summaryrefslogtreecommitdiff
path: root/mpc/src/atan.c
diff options
context:
space:
mode:
Diffstat (limited to 'mpc/src/atan.c')
-rw-r--r--mpc/src/atan.c367
1 files changed, 367 insertions, 0 deletions
diff --git a/mpc/src/atan.c b/mpc/src/atan.c
new file mode 100644
index 0000000000..285f79f6cb
--- /dev/null
+++ b/mpc/src/atan.c
@@ -0,0 +1,367 @@
+/* mpc_atan -- arctangent of a complex number.
+
+Copyright (C) 2009, 2010, 2011, 2012, 2013 INRIA
+
+This file is part of GNU MPC.
+
+GNU MPC is free software; you can redistribute it and/or modify it under
+the terms of the GNU Lesser General Public License as published by the
+Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
+more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with this program. If not, see http://www.gnu.org/licenses/ .
+*/
+
+#include <stdio.h>
+#include "mpc-impl.h"
+
+/* set rop to
+ -pi/2 if s < 0
+ +pi/2 else
+ rounded in the direction rnd
+*/
+int
+set_pi_over_2 (mpfr_ptr rop, int s, mpfr_rnd_t rnd)
+{
+ int inex;
+
+ inex = mpfr_const_pi (rop, s < 0 ? INV_RND (rnd) : rnd);
+ mpfr_div_2ui (rop, rop, 1, GMP_RNDN);
+ if (s < 0)
+ {
+ inex = -inex;
+ mpfr_neg (rop, rop, GMP_RNDN);
+ }
+
+ return inex;
+}
+
+int
+mpc_atan (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd)
+{
+ int s_re;
+ int s_im;
+ int inex_re;
+ int inex_im;
+ int inex;
+
+ inex_re = 0;
+ inex_im = 0;
+ s_re = mpfr_signbit (mpc_realref (op));
+ s_im = mpfr_signbit (mpc_imagref (op));
+
+ /* special values */
+ if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op)))
+ {
+ if (mpfr_nan_p (mpc_realref (op)))
+ {
+ mpfr_set_nan (mpc_realref (rop));
+ if (mpfr_zero_p (mpc_imagref (op)) || mpfr_inf_p (mpc_imagref (op)))
+ {
+ mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN);
+ if (s_im)
+ mpc_conj (rop, rop, MPC_RNDNN);
+ }
+ else
+ mpfr_set_nan (mpc_imagref (rop));
+ }
+ else
+ {
+ if (mpfr_inf_p (mpc_realref (op)))
+ {
+ inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));
+ mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN);
+ }
+ else
+ {
+ mpfr_set_nan (mpc_realref (rop));
+ mpfr_set_nan (mpc_imagref (rop));
+ }
+ }
+ return MPC_INEX (inex_re, 0);
+ }
+
+ if (mpfr_inf_p (mpc_realref (op)) || mpfr_inf_p (mpc_imagref (op)))
+ {
+ inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));
+
+ mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN);
+ if (s_im)
+ mpc_conj (rop, rop, GMP_RNDN);
+
+ return MPC_INEX (inex_re, 0);
+ }
+
+ /* pure real argument */
+ if (mpfr_zero_p (mpc_imagref (op)))
+ {
+ inex_re = mpfr_atan (mpc_realref (rop), mpc_realref (op), MPC_RND_RE (rnd));
+
+ mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN);
+ if (s_im)
+ mpc_conj (rop, rop, GMP_RNDN);
+
+ return MPC_INEX (inex_re, 0);
+ }
+
+ /* pure imaginary argument */
+ if (mpfr_zero_p (mpc_realref (op)))
+ {
+ int cmp_1;
+
+ if (s_im)
+ cmp_1 = -mpfr_cmp_si (mpc_imagref (op), -1);
+ else
+ cmp_1 = mpfr_cmp_ui (mpc_imagref (op), +1);
+
+ if (cmp_1 < 0)
+ {
+ /* atan(+0+iy) = +0 +i*atanh(y), if |y| < 1
+ atan(-0+iy) = -0 +i*atanh(y), if |y| < 1 */
+
+ mpfr_set_ui (mpc_realref (rop), 0, GMP_RNDN);
+ if (s_re)
+ mpfr_neg (mpc_realref (rop), mpc_realref (rop), GMP_RNDN);
+
+ inex_im = mpfr_atanh (mpc_imagref (rop), mpc_imagref (op), MPC_RND_IM (rnd));
+ }
+ else if (cmp_1 == 0)
+ {
+ /* atan(+/-0 +i) = +/-0 +i*inf
+ atan(+/-0 -i) = +/-0 -i*inf */
+ mpfr_set_zero (mpc_realref (rop), s_re ? -1 : +1);
+ mpfr_set_inf (mpc_imagref (rop), s_im ? -1 : +1);
+ }
+ else
+ {
+ /* atan(+0+iy) = +pi/2 +i*atanh(1/y), if |y| > 1
+ atan(-0+iy) = -pi/2 +i*atanh(1/y), if |y| > 1 */
+ mpfr_rnd_t rnd_im, rnd_away;
+ mpfr_t y;
+ mpfr_prec_t p, p_im;
+ int ok;
+
+ rnd_im = MPC_RND_IM (rnd);
+ mpfr_init (y);
+ p_im = mpfr_get_prec (mpc_imagref (rop));
+ p = p_im;
+
+ /* a = o(1/y) with error(a) < 1 ulp(a)
+ b = o(atanh(a)) with error(b) < (1+2^{1+Exp(a)-Exp(b)}) ulp(b)
+
+ As |atanh (1/y)| > |1/y| we have Exp(a)-Exp(b) <=0 so, at most,
+ 2 bits of precision are lost.
