isRegSequenceLike(). In other words, one has to override
- /// getRegSequenceLikeInputs for target specific instructions.
- bool
- getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
- SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
-
- /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
- /// and \p DefIdx.
- /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
- /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
- /// - vreg1:sub1, sub0
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isExtractSubregLike(). In other words, one has to override
- /// getExtractSubregLikeInputs for target specific instructions.
- bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPairAndIdx &InputReg) const;
-
- /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
- /// and \p DefIdx.
- /// \p [out] BaseReg and \p [out] InsertedReg contain
- /// the equivalent inputs of INSERT_SUBREG.
- /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
- /// - BaseReg: vreg0:sub0
- /// - InsertedReg: vreg1:sub1, sub3
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isInsertSubregLike(). In other words, one has to override
- /// getInsertSubregLikeInputs for target specific instructions.
- bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPair &BaseReg,
- RegSubRegPairAndIdx &InsertedReg) const;
-
- /// Return true if two machine instructions would produce identical values.
- /// By default, this is only true when the two instructions
- /// are deemed identical except for defs. If this function is called when the
- /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
- /// aggressive checks.
- virtual bool produceSameValue(const MachineInstr &MI0,
- const MachineInstr &MI1,
- const MachineRegisterInfo *MRI = nullptr) const;
-
- /// \returns true if a branch from an instruction with opcode \p BranchOpc
- /// bytes is capable of jumping to a position \p BrOffset bytes away.
- virtual bool isBranchOffsetInRange(unsigned BranchOpc,
- int64_t BrOffset) const {
- llvm_unreachable("target did not implement");
- }
-
- /// \returns The block that branch instruction \p MI jumps to.
- virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
- llvm_unreachable("target did not implement");
- }
-
- /// Insert an unconditional indirect branch at the end of \p MBB to \p
- /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to
- /// the offset of the position to insert the new branch.
- ///
- /// \returns The number of bytes added to the block.
- virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
- MachineBasicBlock &NewDestBB,
- const DebugLoc &DL,
- int64_t BrOffset = 0,
- RegScavenger *RS = nullptr) const {
- llvm_unreachable("target did not implement");
- }
-
- /// Analyze the branching code at the end of MBB, returning
- /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
- /// implemented for a target). Upon success, this returns false and returns
- /// with the following information in various cases:
- ///
- /// 1. If this block ends with no branches (it just falls through to its succ)
- /// just return false, leaving TBB/FBB null.
- /// 2. If this block ends with only an unconditional branch, it sets TBB to be
- /// the destination block.
- /// 3. If this block ends with a conditional branch and it falls through to a
- /// successor block, it sets TBB to be the branch destination block and a
- /// list of operands that evaluate the condition. These operands can be
- /// passed to other TargetInstrInfo methods to create new branches.
- /// 4. If this block ends with a conditional branch followed by an
- /// unconditional branch, it returns the 'true' destination in TBB, the
- /// 'false' destination in FBB, and a list of operands that evaluate the
- /// condition. These operands can be passed to other TargetInstrInfo
- /// methods to create new branches.
- ///
- /// Note that removeBranch and insertBranch must be implemented to support
- /// cases where this method returns success.
- ///
- /// If AllowModify is true, then this routine is allowed to modify the basic
- /// block (e.g. delete instructions after the unconditional branch).
- ///
- /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
- /// before calling this function.
- virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- bool AllowModify = false) const {
- return true;
- }
-
- /// Represents a predicate at the MachineFunction level. The control flow a
- /// MachineBranchPredicate represents is:
- ///
- /// Reg <def>= LHS `Predicate` RHS == ConditionDef
- /// if Reg then goto TrueDest else goto FalseDest
- ///
- struct MachineBranchPredicate {
- enum ComparePredicate {
- PRED_EQ, // True if two values are equal
- PRED_NE, // True if two values are not equal
- PRED_INVALID // Sentinel value
- };
-
- ComparePredicate Predicate = PRED_INVALID;
- MachineOperand LHS = MachineOperand::CreateImm(0);
- MachineOperand RHS = MachineOperand::CreateImm(0);
- MachineBasicBlock *TrueDest = nullptr;
- MachineBasicBlock *FalseDest = nullptr;
- MachineInstr *ConditionDef = nullptr;
-
- /// SingleUseCondition is true if ConditionDef is dead except for the
- /// branch(es) at the end of the basic block.
- ///
- bool SingleUseCondition = false;
-
- explicit MachineBranchPredicate() = default;
- };
-
- /// Analyze the branching code at the end of MBB and parse it into the
- /// MachineBranchPredicate structure if possible. Returns false on success
- /// and true on failure.
- ///
- /// If AllowModify is true, then this routine is allowed to modify the basic
- /// block (e.g. delete instructions after the unconditional branch).
- ///
- virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
- MachineBranchPredicate &MBP,
- bool AllowModify = false) const {
- return true;
- }
-
- /// Remove the branching code at the end of the specific MBB.
- /// This is only invoked in cases where AnalyzeBranch returns success. It
- /// returns the number of instructions that were removed.
- /// If \p BytesRemoved is non-null, report the change in code size from the
- /// removed instructions.
