| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Poor DPH and its vectoriser have long been languishing; sadly it seems there is
little chance that the effort will be rekindled. Every few years we discuss
what to do with this mass of code and at least once we have agreed that it
should be archived on a branch and removed from `master`. Here we do just that,
eliminating heaps of dead code in the process.
Here we drop the ParallelArrays extension, the vectoriser, and the `vector` and
`primitive` submodules.
Test Plan: Validate
Reviewers: simonpj, simonmar, hvr, goldfire, alanz
Reviewed By: simonmar
Subscribers: goldfire, rwbarton, thomie, mpickering, carter
Differential Revision: https://phabricator.haskell.org/D4761
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this change, for each constructor that we want
to allocate a tag for we would traverse a list of all
the constructors in a datatype to determine which tag
a constructor should get.
This is obviously quadratic and for datatypes with 10k
constructors it actually makes a big difference.
This change implements the plan outlined by @simonpj in
https://mail.haskell.org/pipermail/ghc-devs/2017-October/014974.html
which is basically about using a map and constructing it outside the
loop.
One place where things got a bit awkward was TysWiredIn.hs,
it would have been possible to just assign the tags by hand, but
that seemed error-prone to me, so I decided to go through a map
there as well.
Test Plan:
./validate
On a file with 10k constructors
Before:
8,130,522,344 bytes allocated in the heap
Total time 3.682s ( 3.920s elapsed)
After:
4,133,478,744 bytes allocated in the heap
Total time 2.509s ( 2.750s elapsed)
Reviewers: simonpj, bgamari
Reviewed By: simonpj
Subscribers: goldfire, rwbarton, thomie, simonmar, carter, simonpj
GHC Trac Issues: #14657
Differential Revision: https://phabricator.haskell.org/D4289
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a follow-up after faf60e85 - Make tagForCon non-linear.
On the mailing list @simonpj suggested to solve the
linear behavior by caching the sizes.
Test Plan: ./validate
Reviewers: simonpj, simonmar, bgamari, austin
Reviewed By: simonpj
Subscribers: carter, goldfire, rwbarton, thomie, simonpj
Differential Revision: https://phabricator.haskell.org/D4131
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After typechecking a data constructor's type signature, its type
variables are partitioned into two distinct groups: the universally
quantified type variables and the existentially quantified type
variables. Then, when prompted for the type of the data constructor,
GHC gives this:
```lang=haskell
MkT :: forall <univs> <exis>. (...)
```
For H98-style datatypes, this is a fine thing to do. But for GADTs,
this can sometimes produce undesired results with respect to
`TypeApplications`. For instance, consider this datatype:
```lang=haskell
data T a where
MkT :: forall b a. b -> T a
```
Here, the user clearly intended to have `b` be available for visible
type application before `a`. That is, the user would expect
`MkT @Int @Char` to be of type `Int -> T Char`, //not//
`Char -> T Int`. But alas, up until now that was not how GHC
operated—regardless of the order in which the user actually wrote
the tyvars, GHC would give `MkT` the type:
```lang=haskell
MkT :: forall a b. b -> T a
```
Since `a` is universal and `b` is existential. This makes predicting
what order to use for `TypeApplications` quite annoying, as
demonstrated in #11721 and #13848.
This patch cures the problem by tracking more carefully the order in
which a user writes type variables in data constructor type
signatures, either explicitly (with a `forall`) or implicitly
(without a `forall`, in which case the order is inferred). This is
accomplished by adding a new field `dcUserTyVars` to `DataCon`, which
is a subset of `dcUnivTyVars` and `dcExTyVars` that is permuted to
the order in which the user wrote them. For more details, refer to
`Note [DataCon user type variables]` in `DataCon.hs`.
An interesting consequence of this design is that more data
constructors require wrappers. This is because the workers always
expect the first arguments to be the universal tyvars followed by the
existential tyvars, so when the user writes the tyvars in a different
order, a wrapper type is needed to swizzle the tyvars around to match
the order that the worker expects. For more details, refer to
`Note [Data con wrappers and GADT syntax]` in `MkId.hs`.
