summaryrefslogtreecommitdiff
path: root/mpc/src/atan.c
blob: 285f79f6cb58b6e9aabbb4e9c848cea1ee1a367e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/* mpc_atan -- arctangent of a complex number.

Copyright (C) 2009, 2010, 2011, 2012, 2013 INRIA

This file is part of GNU MPC.

GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/

#include <stdio.h>
#include "mpc-impl.h"

/* set rop to
   -pi/2 if s < 0
   +pi/2 else
   rounded in the direction rnd
*/
int
set_pi_over_2 (mpfr_ptr rop, int s, mpfr_rnd_t rnd)
{
  int inex;

  inex = mpfr_const_pi (rop, s < 0 ? INV_RND (rnd) : rnd);
  mpfr_div_2ui (rop, rop, 1, GMP_RNDN);
  if (s < 0)
    {
      inex = -inex;
      mpfr_neg (rop, rop, GMP_RNDN);
    }

  return inex;
}

int
mpc_atan (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd)
{
  int s_re;
  int s_im;
  int inex_re;
  int inex_im;
  int inex;

  inex_re = 0;
  inex_im = 0;
  s_re = mpfr_signbit (mpc_realref (op));
  s_im = mpfr_signbit (mpc_imagref (op));

  /* special values */
  if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op)))
    {
      if (mpfr_nan_p (mpc_realref (op)))
        {
          mpfr_set_nan (mpc_realref (rop));
          if (mpfr_zero_p (mpc_imagref (op)) || mpfr_inf_p (mpc_imagref (op)))
            {
              mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN);
              if (s_im)
                mpc_conj (rop, rop, MPC_RNDNN);
            }
          else
            mpfr_set_nan (mpc_imagref (rop));
        }
      else
        {
          if (mpfr_inf_p (mpc_realref (op)))
            {
              inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));
              mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN);
            }
          else
            {
              mpfr_set_nan (mpc_realref (rop));
              mpfr_set_nan (mpc_imagref (rop));
            }
        }
      return MPC_INEX (inex_re, 0);
    }

  if (mpfr_inf_p (mpc_realref (op)) || mpfr_inf_p (mpc_imagref (op)))
    {
      inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));

      mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN);
      if (s_im)
        mpc_conj (rop, rop, GMP_RNDN);

      return MPC_INEX (inex_re, 0);
    }

  /* pure real argument */
  if (mpfr_zero_p (mpc_imagref (op)))
    {
      inex_re = mpfr_atan (mpc_realref (rop), mpc_realref (op), MPC_RND_RE (rnd));

      mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN);
      if (s_im)
        mpc_conj (rop, rop, GMP_RNDN);

      return MPC_INEX (inex_re, 0);
    }

  /* pure imaginary argument */
  if (mpfr_zero_p (mpc_realref (op)))
    {
      int cmp_1;

      if (s_im)
        cmp_1 = -mpfr_cmp_si (mpc_imagref (op), -1);
      else
        cmp_1 = mpfr_cmp_ui (mpc_imagref (op), +1);

      if (cmp_1 < 0)
        {
          /* atan(+0+iy) = +0 +i*atanh(y), if |y| < 1
             atan(-0+iy) = -0 +i*atanh(y), if |y| < 1 */

          mpfr_set_ui (mpc_realref (rop), 0, GMP_RNDN);
          if (s_re)
            mpfr_neg (mpc_realref (rop), mpc_realref (rop), GMP_RNDN);

          inex_im = mpfr_atanh (mpc_imagref (rop), mpc_imagref (op), MPC_RND_IM (rnd));
        }
      else if (cmp_1 == 0)
        {
          /* atan(+/-0 +i) = +/-0 +i*inf
             atan(+/-0 -i) = +/-0 -i*inf */
          mpfr_set_zero (mpc_realref (rop), s_re ? -1 : +1);
          mpfr_set_inf  (mpc_imagref (rop), s_im ? -1 : +1);
        }
      else
        {
          /* atan(+0+iy) = +pi/2 +i*atanh(1/y), if |y| > 1
             atan(-0+iy) = -pi/2 +i*atanh(1/y), if |y| > 1 */
          mpfr_rnd_t rnd_im, rnd_away;
          mpfr_t y;
          mpfr_prec_t p, p_im;
          int ok;

          rnd_im = MPC_RND_IM (rnd);
          mpfr_init (y);
          p_im = mpfr_get_prec (mpc_imagref (rop));
          p = p_im;

          /* a = o(1/y)      with error(a) < 1 ulp(a)
             b = o(atanh(a)) with error(b) < (1+2^{1+Exp(a)-Exp(b)}) ulp(b)

             As |atanh (1/y)| > |1/y| we have Exp(a)-Exp(b) <=0 so, at most,
             2 bits of precision are lost.