+
+ We round atanh(1/y) away from 0.
+ */
+ do
+ {
+ p += mpc_ceil_log2 (p) + 2;
+ mpfr_set_prec (y, p);
+ rnd_away = s_im == 0 ? GMP_RNDU : GMP_RNDD;
+ inex_im = mpfr_ui_div (y, 1, mpc_imagref (op), rnd_away);
+ /* FIXME: should we consider the case with unreasonably huge
+ precision prec(y)>3*exp_min, where atanh(1/Im(op)) could be
+ representable while 1/Im(op) underflows ?
+ This corresponds to |y| = 0.5*2^emin, in which case the
+ result may be wrong. */
+
+ /* atanh cannot underflow: |atanh(x)| > |x| for |x| < 1 */
+ inex_im |= mpfr_atanh (y, y, rnd_away);
+
+ ok = inex_im == 0
+ || mpfr_can_round (y, p - 2, rnd_away, GMP_RNDZ,
+ p_im + (rnd_im == GMP_RNDN));
+ } while (ok == 0);
+
+ inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));
+ inex_im = mpfr_set (mpc_imagref (rop), y, rnd_im);
+ mpfr_clear (y);
+ }
+ return MPC_INEX (inex_re, inex_im);
+ }
+
+ /* regular number argument */
+ {
+ mpfr_t a, b, x, y;
+ mpfr_prec_t prec, p;
+ mpfr_exp_t err, expo;
+ int ok = 0;
+ mpfr_t minus_op_re;
+ mpfr_exp_t op_re_exp, op_im_exp;
+ mpfr_rnd_t rnd1, rnd2;
+
+ mpfr_inits2 (MPFR_PREC_MIN, a, b, x, y, (mpfr_ptr) 0);
+
+ /* real part: Re(arctan(x+i*y)) = [arctan2(x,1-y) - arctan2(-x,1+y)]/2 */
+ minus_op_re[0] = mpc_realref (op)[0];
+ MPFR_CHANGE_SIGN (minus_op_re);
+ op_re_exp = mpfr_get_exp (mpc_realref (op));
+ op_im_exp = mpfr_get_exp (mpc_imagref (op));
+
+ prec = mpfr_get_prec (mpc_realref (rop)); /* result precision */
+
+ /* a = o(1-y) error(a) < 1 ulp(a)
+ b = o(atan2(x,a)) error(b) < [1+2^{3+Exp(x)-Exp(a)-Exp(b)}] ulp(b)
+ = kb ulp(b)
+ c = o(1+y) error(c) < 1 ulp(c)
+ d = o(atan2(-x,c)) error(d) < [1+2^{3+Exp(x)-Exp(c)-Exp(d)}] ulp(d)
+ = kd ulp(d)
+ e = o(b - d) error(e) < [1 + kb*2^{Exp(b}-Exp(e)}
+ + kd*2^{Exp(d)-Exp(e)}] ulp(e)
+ error(e) < [1 + 2^{4+Exp(x)-Exp(a)-Exp(e)}
+ + 2^{4+Exp(x)-Exp(c)-Exp(e)}] ulp(e)
+ because |atan(u)| < |u|
+ < [1 + 2^{5+Exp(x)-min(Exp(a),Exp(c))
+ -Exp(e)}] ulp(e)
+ f = e/2 exact
+ */
+
+ /* p: working precision */
+ p = (op_im_exp > 0 || prec > SAFE_ABS (mpfr_prec_t, op_im_exp)) ? prec
+ : (prec - op_im_exp);
+ rnd1 = mpfr_sgn (mpc_realref (op)) > 0 ? GMP_RNDD : GMP_RNDU;
+ rnd2 = mpfr_sgn (mpc_realref (op)) < 0 ? GMP_RNDU : GMP_RNDD;
+
+ do
+ {
+ p += mpc_ceil_log2 (p) + 2;
+ mpfr_set_prec (a, p);
+ mpfr_set_prec (b, p);
+ mpfr_set_prec (x, p);
+
+ /* x = upper bound for atan (x/(1-y)). Since atan is increasing, we
+ need an upper bound on x/(1-y), i.e., a lower bound on 1-y for
+ x positive, and an upper bound on 1-y for x negative */
+ mpfr_ui_sub (a, 1, mpc_imagref (op), rnd1);
+ if (mpfr_sgn (a) == 0) /* y is near 1, thus 1+y is near 2, and
+ expo will be 1 or 2 below */
+ {
+ MPC_ASSERT (mpfr_cmp_ui (mpc_imagref(op), 1) == 0);
+ /* check for intermediate underflow */
+ err = 2; /* ensures err will be expo below */
+ }
+ else
+ err = mpfr_get_exp (a); /* err = Exp(a) with the notations above */