Test Plan: ./validate
Reviewers: austin, goldfire, bgamari, simonpj
Reviewed By: goldfire, simonpj
Subscribers: ezyang, goldfire, rwbarton, thomie
GHC Trac Issues: #11721, #13848
Differential Revision: https://phabricator.haskell.org/D3687
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
|
|
|
|
|
|
|
|
| |
Instead of using a string argument, use HasDebugCallStack.
(Oddly, some functions were using both!)
Plus, use getRuntimeRep rather than getRuntimeRep_maybe when
if the caller panics on Nothing. Less code, and a better debug
stack.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While investigating #12545, I discovered several places in the code
that performed length-checks like so:
```
length ts == 4
```
This is not ideal, since the length of `ts` could be much longer than 4,
and we'd be doing way more work than necessary! There are already a slew
of helper functions in `Util` such as `lengthIs` that are designed to do
this efficiently, so I found every place where they ought to be used and
did just that. I also defined a couple more utility functions for list
length that were common patterns (e.g., `ltLength`).
Test Plan: ./validate
Reviewers: austin, hvr, goldfire, bgamari, simonmar
Reviewed By: bgamari, simonmar
Subscribers: goldfire, rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3622
|
| |
|
|
|
|
| |
Just a simple refactoring to remove duplication
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This refactoring makes it more obvious when we are constructing
a Node for the digraph rather than a less useful 3-tuple.
Reviewers: austin, goldfire, bgamari, simonmar, dfeuer
Reviewed By: dfeuer
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3414
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As far as I can tell we were unnecessarily building a new TcgEnv when we
already had one on hand. TcRnMonad now sports an initTcWithGbl function,
which allows us to run a TcM monad in the context of this TcgEnv. This
appears to simplify things nicely.
Test Plan: Validate
Reviewers: austin
Subscribers: dfeuer, simonpj, thomie
Differential Revision: https://phabricator.haskell.org/D3228
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously, abstract classes looked very much like normal
classes, except that they happened to have no methods,
superclasses or ATs, and they came from boot files. This
patch gives abstract classes a proper representation in
Class and IfaceDecl, by moving the things which are never
defined for abstract classes into ClassBody/IfaceClassBody.
Because Class is abstract, this change had ~no disruption
to any of the code in GHC; if you ask about the methods of
an abstract class, we'll just give you an empty list.
This also fixes a bug where abstract type classes were incorrectly
treated as representationally injective (they're not!)
Fixes #13347, and a TODO in the code.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: simonpj, bgamari, austin
Subscribers: goldfire, thomie
Differential Revision: https://phabricator.haskell.org/D3236
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The fundamental problem with `type UniqSet = UniqFM` is that `UniqSet`
has a key invariant `UniqFM` does not. For example, `fmap` over
`UniqSet` will generally produce nonsense.
* Upgrade `UniqSet` from a type synonym to a newtype.
* Remove unused and shady `extendVarSet_C` and `addOneToUniqSet_C`.
* Use cached unique in `tyConsOfType` by replacing
`unitNameEnv (tyConName tc) tc` with `unitUniqSet tc`.
Reviewers: austin, hvr, goldfire, simonmar, niteria, bgamari
Reviewed By: niteria
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D3146
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a new pragma so that users can specify `COMPLETE` sets of
`ConLike`s in order to sate the pattern match checker.
A function which matches on all the patterns in a complete grouping
will not cause the exhaustiveness checker to emit warnings.
```
pattern P :: ()
pattern P = ()
{-# COMPLETE P #-}
foo P = ()
```
This example would previously have caused the checker to warn that
all cases were not matched even though matching on `P` is sufficient to
make `foo` covering. With the addition of the pragma, the compiler
will recognise that matching on `P` alone is enough and not emit
any warnings.
Reviewers: goldfire, gkaracha, alanz, austin, bgamari
Reviewed By: alanz
Subscribers: lelf, nomeata, gkaracha, thomie
Differential Revision: https://phabricator.haskell.org/D2669
GHC Trac Issues: #8779
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, `mkInlineUnfolding` took a `Maybe` argument indicating
whether the caller requested a specific arity. This was not
self-documenting at call sites. Now we distinguish between
`mkInlineUnfolding` and `mkInlineUnfoldingWithArity`.
Reviewers: simonpj, austin, bgamari
Reviewed By: simonpj, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2933
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add prettyprinter tests, which take a file, parse it, pretty print it,
re-parse the pretty printed version and then compare the original and
new ASTs (ignoring locations)
Updates haddock submodule to match the AST changes.