             We round atanh(1/y) away from 0.
          */
          do
            {
              p += mpc_ceil_log2 (p) + 2;
              mpfr_set_prec (y, p);
              rnd_away = s_im == 0 ? GMP_RNDU : GMP_RNDD;
              inex_im = mpfr_ui_div (y, 1, mpc_imagref (op), rnd_away);
              /* FIXME: should we consider the case with unreasonably huge
                 precision prec(y)>3*exp_min, where atanh(1/Im(op)) could be
                 representable while 1/Im(op) underflows ?
                 This corresponds to |y| = 0.5*2^emin, in which case the
                 result may be wrong. */

              /* atanh cannot underflow: |atanh(x)| > |x| for |x| < 1 */
              inex_im |= mpfr_atanh (y, y, rnd_away);

              ok = inex_im == 0
                || mpfr_can_round (y, p - 2, rnd_away, GMP_RNDZ,
                                   p_im + (rnd_im == GMP_RNDN));
            } while (ok == 0);

          inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));
          inex_im = mpfr_set (mpc_imagref (rop), y, rnd_im);
          mpfr_clear (y);
        }
      return MPC_INEX (inex_re, inex_im);
    }

  /* regular number argument */
  {
    mpfr_t a, b, x, y;
    mpfr_prec_t prec, p;
    mpfr_exp_t err, expo;
    int ok = 0;
    mpfr_t minus_op_re;
    mpfr_exp_t op_re_exp, op_im_exp;
    mpfr_rnd_t rnd1, rnd2;

    mpfr_inits2 (MPFR_PREC_MIN, a, b, x, y, (mpfr_ptr) 0);

    /* real part: Re(arctan(x+i*y)) = [arctan2(x,1-y) - arctan2(-x,1+y)]/2 */
    minus_op_re[0] = mpc_realref (op)[0];
    MPFR_CHANGE_SIGN (minus_op_re);
    op_re_exp = mpfr_get_exp (mpc_realref (op));
    op_im_exp = mpfr_get_exp (mpc_imagref (op));

    prec = mpfr_get_prec (mpc_realref (rop)); /* result precision */

    /* a = o(1-y)         error(a) < 1 ulp(a)
       b = o(atan2(x,a))  error(b) < [1+2^{3+Exp(x)-Exp(a)-Exp(b)}] ulp(b)
                                     = kb ulp(b)
       c = o(1+y)         error(c) < 1 ulp(c)
       d = o(atan2(-x,c)) error(d) < [1+2^{3+Exp(x)-Exp(c)-Exp(d)}] ulp(d)
                                     = kd ulp(d)
       e = o(b - d)       error(e) < [1 + kb*2^{Exp(b}-Exp(e)}
                                        + kd*2^{Exp(d)-Exp(e)}] ulp(e)
                          error(e) < [1 + 2^{4+Exp(x)-Exp(a)-Exp(e)}
                                        + 2^{4+Exp(x)-Exp(c)-Exp(e)}] ulp(e)
                          because |atan(u)| < |u|
                                   < [1 + 2^{5+Exp(x)-min(Exp(a),Exp(c))
                                             -Exp(e)}] ulp(e)
       f = e/2            exact
    */

    /* p: working precision */
    p = (op_im_exp > 0 || prec > SAFE_ABS (mpfr_prec_t, op_im_exp)) ? prec
      : (prec - op_im_exp);
    rnd1 = mpfr_sgn (mpc_realref (op)) > 0 ? GMP_RNDD : GMP_RNDU;
    rnd2 = mpfr_sgn (mpc_realref (op)) < 0 ? GMP_RNDU : GMP_RNDD;

    do
      {
        p += mpc_ceil_log2 (p) + 2;
        mpfr_set_prec (a, p);
        mpfr_set_prec (b, p);
        mpfr_set_prec (x, p);

        /* x = upper bound for atan (x/(1-y)). Since atan is increasing, we
           need an upper bound on x/(1-y), i.e., a lower bound on 1-y for
           x positive, and an upper bound on 1-y for x negative */
        mpfr_ui_sub (a, 1, mpc_imagref (op), rnd1);
        if (mpfr_sgn (a) == 0) /* y is near 1, thus 1+y is near 2, and
                                  expo will be 1 or 2 below */
          {
            MPC_ASSERT (mpfr_cmp_ui (mpc_imagref(op), 1) == 0);
               /* check for intermediate underflow */
            err = 2; /* ensures err will be expo below */
          }
        else
          err = mpfr_get_exp (a); /* err = Exp(a) with the notations above */
        mpfr_atan2 (x, mpc_realref (op), a, GMP_RNDU);

        /* b = lower bound for atan (-x/(1+y)): for x negative, we need a
           lower bound on -x/(1+y), i.e., an upper bound on 1+y */
        mpfr_add_ui (a, mpc_imagref(op), 1, rnd2);
        /* if a is exactly zero, i.e., Im(op) = -1, then the error on a is 0,
           and we can simply ignore the terms involving Exp(a) in the error */
        if (mpfr_sgn (a) == 0)
          {
            MPC_ASSERT (mpfr_cmp_si (mpc_imagref(op), -1) == 0);
               /* check for intermediate underflow */
            expo = err; /* will leave err unchanged below */
          }
        else
          expo = mpfr_get_exp (a); /* expo = Exp(c) with the notations above */
        mpfr_atan2 (b, minus_op_re, a, GMP_RNDD);

        err = err < expo ? err : expo; /* err = min(Exp(a),Exp(c)) */
        mpfr_sub (x, x, b, GMP_RNDU);

        err = 5 + op_re_exp - err - mpfr_get_exp (x);
        /* error is bounded by [1 + 2^err] ulp(e) */
        err = err < 0 ? 1 : err + 1;

        mpfr_div_2ui (x, x, 1, GMP_RNDU);

