| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Poor DPH and its vectoriser have long been languishing; sadly it seems there is
little chance that the effort will be rekindled. Every few years we discuss
what to do with this mass of code and at least once we have agreed that it
should be archived on a branch and removed from `master`. Here we do just that,
eliminating heaps of dead code in the process.
Here we drop the ParallelArrays extension, the vectoriser, and the `vector` and
`primitive` submodules.
Test Plan: Validate
Reviewers: simonpj, simonmar, hvr, goldfire, alanz
Reviewed By: simonmar
Subscribers: goldfire, rwbarton, thomie, mpickering, carter
Differential Revision: https://phabricator.haskell.org/D4761
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We dump it in the interface file, so we need to do it in a
deterministic order. I haven't seen any problems with this
during my testing, but that's probably because it's unused.
Test Plan: ./validate
Reviewers: simonmar, austin, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2313
GHC Trac Issues: #4012
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In the past the canonical way for constructing an SDoc string literal was the
composition `ptext . sLit`. But for some time now we have function `text` that
does the same. Plus it has some rules that optimize its runtime behaviour.
This patch takes all uses of `ptext . sLit` in the compiler and replaces them
with calls to `text`. The main benefits of this patch are clener (shorter) code
and less dependencies between module, because many modules now do not need to
import `FastString`. I don't expect any performance benefits - we mostly use
SDocs to report errors and it seems there is little to be gained here.
Test Plan: ./validate
Reviewers: bgamari, austin, goldfire, hvr, alanz
Subscribers: goldfire, thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D1784
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the ideas originally put forward in
"System FC with Explicit Kind Equality" (ICFP'13).
There are several noteworthy changes with this patch:
* We now have casts in types. These change the kind
of a type. See new constructor `CastTy`.
* All types and all constructors can be promoted.
This includes GADT constructors. GADT pattern matches
take place in type family equations. In Core,
types can now be applied to coercions via the
`CoercionTy` constructor.
* Coercions can now be heterogeneous, relating types
of different kinds. A coercion proving `t1 :: k1 ~ t2 :: k2`
proves both that `t1` and `t2` are the same and also that
`k1` and `k2` are the same.
* The `Coercion` type has been significantly enhanced.
The documentation in `docs/core-spec/core-spec.pdf` reflects
the new reality.
* The type of `*` is now `*`. No more `BOX`.
* Users can write explicit kind variables in their code,
anywhere they can write type variables. For backward compatibility,
automatic inference of kind-variable binding is still permitted.
* The new extension `TypeInType` turns on the new user-facing
features.
* Type families and synonyms are now promoted to kinds. This causes
trouble with parsing `*`, leading to the somewhat awkward new
`HsAppsTy` constructor for `HsType`. This is dispatched with in
the renamer, where the kind `*` can be told apart from a
type-level multiplication operator. Without `-XTypeInType` the
old behavior persists. With `-XTypeInType`, you need to import
`Data.Kind` to get `*`, also known as `Type`.
* The kind-checking algorithms in TcHsType have been significantly
rewritten to allow for enhanced kinds.
* The new features are still quite experimental and may be in flux.
* TODO: Several open tickets: #11195, #11196, #11197, #11198, #11203.
* TODO: Update user manual.
Tickets addressed: #9017, #9173, #7961, #10524, #8566, #11142.
Updates Haddock submodule.
|
| |
|
|
|
| |
* By default '-fvectorisation-avoidance' is enabled at all optimisation levels (but it only matters in combination with '-fvectorise').
* The new vectoriser always uses vectorisation avoidance, but with '-fno-vectorisation-avoidance' it restricts it to simple scalar applications (and dictionary computations)
|
| |
|
|
|
|
|
| |
* Vectorisation avoidance is now the default
* Types and values from unvectorised modules are permitted in scalar code
* Simplified the VECTORISE pragmas (see http://hackage.haskell.org/trac/ghc/wiki/DataParallel/VectPragma for the spec)
* Vectorisation information is now included in the annotated Core AST
|
| | |
|
| | |
|
| |
|
|
|
| |
- (->), [::], & PArray are now vectorised via pragmas (and related clean up)
- Repeatedly vectorising a variable or type constructor now raises an error
|
| |
|
|
|
|
|
|
| |
instance pragmas
* Correct usage of new type wrappers from MkId
* 'VECTORISE [SCALAR] type T = S' didn't work correctly across module boundaries
* Clean up 'VECTORISE SCALAR instance'
|
| | |
|
| |
|
|
| |
* Frontend support (not yet used in the vectoriser)
|
| |
|
|
|
|
|
|
|
| |
they are not declared, but only imported
- Types already gained this functionality already in a previous commit
- This commit adds the capability for functions
This is a crucial step towards being able to use the standard Prelude, instead of a special vectorised one.
|
| | |
|
| |
|
|
|
|
|
|
|
| |
- Pragma to determine how a given type is vectorised
- At this stage only the VECTORISE SCALAR variant is used by the vectoriser.
- '{-# VECTORISE SCALAR type t #-}' implies that 't' cannot contain parallel arrays and may be used in vectorised code. However, its constructors can only be used in scalar code. We use this, e.g., for 'Int'.
- May be used on imported types
See also http://hackage.haskell.org/trac/ghc/wiki/DataParallel/VectPragma
|
| |
|
|
| |
toplevel variable 'f'.
|
| |
|
|
| |
'HscTypes.VectInfo'.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Added a pragma {-# VECTORISE var = exp #-} that prevents
the vectoriser from vectorising the definition of 'var'.
Instead it uses the binding '$v_var = exp' to vectorise
'var'. The vectoriser checks that the Core type of 'exp'
matches the vectorised Core type of 'var'. (It would be
quite complicated to perform that check in the type checker
as the vectorisation of a type needs the state of the VM
monad.)
- Added parts of a related VECTORISE SCALAR pragma
- Documented -ddump-vect
- Added -ddump-vt-trace
- Some clean up
|
| |
|