There are three issues outstanding
1. Extra parens around a context are not reproduced. This will require an
AST change and will be done in a separate patch.
2. Currently if an `HsTickPragma` is found, this is not pretty-printed,
to prevent noise in the output.
I am not sure what the desired behaviour in this case is, so have left
it as before. Test Ppr047 is marked as expected fail for this.
3. Apart from in a context, the ParsedSource AST keeps all the parens from
the original source. Something is happening in the renamer to remove the
parens around visible type application, causing T12530 to fail, as the
dumped splice decl is after the renamer.
This needs to be fixed by keeping the parens, but I do not know where they
are being removed. I have amended the test to pass, by removing the parens
in the expected output.
Test Plan: ./validate
Reviewers: goldfire, mpickering, simonpj, bgamari, austin
Reviewed By: simonpj, bgamari
Subscribers: simonpj, goldfire, thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D2752
GHC Trac Issues: #3384
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The flag was:
1. Not documented.
2. Only used as a boolean flag.
3. Has overlapping functionality with -dno-debug-output
4. My poll of #ghc concluded that people didn't know it existed.
Reviewers: austin, bgamari
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2627
GHC Trac Issues: #12691
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does two related things
* Combines the occurrence-check logic in the on-the-fly unifier with
that in the constraint solver. They are both doing the same job,
after all. The resulting code is now in TcUnify:
metaTyVarUpdateOK
occCheckExpand
occCheckForErrors (called in TcErrors)
* In doing this I disovered checking for family-free-ness and foralls
can be unnecessarily inefficient, because it expands type synonyms.
It's easy just to cache this info in the type syononym TyCon, which
I am now doing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does a raft of useful tidy-ups in the type checker.
I've been meaning to do this for some time, and finally made
time to do it en route to ICFP.
1. Modify TcType.ExpType to make a distinct data type,
InferResult for the Infer case, and consequential
refactoring.
2. Define a new function TcUnify.fillInferResult, to fill in
an InferResult. It uses TcMType.promoteTcType to promote
the type to the level of the InferResult.
See TcMType Note [Promoting a type]
This refactoring is in preparation for an improvement
to typechecking pattern bindings, coming next.
I flirted with an elaborate scheme to give better
higher rank inference, but it was just too complicated.
See TcMType Note [Promotion and higher rank types]
3. Add to InferResult a new field ir_inst :: Bool to say
whether or not the type used to fill in the
InferResult should be deeply instantiated. See
TcUnify Note [Deep instantiation of InferResult].
4. Add a TcLevel to SkolemTvs. This will be useful generally
- it's a fast way to see if the type
variable escapes when floating (not used yet)
- it provides a good consistency check when updating a
unification variable (TcMType.writeMetaTyVarRef, the
level_check_ok check)
I originally had another reason (related to the flirting
in (2), but I left it in because it seems like a step in
the right direction.
5. Reduce and simplify the plethora of uExpType,
tcSubType and related functions in TcUnify. It was
such an opaque mess and it's still not great, but it's
better.
6. Simplify the uo_expected field of TypeEqOrigin. Richard
had generatlised it to a ExpType, but it was almost always
a Check type. Now it's back to being a plain TcType which
is much, much easier.
7. Improve error messages by refraining from skolemisation when
it's clear that there's an error: see
TcUnify Note [Don't skolemise unnecessarily]
8. Type.isPiTy and isForAllTy seem to be missing a coreView check,
so I added it
9. Kill off tcs_used_tcvs. Its purpose is to track the
givens used by wanted constraints. For dictionaries etc
we do that via the free vars of the /bindings/ in the
implication constraint ic_binds. But for coercions we
just do update-in-place in the type, rather than
generating a binding. So we need something analogous to
bindings, to track what coercions we have added.
That was the purpose of tcs_used_tcvs. But it only
worked for a /single/ iteration, whereas we may have
multiple iterations of solving an implication. Look
at (the old) 'setImplicationStatus'. If the constraint
is unsolved, it just drops the used_tvs on the floor.
If it becomes solved next time round, we'll pick up
coercions used in that round, but ignore ones used in
the first round.
There was an outright bug. Result = (potentialy) bogus
unused-constraint errors. Constructing a case where this
actually happens seems quite trick so I did not do so.