- virtual unsigned removeBranch(MachineBasicBlock &MBB,
- int *BytesRemoved = nullptr) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
- }
-
- /// Insert branch code into the end of the specified MachineBasicBlock. The
- /// operands to this method are the same as those returned by AnalyzeBranch.
- /// This is only invoked in cases where AnalyzeBranch returns success. It
- /// returns the number of instructions inserted. If \p BytesAdded is non-null,
- /// report the change in code size from the added instructions.
- ///
- /// It is also invoked by tail merging to add unconditional branches in
- /// cases where AnalyzeBranch doesn't apply because there was no original
- /// branch to analyze. At least this much must be implemented, else tail
- /// merging needs to be disabled.
- ///
- /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
- /// before calling this function.
- virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- ArrayRef<MachineOperand> Cond,
- const DebugLoc &DL,
- int *BytesAdded = nullptr) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
- }
-
- unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
- MachineBasicBlock *DestBB,
- const DebugLoc &DL,
- int *BytesAdded = nullptr) const {
- return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
- BytesAdded);
- }
-
- /// Analyze the loop code, return true if it cannot be understoo. Upon
- /// success, this function returns false and returns information about the
- /// induction variable and compare instruction used at the end.
- virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
- MachineInstr *&CmpInst) const {
- return true;
- }
-
- /// Generate code to reduce the loop iteration by one and check if the loop is
- /// finished. Return the value/register of the the new loop count. We need
- /// this function when peeling off one or more iterations of a loop. This
- /// function assumes the nth iteration is peeled first.
- virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar,
- MachineInstr &Cmp,
- SmallVectorImpl<MachineOperand> &Cond,
- SmallVectorImpl<MachineInstr *> &PrevInsts,
- unsigned Iter, unsigned MaxIter) const {
- llvm_unreachable("Target didn't implement ReduceLoopCount");
- }
-
- /// Delete the instruction OldInst and everything after it, replacing it with
- /// an unconditional branch to NewDest. This is used by the tail merging pass.
- virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
- MachineBasicBlock *NewDest) const;
-
- /// Return true if it's legal to split the given basic
- /// block at the specified instruction (i.e. instruction would be the start
- /// of a new basic block).
- virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI) const {
- return true;
- }
-
- /// Return true if it's profitable to predicate
- /// instructions with accumulated instruction latency of "NumCycles"
- /// of the specified basic block, where the probability of the instructions
- /// being executed is given by Probability, and Confidence is a measure
- /// of our confidence that it will be properly predicted.
- virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
- unsigned ExtraPredCycles,
- BranchProbability Probability) const {
- return false;
- }
-
- /// Second variant of isProfitableToIfCvt. This one
- /// checks for the case where two basic blocks from true and false path
- /// of a if-then-else (diamond) are predicated on mutally exclusive
- /// predicates, where the probability of the true path being taken is given
- /// by Probability, and Confidence is a measure of our confidence that it
- /// will be properly predicted.
- virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
- unsigned ExtraTCycles,
- MachineBasicBlock &FMBB, unsigned NumFCycles,
- unsigned ExtraFCycles,
- BranchProbability Probability) const {
- return false;
- }
-
- /// Return true if it's profitable for if-converter to duplicate instructions
- /// of specified accumulated instruction latencies in the specified MBB to
- /// enable if-conversion.
- /// The probability of the instructions being executed is given by
- /// Probability, and Confidence is a measure of our confidence that it
- /// will be properly predicted.
- virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
- unsigned NumCycles,
- BranchProbability Probability) const {
- return false;
- }
-
- /// Return true if it's profitable to unpredicate
- /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
- /// exclusive predicates.
- /// e.g.
- /// subeq r0, r1, #1
- /// addne r0, r1, #1
- /// =>
- /// sub r0, r1, #1
- /// addne r0, r1, #1
- ///
- /// This may be profitable is conditional instructions are always executed.
- virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
- MachineBasicBlock &FMBB) const {
- return false;
- }
-
- /// Return true if it is possible to insert a select
- /// instruction that chooses between TrueReg and FalseReg based on the
- /// condition code in Cond.
- ///
- /// When successful, also return the latency in cycles from TrueReg,
- /// FalseReg, and Cond to the destination register. In most cases, a select
- /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
- ///
- /// Some x86 implementations have 2-cycle cmov instructions.
- ///
- /// @param MBB Block where select instruction would be inserted.
- /// @param Cond Condition returned by AnalyzeBranch.
- /// @param TrueReg Virtual register to select when Cond is true.
- /// @param FalseReg Virtual register to select when Cond is false.
- /// @param CondCycles Latency from Cond+Branch to select output.
- /// @param TrueCycles Latency from TrueReg to select output.
- /// @param FalseCycles Latency from FalseReg to select output.
- virtual bool canInsertSelect(const MachineBasicBlock &MBB,
- ArrayRef<MachineOperand> Cond, unsigned TrueReg,
- unsigned FalseReg, int &CondCycles,
- int &TrueCycles, int &FalseCycles) const {
- return false;
- }
-
- /// Insert a select instruction into MBB before I that will copy TrueReg to
- /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
- ///
- /// This function can only be called after canInsertSelect() returned true.
- /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
- /// that the same flags or registers required by Cond are available at the
- /// insertion point.
- ///
- /// @param MBB Block where select instruction should be inserted.