        /* Note: using RND2=RNDD guarantees that if x is exactly representable
           on prec + ... bits, mpfr_can_round will return 0 */
        ok = mpfr_can_round (x, p - err, GMP_RNDU, GMP_RNDD,
                             prec + (MPC_RND_RE (rnd) == GMP_RNDN));
      } while (ok == 0);

    /* Imaginary part
       Im(atan(x+I*y)) = 1/4 * [log(x^2+(1+y)^2) - log (x^2 +(1-y)^2)] */
    prec = mpfr_get_prec (mpc_imagref (rop)); /* result precision */

    /* a = o(1+y)    error(a) < 1 ulp(a)
       b = o(a^2)    error(b) < 5 ulp(b)
       c = o(x^2)    error(c) < 1 ulp(c)
       d = o(b+c)    error(d) < 7 ulp(d)
       e = o(log(d)) error(e) < [1 + 7*2^{2-Exp(e)}] ulp(e) = ke ulp(e)
       f = o(1-y)    error(f) < 1 ulp(f)
       g = o(f^2)    error(g) < 5 ulp(g)
       h = o(c+f)    error(h) < 7 ulp(h)
       i = o(log(h)) error(i) < [1 + 7*2^{2-Exp(i)}] ulp(i) = ki ulp(i)
       j = o(e-i)    error(j) < [1 + ke*2^{Exp(e)-Exp(j)}
                                   + ki*2^{Exp(i)-Exp(j)}] ulp(j)
                     error(j) < [1 + 2^{Exp(e)-Exp(j)} + 2^{Exp(i)-Exp(j)}
                                   + 7*2^{3-Exp(j)}] ulp(j)
                              < [1 + 2^{max(Exp(e),Exp(i))-Exp(j)+1}
                                   + 7*2^{3-Exp(j)}] ulp(j)
       k = j/4       exact
    */
    err = 2;
    p = prec; /* working precision */

    do
      {
        p += mpc_ceil_log2 (p) + err;
        mpfr_set_prec (a, p);
        mpfr_set_prec (b, p);
        mpfr_set_prec (y, p);

        /* a = upper bound for log(x^2 + (1+y)^2) */
        ROUND_AWAY (mpfr_add_ui (a, mpc_imagref (op), 1, MPFR_RNDA), a);
        mpfr_sqr (a, a, GMP_RNDU);
        mpfr_sqr (y, mpc_realref (op), GMP_RNDU);
        mpfr_add (a, a, y, GMP_RNDU);
        mpfr_log (a, a, GMP_RNDU);

        /* b = lower bound for log(x^2 + (1-y)^2) */
        mpfr_ui_sub (b, 1, mpc_imagref (op), GMP_RNDZ); /* round to zero */
        mpfr_sqr (b, b, GMP_RNDZ);
        /* we could write mpfr_sqr (y, mpc_realref (op), GMP_RNDZ) but it is
           more efficient to reuse the value of y (x^2) above and subtract
           one ulp */
        mpfr_nextbelow (y);
        mpfr_add (b, b, y, GMP_RNDZ);
        mpfr_log (b, b, GMP_RNDZ);

        mpfr_sub (y, a, b, GMP_RNDU);

        if (mpfr_zero_p (y))
           /* FIXME: happens when x and y have very different magnitudes;
              could be handled more efficiently                           */
          ok = 0;
        else
          {
            expo = MPC_MAX (mpfr_get_exp (a), mpfr_get_exp (b));
            expo = expo - mpfr_get_exp (y) + 1;
            err = 3 - mpfr_get_exp (y);
            /* error(j) <= [1 + 2^expo + 7*2^err] ulp(j) */
            if (expo <= err) /* error(j) <= [1 + 2^{err+1}] ulp(j) */
              err = (err < 0) ? 1 : err + 2;
            else
              err = (expo < 0) ? 1 : expo + 2;

            mpfr_div_2ui (y, y, 2, GMP_RNDN);
            MPC_ASSERT (!mpfr_zero_p (y));
               /* FIXME: underflow. Since the main term of the Taylor series
                  in y=0 is 1/(x^2+1) * y, this means that y is very small
                  and/or x very large; but then the mpfr_zero_p (y) above
                  should be true. This needs a proof, or better yet,
                  special code.                                              */

            ok = mpfr_can_round (y, p - err, GMP_RNDU, GMP_RNDD,
                                 prec + (MPC_RND_IM (rnd) == GMP_RNDN));
          }
      } while (ok == 0);

    inex = mpc_set_fr_fr (rop, x, y, rnd);

    mpfr_clears (a, b, x, y, (mpfr_ptr) 0);
    return inex;
  }
}