Solution: expand EvBindsVar to include the (free vars of
the) coercions, so that the coercions are tracked in
essentially the same way as the bindings.
This turned out to be much simpler. Less code, more
correct.
10. Make the ic_binds field in an implication have type
ic_binds :: EvBindsVar
instead of (as previously)
ic_binds :: Maybe EvBindsVar
This is notably simpler, and faster to use -- less
testing of the Maybe. But in the occaional situation
where we don't have anywhere to put the bindings, the
belt-and-braces error check is lost. So I put it back
as an ASSERT in 'setImplicationStatus' (see the use of
'termEvidenceAllowed')
All these changes led to quite bit of error message wibbling
|
|
|
|
|
|
|
|
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: simonpj, austin, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2246
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements primitive unboxed sum types, as described in
https://ghc.haskell.org/trac/ghc/wiki/UnpackedSumTypes.
Main changes are:
- Add new syntax for unboxed sums types, terms and patterns. Hidden
behind `-XUnboxedSums`.
- Add unlifted unboxed sum type constructors and data constructors,
extend type and pattern checkers and desugarer.
- Add new RuntimeRep for unboxed sums.
- Extend unarise pass to translate unboxed sums to unboxed tuples right
before code generation.
- Add `StgRubbishArg` to `StgArg`, and a new type `CmmArg` for better
code generation when sum values are involved.
- Add user manual section for unboxed sums.
Some other changes:
- Generalize `UbxTupleRep` to `MultiRep` and `UbxTupAlt` to
`MultiValAlt` to be able to use those with both sums and tuples.
- Don't use `tyConPrimRep` in `isVoidTy`: `tyConPrimRep` is really
wrong, given an `Any` `TyCon`, there's no way to tell what its kind
is, but `kindPrimRep` and in turn `tyConPrimRep` returns `PtrRep`.
- Fix some bugs on the way: #12375.
Not included in this patch:
- Update Haddock for new the new unboxed sum syntax.
- `TemplateHaskell` support is left as future work.
For reviewers:
- Front-end code is mostly trivial and adapted from unboxed tuple code
for type checking, pattern checking, renaming, desugaring etc.
- Main translation routines are in `RepType` and `UnariseStg`.
Documentation in `UnariseStg` should be enough for understanding
what's going on.
Credits:
- Johan Tibell wrote the initial front-end and interface file
extensions.
- Simon Peyton Jones reviewed this patch many times, wrote some code,
and helped with debugging.
Reviewers: bgamari, alanz, goldfire, RyanGlScott, simonpj, austin,
simonmar, hvr, erikd
Reviewed By: simonpj
Subscribers: Iceland_jack, ggreif, ezyang, RyanGlScott, goldfire,
thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D2259
|
|
|
|
| |
GHC Trac: #4012
|
|
|
|
|
|
|
|
|
| |
This makes sure that we don't introduce unnecessary
nondeterminism from vectorization.
Also updates dph submodule to reflect the change in types.
GHC Trac: #4012
|
|
|
|
|
|
|
|
|
|
| |
Fixes Trac #7497 and #12151. In some earlier upheaval I introduced
a bug in the ambiguity check for genreric-default method.
This patch fixes it. But in fixing it I realised that the
sourc-location of any such error message was bogus, so I fixed
that too, which involved a slightly wider change; see the
comments with TcMethInfo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This commit removes the information about whether or not
a TyCon is "recursive", as well as the code responsible
for calculating this information.
The original trigger for this change was complexity regarding
how we computed the RecFlag for hs-boot files. The problem
is that in order to determine if a TyCon is recursive or
not, we need to determine if it was defined in an hs-boot
file (if so, we conservatively assume that it is recursive.)
It turns that doing this is quite tricky. The "obvious"
strategy is to typecheck the hi-boot file (since we are
eventually going to need the typechecked types to check
if we properly implemented the hi-boot file) and just extract
the names of all defined TyCons from the ModDetails, but
this actually does not work well if Names from the hi-boot
file are being knot-tied via if_rec_types: the "extraction"
process will force thunks, which will force the typechecking
process earlier than we have actually defined the types
locally.
Rather than work around all this trickiness (it certainly
can be worked around, either by making interface loading
MORE lazy, or just reading of the set of defined TyCons
directly from the ModIface), we instead opted to excise
the source of the problem, the RecFlag.