- /// @param I Insertion point.
- /// @param DL Source location for debugging.
- /// @param DstReg Virtual register to be defined by select instruction.
- /// @param Cond Condition as computed by AnalyzeBranch.
- /// @param TrueReg Virtual register to copy when Cond is true.
- /// @param FalseReg Virtual register to copy when Cons is false.
- virtual void insertSelect(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I, const DebugLoc &DL,
- unsigned DstReg, ArrayRef<MachineOperand> Cond,
- unsigned TrueReg, unsigned FalseReg) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
- }
-
- /// Analyze the given select instruction, returning true if
- /// it cannot be understood. It is assumed that MI->isSelect() is true.
- ///
- /// When successful, return the controlling condition and the operands that
- /// determine the true and false result values.
- ///
- /// Result = SELECT Cond, TrueOp, FalseOp
- ///
- /// Some targets can optimize select instructions, for example by predicating
- /// the instruction defining one of the operands. Such targets should set
- /// Optimizable.
- ///
- /// @param MI Select instruction to analyze.
- /// @param Cond Condition controlling the select.
- /// @param TrueOp Operand number of the value selected when Cond is true.
- /// @param FalseOp Operand number of the value selected when Cond is false.
- /// @param Optimizable Returned as true if MI is optimizable.
- /// @returns False on success.
- virtual bool analyzeSelect(const MachineInstr &MI,
- SmallVectorImpl<MachineOperand> &Cond,
- unsigned &TrueOp, unsigned &FalseOp,
- bool &Optimizable) const {
- assert(MI.getDesc().isSelect() && "MI must be a select instruction");
- return true;
- }
-
- /// Given a select instruction that was understood by
- /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
- /// merging it with one of its operands. Returns NULL on failure.
- ///
- /// When successful, returns the new select instruction. The client is
- /// responsible for deleting MI.
- ///
- /// If both sides of the select can be optimized, PreferFalse is used to pick
- /// a side.
- ///
- /// @param MI Optimizable select instruction.
- /// @param NewMIs Set that record all MIs in the basic block up to \p
- /// MI. Has to be updated with any newly created MI or deleted ones.
- /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
- /// @returns Optimized instruction or NULL.
- virtual MachineInstr *optimizeSelect(MachineInstr &MI,
- SmallPtrSetImpl<MachineInstr *> &NewMIs,
- bool PreferFalse = false) const {
- // This function must be implemented if Optimizable is ever set.
- llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
- }
-
- /// Emit instructions to copy a pair of physical registers.
- ///
- /// This function should support copies within any legal register class as
- /// well as any cross-class copies created during instruction selection.
- ///
- /// The source and destination registers may overlap, which may require a
- /// careful implementation when multiple copy instructions are required for
- /// large registers. See for example the ARM target.
- virtual void copyPhysReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI, const DebugLoc &DL,
- unsigned DestReg, unsigned SrcReg,
- bool KillSrc) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
- }
-
- /// Store the specified register of the given register class to the specified
- /// stack frame index. The store instruction is to be added to the given
- /// machine basic block before the specified machine instruction. If isKill
- /// is true, the register operand is the last use and must be marked kill.
- virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- unsigned SrcReg, bool isKill, int FrameIndex,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::storeRegToStackSlot!");
- }
-
- /// Load the specified register of the given register class from the specified
- /// stack frame index. The load instruction is to be added to the given
- /// machine basic block before the specified machine instruction.
- virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- unsigned DestReg, int FrameIndex,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::loadRegFromStackSlot!");
- }
-
- /// This function is called for all pseudo instructions
- /// that remain after register allocation. Many pseudo instructions are
- /// created to help register allocation. This is the place to convert them
- /// into real instructions. The target can edit MI in place, or it can insert
- /// new instructions and erase MI. The function should return true if
- /// anything was changed.
- virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
-
- /// Check whether the target can fold a load that feeds a subreg operand
- /// (or a subreg operand that feeds a store).
- /// For example, X86 may want to return true if it can fold
- /// movl (%esp), %eax
- /// subb, %al, ...
- /// Into:
- /// subb (%esp), ...
- ///
- /// Ideally, we'd like the target implementation of foldMemoryOperand() to
- /// reject subregs - but since this behavior used to be enforced in the
- /// target-independent code, moving this responsibility to the targets
- /// has the potential of causing nasty silent breakage in out-of-tree targets.
- virtual bool isSubregFoldable() const { return false; }
-
- /// Attempt to fold a load or store of the specified stack
- /// slot into the specified machine instruction for the specified operand(s).
- /// If this is possible, a new instruction is returned with the specified
- /// operand folded, otherwise NULL is returned.
- /// The new instruction is inserted before MI, and the client is responsible
- /// for removing the old instruction.
- MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
- int FrameIndex,
- LiveIntervals *LIS = nullptr) const;
-
- /// Same as the previous version except it allows folding of any load and
- /// store from / to any address, not just from a specific stack slot.
- MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
- MachineInstr &LoadMI,
- LiveIntervals *LIS = nullptr) const;
-
- /// Return true when there is potentially a faster code sequence
- /// for an instruction chain ending in \p Root. All potential patterns are
- /// returned in the \p Pattern vector. Pattern should be sorted in priority
- /// order since the pattern evaluator stops checking as soon as it finds a
- /// faster sequence.