For one, it is not clear if the RecFlag even makes sense,
in the presence of higher-orderness:
data T f a = MkT (f a)
T doesn't look recursive, but if we instantiate f with T,
then it very well is! It was all very shaky.
So we just don't bother anymore. This has two user-visible
implications:
1. is_too_recursive now assumes that all TyCons are
recursive and will bail out in a way that is still mysterious
to me if there are too many TyCons.
2. checkRecTc, which is used when stripping newtypes to
get to representation, also assumes all TyCons are
recursive, and will stop running if we hit the limit.
The biggest risk for this patch is that we specialize less
than we used to; however, the codeGen tests still seem to
be passing.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Reviewers: simonpj, austin, bgamari
Subscribers: goldfire, thomie
Differential Revision: https://phabricator.haskell.org/D2360
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want to remove the `Ord Unique` instance because there's
no way to implement it in deterministic way and it's too
easy to use by accident.
We sometimes compute SCC for datatypes whose Ord instance
is implemented in terms of Unique. The Ord constraint on
SCC is just an artifact of some internal data structures.
We can have an alternative implementation with a data
structure that uses Uniquable instead.
This does exactly that and I'm pleased that I didn't have
to introduce any duplication to do that.
Test Plan:
./validate
I looked at performance tests and it's a tiny bit better.
Reviewers: bgamari, simonmar, ezyang, austin, goldfire
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2359
GHC Trac Issues: #4012
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, following the TypeInType innovations,
each TyCon had two lists:
- tyConBinders :: [TyBinder]
- tyConTyVars :: [TyVar]
They were in 1-1 correspondence and contained
overlapping information. More broadly, there were many
places where we had to pass around this pair of lists,
instead of a single list.
This commit tidies all that up, by having just one list of
binders in a TyCon:
- tyConBinders :: [TyConBinder]
The new data types look like this:
Var.hs:
data TyVarBndr tyvar vis = TvBndr tyvar vis
data VisibilityFlag = Visible | Specified | Invisible
type TyVarBinder = TyVarBndr TyVar VisibilityFlag
TyCon.hs:
type TyConBinder = TyVarBndr TyVar TyConBndrVis
data TyConBndrVis
= NamedTCB VisibilityFlag
| AnonTCB
TyCoRep.hs:
data TyBinder
= Named TyVarBinder
| Anon Type
Note that Var.TyVarBdr has moved from TyCoRep and has been
made polymorphic in the tyvar and visiblity fields:
type TyVarBinder = TyVarBndr TyVar VisibilityFlag
-- Used in ForAllTy
type TyConBinder = TyVarBndr TyVar TyConBndrVis
-- Used in TyCon
type IfaceForAllBndr = TyVarBndr IfaceTvBndr VisibilityFlag
type IfaceTyConBinder = TyVarBndr IfaceTvBndr TyConBndrVis
-- Ditto, in interface files
There are a zillion knock-on changes, but everything
arises from these types. It was a bit fiddly to get the
module loops to work out right!
Some smaller points
~~~~~~~~~~~~~~~~~~~
* Nice new functions
TysPrim.mkTemplateKiTyVars
TysPrim.mkTemplateTyConBinders
which help you make the tyvar binders for dependently-typed
TyCons. See comments with their definition.
* The change showed up a bug in TcGenGenerics.tc_mkRepTy, where the code
was making an assumption about the order of the kind variables in the
kind of GHC.Generics.(:.:). I fixed this; see TcGenGenerics.mkComp.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With TypeInType Richard combined ForAllTy and FunTy, but that was often
awkward, and yielded little benefit becuase in practice the two were
always treated separately. This patch re-introduces FunTy. Specfically
* New type
data TyVarBinder = TvBndr TyVar VisibilityFlag
This /always/ has a TyVar it. In many places that's just what
what we want, so there are /lots/ of TyBinder -> TyVarBinder changes
* TyBinder still exists:
data TyBinder = Named TyVarBinder | Anon Type
* data Type = ForAllTy TyVarBinder Type
| FunTy Type Type
| ....
There are a LOT of knock-on changes, but they are all routine.