- /// \param Root - Instruction that could be combined with one of its operands
- /// \param Patterns - Vector of possible combination patterns
- virtual bool getMachineCombinerPatterns(
- MachineInstr &Root,
- SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
-
- /// Return true when a code sequence can improve throughput. It
- /// should be called only for instructions in loops.
- /// \param Pattern - combiner pattern
- virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
-
- /// Return true if the input \P Inst is part of a chain of dependent ops
- /// that are suitable for reassociation, otherwise return false.
- /// If the instruction's operands must be commuted to have a previous
- /// instruction of the same type define the first source operand, \P Commuted
- /// will be set to true.
- bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
-
- /// Return true when \P Inst is both associative and commutative.
- virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
- return false;
- }
-
- /// Return true when \P Inst has reassociable operands in the same \P MBB.
- virtual bool hasReassociableOperands(const MachineInstr &Inst,
- const MachineBasicBlock *MBB) const;
-
- /// Return true when \P Inst has reassociable sibling.
- bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
-
- /// When getMachineCombinerPatterns() finds patterns, this function generates
- /// the instructions that could replace the original code sequence. The client
- /// has to decide whether the actual replacement is beneficial or not.
- /// \param Root - Instruction that could be combined with one of its operands
- /// \param Pattern - Combination pattern for Root
- /// \param InsInstrs - Vector of new instructions that implement P
- /// \param DelInstrs - Old instructions, including Root, that could be
- /// replaced by InsInstr
- /// \param InstrIdxForVirtReg - map of virtual register to instruction in
- /// InsInstr that defines it
- virtual void genAlternativeCodeSequence(
- MachineInstr &Root, MachineCombinerPattern Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
-
- /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
- /// reduce critical path length.
- void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
- MachineCombinerPattern Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
-
- /// This is an architecture-specific helper function of reassociateOps.
- /// Set special operand attributes for new instructions after reassociation.
- virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
- MachineInstr &NewMI1,
- MachineInstr &NewMI2) const {}
-
- /// Return true when a target supports MachineCombiner.
- virtual bool useMachineCombiner() const { return false; }
-
-protected:
- /// Target-dependent implementation for foldMemoryOperand.
- /// Target-independent code in foldMemoryOperand will
- /// take care of adding a MachineMemOperand to the newly created instruction.
- /// The instruction and any auxiliary instructions necessary will be inserted
- /// at InsertPt.
- virtual MachineInstr *
- foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
- ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, int FrameIndex,
- LiveIntervals *LIS = nullptr) const {
- return nullptr;
- }
-
- /// Target-dependent implementation for foldMemoryOperand.
- /// Target-independent code in foldMemoryOperand will
- /// take care of adding a MachineMemOperand to the newly created instruction.
- /// The instruction and any auxiliary instructions necessary will be inserted
- /// at InsertPt.
- virtual MachineInstr *foldMemoryOperandImpl(
- MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
- LiveIntervals *LIS = nullptr) const {
- return nullptr;
- }
-
- /// \brief Target-dependent implementation of getRegSequenceInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isRegSequenceLike().
- ///
- /// \see TargetInstrInfo::getRegSequenceInputs.
- virtual bool getRegSequenceLikeInputs(
- const MachineInstr &MI, unsigned DefIdx,
- SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
- return false;
- }
-
- /// \brief Target-dependent implementation of getExtractSubregInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isExtractSubregLike().
- ///
- /// \see TargetInstrInfo::getExtractSubregInputs.
- virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
- unsigned DefIdx,
- RegSubRegPairAndIdx &InputReg) const {
- return false;
- }
-
- /// \brief Target-dependent implementation of getInsertSubregInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isInsertSubregLike().
- ///
- /// \see TargetInstrInfo::getInsertSubregInputs.
- virtual bool
- getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPair &BaseReg,
- RegSubRegPairAndIdx &InsertedReg) const {
- return false;
- }
-
-public:
- /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
- /// (e.g. stack) the target returns the corresponding address space.
- virtual unsigned
- getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind) const {
- return 0;
- }
-
- /// unfoldMemoryOperand - Separate a single instruction which folded a load or
- /// a store or a load and a store into two or more instruction. If this is
- /// possible, returns true as well as the new instructions by reference.
- virtual bool
- unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
- bool UnfoldLoad, bool UnfoldStore,
- SmallVectorImpl<MachineInstr *> &NewMIs) const {
- return false;
- }
-
- virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
- SmallVectorImpl<SDNode *> &NewNodes) const {
- return false;
- }
-
- /// Returns the opcode of the would be new
- /// instruction after load / store are unfolded from an instruction of the
- /// specified opcode. It returns zero if the specified unfolding is not
- /// possible. If LoadRegIndex is non-null, it is filled in with the operand
- /// index of the operand which will hold the register holding the loaded
- /// value.
- virtual unsigned
- getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
- unsigned *LoadRegIndex = nullptr) const {
- return 0;
- }
-
- /// This is used by the pre-regalloc scheduler to determine if two loads are
- /// loading from the same base address. It should only return true if the base
- /// pointers are the same and the only differences between the two addresses
- /// are the offset. It also returns the offsets by reference.
- virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
- int64_t &Offset1,
- int64_t &Offset2) const {
- return false;
- }
-
- /// This is a used by the pre-regalloc scheduler to determine (in conjunction
- /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
- /// On some targets if two loads are loading from
- /// addresses in the same cache line, it's better if they are scheduled
- /// together. This function takes two integers that represent the load offsets
- /// from the common base address. It returns true if it decides it's desirable
- /// to schedule the two loads together. "NumLoads" is the number of loads that
- /// have already been scheduled after Load1.
- virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
- int64_t Offset1, int64_t Offset2,
- unsigned NumLoads) const {
- return false;
- }
-
- /// Get the base register and byte offset of an instruction that reads/writes
- /// memory.
- virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
- int64_t &Offset,
- const TargetRegisterInfo *TRI) const {
- return false;
- }
-
- /// Return true if the instruction contains a base register and offset. If
- /// true, the function also sets the operand position in the instruction
- /// for the base register and offset.
- virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
- unsigned &BasePos,
- unsigned &OffsetPos) const {
- return false;
- }
-
- /// If the instruction is an increment of a constant value, return the amount.
- virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
- return false;
- }
-
- /// Returns true if the two given memory operations should be scheduled
- /// adjacent. Note that you have to add:
- /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
- /// or
- /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
- /// to TargetPassConfig::createMachineScheduler() to have an effect.
- virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1,
- MachineInstr &SecondLdSt, unsigned BaseReg2,
- unsigned NumLoads) const {
- llvm_unreachable("target did not implement shouldClusterMemOps()");
- }
-
- /// Reverses the branch condition of the specified condition list,
- /// returning false on success and true if it cannot be reversed.
- virtual bool
- reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
- return true;
- }
-
- /// Insert a noop into the instruction stream at the specified point.
- virtual void insertNoop(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI) const;
-
- /// Return the noop instruction to use for a noop.
- virtual void getNoop(MCInst &NopInst) const;
-
- /// Return true for post-incremented instructions.
- virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
-
- /// Returns true if the instruction is already predicated.
- virtual bool isPredicated(const MachineInstr &MI) const { return false; }
-
- /// Returns true if the instruction is a
- /// terminator instruction that has not been predicated.
- virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
-
- /// Returns true if MI is an unconditional tail call.
- virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
- return false;
- }
-
- /// Returns true if the tail call can be made conditional on BranchCond.
- virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
- const MachineInstr &TailCall) const {
- return false;
- }
-
- /// Replace the conditional branch in MBB with a conditional tail call.
- virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
- SmallVectorImpl<MachineOperand> &Cond,
- const MachineInstr &TailCall) const {
- llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
- }
-
- /// Convert the instruction into a predicated instruction.
- /// It returns true if the operation was successful.
- virtual bool PredicateInstruction(MachineInstr &MI,
- ArrayRef<MachineOperand> Pred) const;
-
- /// Returns true if the first specified predicate
- /// subsumes the second, e.g. GE subsumes GT.
- virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
- ArrayRef<MachineOperand> Pred2) const {
- return false;
- }
-
- /// If the specified instruction defines any predicate
- /// or condition code register(s) used for predication, returns true as well
- /// as the definition predicate(s) by reference.
- virtual bool DefinesPredicate(MachineInstr &MI,
- std::vector<MachineOperand> &Pred) const {
- return false;
- }
-
- /// Return true if the specified instruction can be predicated.
- /// By default, this returns true for every instruction with a
- /// PredicateOperand.
- virtual bool isPredicable(const MachineInstr &MI) const {
- return MI.getDesc().isPredicable();
- }
-
- /// Return true if it's safe to move a machine
- /// instruction that defines the specified register class.
- virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
- return true;
- }
-
- /// Test if the given instruction should be considered a scheduling boundary.
- /// This primarily includes labels and terminators.
- virtual bool isSchedulingBoundary(const MachineInstr &MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const;
-
- /// Measure the specified inline asm to determine an approximation of its
- /// length.
- virtual unsigned getInlineAsmLength(const char *Str,
- const MCAsmInfo &MAI) const;
-
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions before register allocation.
- virtual ScheduleHazardRecognizer *
- CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
- const ScheduleDAG *DAG) const;
-
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions before register allocation.
- virtual ScheduleHazardRecognizer *
- CreateTargetMIHazardRecognizer(const InstrItineraryData *,
- const ScheduleDAG *DAG) const;
-
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions after register allocation.
- virtual ScheduleHazardRecognizer *
- CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
- const ScheduleDAG *DAG) const;
-
- /// Allocate and return a hazard recognizer to use for by non-scheduling
- /// passes.
- virtual ScheduleHazardRecognizer *
- CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
- return nullptr;
- }
-
- /// Provide a global flag for disabling the PreRA hazard recognizer that
- /// targets may choose to honor.
- bool usePreRAHazardRecognizer() const;
-
- /// For a comparison instruction, return the source registers
- /// in SrcReg and SrcReg2 if having two register operands, and the value it
- /// compares against in CmpValue. Return true if the comparison instruction
- /// can be analyzed.
- virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
- unsigned &SrcReg2, int &Mask, int &Value) const {
- return false;
- }
-
- /// See if the comparison instruction can be converted
- /// into something more efficient. E.g., on ARM most instructions can set the
- /// flags register, obviating the need for a separate CMP.
- virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
- unsigned SrcReg2, int Mask, int Value,
- const MachineRegisterInfo *MRI) const {
- return false;
- }
- virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
-
- /// Try to remove the load by folding it to a register operand at the use.
- /// We fold the load instructions if and only if the
- /// def and use are in the same BB. We only look at one load and see
- /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
- /// defined by the load we are trying to fold. DefMI returns the machine
- /// instruction that defines FoldAsLoadDefReg, and the function returns
- /// the machine instruction generated due to folding.
- virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
- const MachineRegisterInfo *MRI,
- unsigned &FoldAsLoadDefReg,
- MachineInstr *&DefMI) const {
- return nullptr;
- }
-
- /// 'Reg' is known to be defined by a move immediate instruction,
- /// try to fold the immediate into the use instruction.
- /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
- /// then the caller may assume that DefMI has been erased from its parent
- /// block. The caller may assume that it will not be erased by this
- /// function otherwise.
- virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
- unsigned Reg, MachineRegisterInfo *MRI) const {
- return false;
- }
-
- /// Return the number of u-operations the given machine
- /// instruction will be decoded to on the target cpu. The itinerary's
- /// IssueWidth is the number of microops that can be dispatched each
- /// cycle. An instruction with zero microops takes no dispatch resources.
- virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr &MI) const;
-
- /// Return true for pseudo instructions that don't consume any
- /// machine resources in their current form. These are common cases that the
- /// scheduler should consider free, rather than conservatively handling them
- /// as instructions with no itinerary.
- bool isZeroCost(unsigned Opcode) const {
- return Opcode <= TargetOpcode::COPY;
- }
-
- virtual int getOperandLatency(const InstrItineraryData *ItinData,
- SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const;
-
- /// Compute and return the use operand latency of a given pair of def and use.
- /// In most cases, the static scheduling itinerary was enough to determine the
- /// operand latency. But it may not be possible for instructions with variable
- /// number of defs / uses.
- ///
- /// This is a raw interface to the itinerary that may be directly overridden
- /// by a target. Use computeOperandLatency to get the best estimate of
- /// latency.
- virtual int getOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr &DefMI, unsigned DefIdx,
- const MachineInstr &UseMI,
- unsigned UseIdx) const;
-
- /// Compute the instruction latency of a given instruction.
- /// If the instruction has higher cost when predicated, it's returned via
- /// PredCost.
- virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
- const MachineInstr &MI,
- unsigned *PredCost = nullptr) const;
-
- virtual unsigned getPredicationCost(const MachineInstr &MI) const;
-
- virtual int getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *Node) const;
-
- /// Return the default expected latency for a def based on its opcode.
- unsigned defaultDefLatency(const MCSchedModel &SchedModel,
- const MachineInstr &DefMI) const;
-
- int computeDefOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr &DefMI) const;
-
- /// Return true if this opcode has high latency to its result.
- virtual bool isHighLatencyDef(int opc) const { return false; }
-
- /// Compute operand latency between a def of 'Reg'
- /// and a use in the current loop. Return true if the target considered
- /// it 'high'. This is used by optimization passes such as machine LICM to
- /// determine whether it makes sense to hoist an instruction out even in a
- /// high register pressure situation.
- virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
- const MachineRegisterInfo *MRI,
- const MachineInstr &DefMI, unsigned DefIdx,
- const MachineInstr &UseMI,
- unsigned UseIdx) const {
- return false;
- }
-
- /// Compute operand latency of a def of 'Reg'. Return true
- /// if the target considered it 'low'.
- virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
- const MachineInstr &DefMI,
- unsigned DefIdx) const;
-
- /// Perform target-specific instruction verification.
- virtual bool verifyInstruction(const MachineInstr &MI,
- StringRef &ErrInfo) const {
- return true;
- }
-
- /// Return the current execution domain and bit mask of
- /// possible domains for instruction.
- ///
- /// Some micro-architectures have multiple execution domains, and multiple
- /// opcodes that perform the same operation in different domains. For
- /// example, the x86 architecture provides the por, orps, and orpd
- /// instructions that all do the same thing. There is a latency penalty if a
- /// register is written in one domain and read in another.
- ///
- /// This function returns a pair (domain, mask) containing the execution
- /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
- /// function can be used to change the opcode to one of the domains in the
- /// bit mask. Instructions whose execution domain can't be changed should
- /// return a 0 mask.
- ///
- /// The execution domain numbers don't have any special meaning except domain
- /// 0 is used for instructions that are not associated with any interesting
- /// execution domain.
- ///
- virtual std::pair<uint16_t, uint16_t>
- getExecutionDomain(const MachineInstr &MI) const {
- return std::make_pair(0, 0);
- }
-
- /// Change the opcode of MI to execute in Domain.
- ///
- /// The bit (1 << Domain) must be set in the mask returned from
- /// getExecutionDomain(MI).
- virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
-
- /// Returns the preferred minimum clearance
- /// before an instruction with an unwanted partial register update.
- ///
- /// Some instructions only write part of a register, and implicitly need to
- /// read the other parts of the register. This may cause unwanted stalls
- /// preventing otherwise unrelated instructions from executing in parallel in
- /// an out-of-order CPU.