The Haddock submodule needs to be updated too
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This major commit was initially triggered by #11339, but it spiraled
into a major review of the way in which type signatures for bindings
are handled, especially partial type signatures. On the way I fixed a
number of other bugs, namely
#12069
#12033
#11700
#11339
#11670
The main change is that I completely reorganised the way in which type
signatures in bindings are handled. The new story is in TcSigs
Note [Overview of type signatures]. Some specific:
* Changes in the data types for signatures in TcRnTypes:
TcIdSigInfo and new TcIdSigInst
* New module TcSigs deals with typechecking type signatures
and pragmas. It contains code mostly moved from TcBinds,
which is already too big
* HsTypes: I swapped the nesting of HsWildCardBndrs
and HsImplicitBndsrs, so that the wildcards are on the
oustide not the insidde in a LHsSigWcType. This is just
a matter of convenient, nothing deep.
There are a host of other changes as knock-on effects, and
it all took FAR longer than I anticipated :-). But it is
a significant improvement, I think.
Lots of error messages changed slightly, some just variants but
some modest improvements.
New tests
* typecheck/should_compile
* SigTyVars: a scoped-tyvar test
* ExPat, ExPatFail: existential pattern bindings
* T12069
* T11700
* T11339
* partial-sigs/should_compile
* T12033
* T11339a
* T11670
One thing to check:
* Small change to output from ghc-api/landmines.
Need to check with Alan Zimmerman
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We dump it in the interface file, so we need to do it in a
deterministic order. I haven't seen any problems with this
during my testing, but that's probably because it's unused.
Test Plan: ./validate
Reviewers: simonmar, austin, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2313
GHC Trac Issues: #4012
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I believe this part of code is a bit unused. That's
probably why it never became a problem in my testing.
I'm changing to deterministic sets here to be safer.
Test Plan: ./validate
Reviewers: simonmar, austin, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2312
GHC Trac Issues: #4012
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've documented the guarantees that stronglyConnCompFromEdgedVertices
provides and commented on the call sites to explain why they are
OK from determinism standpoint. I've changed the functions to
nonDetUFM versions, so that it's explicit they could introduce
nondeterminism. I haven't defined container (VarSet, NameSet)
specific versions, so that we have less functions to worry about.
Test Plan: this is mostly just documentation,
it should have no runtime effect
Reviewers: bgamari, simonmar, austin, simonpj
Reviewed By: simonpj
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2194
GHC Trac Issues: #4012
|
|
|
|
| |
We can get away with anyUFM here.
|
|
|
|
| |
[ci skip]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In particular, this allows correct tracking of specified/invisible
for variables in Haskell98 data constructors and in pattern synonyms.
GADT-syntax constructors are harder, and are left until #11721.
This was all inspired by Simon's comments to my fix for #11512,
which this subsumes.
Test case: ghci/scripts/TypeAppData
[skip ci] (The test case fails because of an unrelated problem
fixed in the next commit.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See Note [TYPE] in TysPrim. There are still some outstanding
pieces in #11471 though, so this doesn't actually nail the bug.
This commit also contains a few performance improvements:
* Short-cut equality checking of nullary type syns
* Compare types before kinds in eqType
* INLINE coreViewOneStarKind
* Store tycon binders separately from kinds.
This resulted in a ~10% performance improvement in compiling
the Cabal package. No change in functionality other than
performance. (This affects the interface file format, though.)
This commit updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was causing trouble as we had to remember when to use "unLifted"
and when to use "unlifted".
"unlifted" is used instead of "unLifted" as it's a single word.
Reviewers: austin, hvr, goldfire, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1852
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously types defined by `GHC.Types` and `GHC.Prim` had their
`Typeable` representations manually defined in `GHC.Typeable.Internals`.
This was terrible, resulting in a great deal of boilerplate and a number
of bugs due to missing or inconsistent representations (see #11120).
Here we take a different tack, initially proposed by Richard Eisenberg:
We wire-in the `Module`, `TrName`, and `TyCon` types, allowing them to
be used in `GHC.Types`. We then allow the usual type representation
generation logic to handle this module.
`GHC.Prim`, on the other hand, is a bit tricky as it has no object code
of its own. To handle this we instead place the type representations
for the types defined here in `GHC.Types`.
On the whole this eliminates several special-cases as well as a fair
amount of boilerplate from hand-written representations. Moreover, we
get full coverage of primitive types for free.