- ///
- /// For example, the x86 instruction cvtsi2ss writes its result to bits
- /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
- /// the instruction needs to wait for the old value of the register to become
- /// available:
- ///
- /// addps %xmm1, %xmm0
- /// movaps %xmm0, (%rax)
- /// cvtsi2ss %rbx, %xmm0
- ///
- /// In the code above, the cvtsi2ss instruction needs to wait for the addps
- /// instruction before it can issue, even though the high bits of %xmm0
- /// probably aren't needed.
- ///
- /// This hook returns the preferred clearance before MI, measured in
- /// instructions. Other defs of MI's operand OpNum are avoided in the last N
- /// instructions before MI. It should only return a positive value for
- /// unwanted dependencies. If the old bits of the defined register have
- /// useful values, or if MI is determined to otherwise read the dependency,
- /// the hook should return 0.
- ///
- /// The unwanted dependency may be handled by:
- ///
- /// 1. Allocating the same register for an MI def and use. That makes the
- /// unwanted dependency identical to a required dependency.
- ///
- /// 2. Allocating a register for the def that has no defs in the previous N
- /// instructions.
- ///
- /// 3. Calling breakPartialRegDependency() with the same arguments. This
- /// allows the target to insert a dependency breaking instruction.
- ///
- virtual unsigned
- getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {
- // The default implementation returns 0 for no partial register dependency.
- return 0;
- }
-
- /// \brief Return the minimum clearance before an instruction that reads an
- /// unused register.
- ///
- /// For example, AVX instructions may copy part of a register operand into
- /// the unused high bits of the destination register.
- ///
- /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
- ///
- /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
- /// false dependence on any previous write to %xmm0.
- ///
- /// This hook works similarly to getPartialRegUpdateClearance, except that it
- /// does not take an operand index. Instead sets \p OpNum to the index of the
- /// unused register.
- virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
- const TargetRegisterInfo *TRI) const {
- // The default implementation returns 0 for no undef register dependency.
- return 0;
- }
-
- /// Insert a dependency-breaking instruction
- /// before MI to eliminate an unwanted dependency on OpNum.
- ///
- /// If it wasn't possible to avoid a def in the last N instructions before MI
- /// (see getPartialRegUpdateClearance), this hook will be called to break the
- /// unwanted dependency.
- ///
- /// On x86, an xorps instruction can be used as a dependency breaker:
- ///
- /// addps %xmm1, %xmm0
- /// movaps %xmm0, (%rax)
- /// xorps %xmm0, %xmm0
- /// cvtsi2ss %rbx, %xmm0
- ///
- /// An <imp-kill> operand should be added to MI if an instruction was
- /// inserted. This ties the instructions together in the post-ra scheduler.
- ///
- virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {}
-
- /// Create machine specific model for scheduling.
- virtual DFAPacketizer *
- CreateTargetScheduleState(const TargetSubtargetInfo &) const {
- return nullptr;
- }
-
- /// Sometimes, it is possible for the target
- /// to tell, even without aliasing information, that two MIs access different
- /// memory addresses. This function returns true if two MIs access different
- /// memory addresses and false otherwise.
- ///
- /// Assumes any physical registers used to compute addresses have the same
- /// value for both instructions. (This is the most useful assumption for
- /// post-RA scheduling.)
- ///
- /// See also MachineInstr::mayAlias, which is implemented on top of this
- /// function.
- virtual bool
- areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
- AliasAnalysis *AA = nullptr) const {
- assert((MIa.mayLoad() || MIa.mayStore()) &&
- "MIa must load from or modify a memory location");
- assert((MIb.mayLoad() || MIb.mayStore()) &&
- "MIb must load from or modify a memory location");
- return false;
- }
-
- /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
- /// which is a heuristic used for CSE'ing phys reg defs.
- virtual unsigned getMachineCSELookAheadLimit() const {
- // The default lookahead is small to prevent unprofitable quadratic
- // behavior.
- return 5;
- }
-
- /// Return an array that contains the ids of the target indices (used for the
- /// TargetIndex machine operand) and their names.
- ///
- /// MIR Serialization is able to serialize only the target indices that are
- /// defined by this method.
- virtual ArrayRef<std::pair<int, const char *>>
- getSerializableTargetIndices() const {
- return None;
- }
-
- /// Decompose the machine operand's target flags into two values - the direct
- /// target flag value and any of bit flags that are applied.
- virtual std::pair<unsigned, unsigned>
- decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
- return std::make_pair(0u, 0u);
- }
-
- /// Return an array that contains the direct target flag values and their
- /// names.
- ///
- /// MIR Serialization is able to serialize only the target flags that are
- /// defined by this method.
- virtual ArrayRef<std::pair<unsigned, const char *>>
- getSerializableDirectMachineOperandTargetFlags() const {
- return None;
- }
-
- /// Return an array that contains the bitmask target flag values and their
- /// names.
- ///
- /// MIR Serialization is able to serialize only the target flags that are
- /// defined by this method.
- virtual ArrayRef<std::pair<unsigned, const char *>>
- getSerializableBitmaskMachineOperandTargetFlags() const {
- return None;
- }
-
- /// Return an array that contains the MMO target flag values and their
- /// names.