Test Plan: Validate
Reviewers: goldfire, simonpj, austin, hvr
Subscribers: goldfire, simonpj, thomie
Differential Revision: https://phabricator.haskell.org/D1774
GHC Trac Issues: #11120
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In the past the canonical way for constructing an SDoc string literal was the
composition `ptext . sLit`. But for some time now we have function `text` that
does the same. Plus it has some rules that optimize its runtime behaviour.
This patch takes all uses of `ptext . sLit` in the compiler and replaces them
with calls to `text`. The main benefits of this patch are clener (shorter) code
and less dependencies between module, because many modules now do not need to
import `FastString`. I don't expect any performance benefits - we mostly use
SDocs to report errors and it seems there is little to be gained here.
Test Plan: ./validate
Reviewers: bgamari, austin, goldfire, hvr, alanz
Subscribers: goldfire, thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D1784
|
|
|
|
|
|
| |
Starting with GHC 7.10 and base-4.8, `Monad` implies `Applicative`,
which allows to simplify some definitions to exploit the superclass
relationship. This a first refactoring to that end.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since GHC 8.1/8.2 only needs to be bootstrap-able by GHC 7.10 and
GHC 8.0 (and GHC 8.2), we can now finally drop all that pre-AMP
compatibility CPP-mess for good!
Reviewers: austin, goldfire, bgamari
Subscribers: goldfire, thomie, erikd
Differential Revision: https://phabricator.haskell.org/D1724
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the ideas originally put forward in
"System FC with Explicit Kind Equality" (ICFP'13).
There are several noteworthy changes with this patch:
* We now have casts in types. These change the kind
of a type. See new constructor `CastTy`.
* All types and all constructors can be promoted.
This includes GADT constructors. GADT pattern matches
take place in type family equations. In Core,
types can now be applied to coercions via the
`CoercionTy` constructor.
* Coercions can now be heterogeneous, relating types
of different kinds. A coercion proving `t1 :: k1 ~ t2 :: k2`
proves both that `t1` and `t2` are the same and also that
`k1` and `k2` are the same.
* The `Coercion` type has been significantly enhanced.
The documentation in `docs/core-spec/core-spec.pdf` reflects
the new reality.
* The type of `*` is now `*`. No more `BOX`.
* Users can write explicit kind variables in their code,
anywhere they can write type variables. For backward compatibility,
automatic inference of kind-variable binding is still permitted.
* The new extension `TypeInType` turns on the new user-facing
features.
* Type families and synonyms are now promoted to kinds. This causes
trouble with parsing `*`, leading to the somewhat awkward new
`HsAppsTy` constructor for `HsType`. This is dispatched with in
the renamer, where the kind `*` can be told apart from a
type-level multiplication operator. Without `-XTypeInType` the
old behavior persists. With `-XTypeInType`, you need to import
`Data.Kind` to get `*`, also known as `Type`.
* The kind-checking algorithms in TcHsType have been significantly
rewritten to allow for enhanced kinds.
* The new features are still quite experimental and may be in flux.
* TODO: Several open tickets: #11195, #11196, #11197, #11198, #11203.
* TODO: Update user manual.
Tickets addressed: #9017, #9173, #7961, #10524, #8566, #11142.
Updates Haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does some signficant refactoring to the treatment
of default methods in class declarations, and more generally
to the type checking of type/class decls.
Highlights:
* When the class has a generic-default method, such as
class C a where
op :: a -> a -> Bool
default op :: Ord a => a -> a -> a
the ClassOpItem records the type of the generic-default,
in this case the type (Ord a => a -> a -> a)
* I killed off Class.DefMeth in favour of the very-similar
BasicTypes.DefMethSpec. However it turned out to be better
to use a Maybe, thus
Maybe (DefMethSpec Type)
with Nothing meaning "no default method".
* In TcTyClsDecls.tcTyClGroup, we used to accumulate a [TyThing],
but I found a way to make it much simpler, accumulating only
a [TyCon]. Much less wrapping and unwrapping.
* On the way I also fixed Trac #10896 in a better way. Instead
of killing off all ambiguity checks whenever there are any type
errors (the fix in commit 8e8b9ed), I instead recover in
TcTyClsDecls.checkValidTyCl.
There was a lot of associated simplification all round
|