- ///
- /// MIR Serialization is able to serialize only the MMO target flags that are
- /// defined by this method.
- virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
- getSerializableMachineMemOperandTargetFlags() const {
- return None;
- }
-
- /// Determines whether \p Inst is a tail call instruction. Override this
- /// method on targets that do not properly set MCID::Return and MCID::Call on
- /// tail call instructions."
- virtual bool isTailCall(const MachineInstr &Inst) const {
- return Inst.isReturn() && Inst.isCall();
- }
-
- /// True if the instruction is bound to the top of its basic block and no
- /// other instructions shall be inserted before it. This can be implemented
- /// to prevent register allocator to insert spills before such instructions.
- virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
- return false;
- }
-
- /// \brief Describes the number of instructions that it will take to call and
- /// construct a frame for a given outlining candidate.
- struct MachineOutlinerInfo {
- /// Number of instructions to call an outlined function for this candidate.
- unsigned CallOverhead;
-
- /// \brief Number of instructions to construct an outlined function frame
- /// for this candidate.
- unsigned FrameOverhead;
-
- /// \brief Represents the specific instructions that must be emitted to
- /// construct a call to this candidate.
- unsigned CallConstructionID;
-
- /// \brief Represents the specific instructions that must be emitted to
- /// construct a frame for this candidate's outlined function.
- unsigned FrameConstructionID;
-
- MachineOutlinerInfo() {}
- MachineOutlinerInfo(unsigned CallOverhead, unsigned FrameOverhead,
- unsigned CallConstructionID,
- unsigned FrameConstructionID)
- : CallOverhead(CallOverhead), FrameOverhead(FrameOverhead),
- CallConstructionID(CallConstructionID),
- FrameConstructionID(FrameConstructionID) {}
- };
-
- /// \brief Returns a \p MachineOutlinerInfo struct containing target-specific
- /// information for a set of outlining candidates.
- virtual MachineOutlinerInfo getOutlininingCandidateInfo(
- std::vector<
- std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
- &RepeatedSequenceLocs) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::getOutliningOverhead!");
- }
-
- /// Represents how an instruction should be mapped by the outliner.
- /// \p Legal instructions are those which are safe to outline.
- /// \p Illegal instructions are those which cannot be outlined.
- /// \p Invisible instructions are instructions which can be outlined, but
- /// shouldn't actually impact the outlining result.
- enum MachineOutlinerInstrType { Legal, Illegal, Invisible };
-
- /// Returns how or if \p MI should be outlined.
- virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::getOutliningType!");
- }
-
- /// Insert a custom epilogue for outlined functions.
- /// This may be empty, in which case no epilogue or return statement will be
- /// emitted.
- virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB,
- MachineFunction &MF,
- const MachineOutlinerInfo &MInfo) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!");
- }
-
- /// Insert a call to an outlined function into the program.
- /// Returns an iterator to the spot where we inserted the call. This must be
- /// implemented by the target.
- virtual MachineBasicBlock::iterator
- insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &It, MachineFunction &MF,
- const MachineOutlinerInfo &MInfo) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
- }
-
- /// Insert a custom prologue for outlined functions.
- /// This may be empty, in which case no prologue will be emitted.
- virtual void insertOutlinerPrologue(MachineBasicBlock &MBB,
- MachineFunction &MF,
- const MachineOutlinerInfo &MInfo) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!");
- }
-
- /// Return true if the function can safely be outlined from.
- /// A function \p MF is considered safe for outlining if an outlined function
- /// produced from instructions in F will produce a program which produces the
- /// same output for any set of given inputs.
- virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
- bool OutlineFromLinkOnceODRs) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
- }
-
-private:
- unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
- unsigned CatchRetOpcode;
- unsigned ReturnOpcode;
-};
-
-/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
-template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
- using RegInfo = DenseMapInfo<unsigned>;
-
- static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
- return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
- RegInfo::getEmptyKey());
- }
-
- static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
- return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
- RegInfo::getTombstoneKey());
- }
-
- /// \brief Reuse getHashValue implementation from
- /// std::pair<unsigned, unsigned>.
- static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
- std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
- return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
- }
-
- static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
- const TargetInstrInfo::RegSubRegPair &RHS) {
- return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
- RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
- }
-};
-
-} // end namespace llvm
-
-#endif // LLVM_TARGET_TARGETINSTRINFO_H
diff --git a/include/llvm/Target/TargetLowering.h b/include/llvm/Target/TargetLowering.h
index c1d0b32f7d75..994480ebc90e 100644
--- a/include/llvm/Target/TargetLowering.h
+++ b/include/llvm/Target/TargetLowering.h
@@ -2678,6 +2678,15 @@ public:
const SelectionDAG &DAG,
unsigned Depth = 0) const;
+ /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
+ /// Default implementation computes low bits based on alignment
+ /// information. This should preserve known bits passed into it.
+ virtual void computeKnownBitsForFrameIndex(const SDValue FIOp,
+ KnownBits &Known,
+ const APInt &DemandedElts,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const;
+
/// This method can be implemented by targets that want to expose additional
/// information about sign bits to the DAG Combiner. The DemandedElts
/// argument allows us to only collect the minimum sign bits that are shared