+ mpfr_atan2 (x, mpc_realref (op), a, GMP_RNDU);
+
+ /* b = lower bound for atan (-x/(1+y)): for x negative, we need a
+ lower bound on -x/(1+y), i.e., an upper bound on 1+y */
+ mpfr_add_ui (a, mpc_imagref(op), 1, rnd2);
+ /* if a is exactly zero, i.e., Im(op) = -1, then the error on a is 0,
+ and we can simply ignore the terms involving Exp(a) in the error */
+ if (mpfr_sgn (a) == 0)
+ {
+ MPC_ASSERT (mpfr_cmp_si (mpc_imagref(op), -1) == 0);
+ /* check for intermediate underflow */
+ expo = err; /* will leave err unchanged below */
+ }
+ else
+ expo = mpfr_get_exp (a); /* expo = Exp(c) with the notations above */
+ mpfr_atan2 (b, minus_op_re, a, GMP_RNDD);
+
+ err = err < expo ? err : expo; /* err = min(Exp(a),Exp(c)) */
+ mpfr_sub (x, x, b, GMP_RNDU);
+
+ err = 5 + op_re_exp - err - mpfr_get_exp (x);
+ /* error is bounded by [1 + 2^err] ulp(e) */
+ err = err < 0 ? 1 : err + 1;
+
+ mpfr_div_2ui (x, x, 1, GMP_RNDU);
+
+ /* Note: using RND2=RNDD guarantees that if x is exactly representable
+ on prec + ... bits, mpfr_can_round will return 0 */
+ ok = mpfr_can_round (x, p - err, GMP_RNDU, GMP_RNDD,
+ prec + (MPC_RND_RE (rnd) == GMP_RNDN));
+ } while (ok == 0);
+
+ /* Imaginary part
+ Im(atan(x+I*y)) = 1/4 * [log(x^2+(1+y)^2) - log (x^2 +(1-y)^2)] */
+ prec = mpfr_get_prec (mpc_imagref (rop)); /* result precision */
+
+ /* a = o(1+y) error(a) < 1 ulp(a)
+ b = o(a^2) error(b) < 5 ulp(b)
+ c = o(x^2) error(c) < 1 ulp(c)
+ d = o(b+c) error(d) < 7 ulp(d)
+ e = o(log(d)) error(e) < [1 + 7*2^{2-Exp(e)}] ulp(e) = ke ulp(e)
+ f = o(1-y) error(f) < 1 ulp(f)
+ g = o(f^2) error(g) < 5 ulp(g)
+ h = o(c+f) error(h) < 7 ulp(h)
+ i = o(log(h)) error(i) < [1 + 7*2^{2-Exp(i)}] ulp(i) = ki ulp(i)
+ j = o(e-i) error(j) < [1 + ke*2^{Exp(e)-Exp(j)}
+ + ki*2^{Exp(i)-Exp(j)}] ulp(j)
+ error(j) < [1 + 2^{Exp(e)-Exp(j)} + 2^{Exp(i)-Exp(j)}
+ + 7*2^{3-Exp(j)}] ulp(j)
+ < [1 + 2^{max(Exp(e),Exp(i))-Exp(j)+1}
+ + 7*2^{3-Exp(j)}] ulp(j)
+ k = j/4 exact
+ */
+ err = 2;
+ p = prec; /* working precision */
+
+ do
+ {
+ p += mpc_ceil_log2 (p) + err;
+ mpfr_set_prec (a, p);
+ mpfr_set_prec (b, p);
+ mpfr_set_prec (y, p);
+
+ /* a = upper bound for log(x^2 + (1+y)^2) */
+ ROUND_AWAY (mpfr_add_ui (a, mpc_imagref (op), 1, MPFR_RNDA), a);
+ mpfr_sqr (a, a, GMP_RNDU);
+ mpfr_sqr (y, mpc_realref (op), GMP_RNDU);
+ mpfr_add (a, a, y, GMP_RNDU);
+ mpfr_log (a, a, GMP_RNDU);
+
+ /* b = lower bound for log(x^2 + (1-y)^2) */
+ mpfr_ui_sub (b, 1, mpc_imagref (op), GMP_RNDZ); /* round to zero */
+ mpfr_sqr (b, b, GMP_RNDZ);
+ /* we could write mpfr_sqr (y, mpc_realref (op), GMP_RNDZ) but it is
+ more efficient to reuse the value of y (x^2) above and subtract
+ one ulp */
+ mpfr_nextbelow (y);
+ mpfr_add (b, b, y, GMP_RNDZ);
+ mpfr_log (b, b, GMP_RNDZ);
+
+ mpfr_sub (y, a, b, GMP_RNDU);
+
+ if (mpfr_zero_p (y))
+ /* FIXME: happens when x and y have very different magnitudes;
+ could be handled more efficiently */
+ ok = 0;
+ else
+ {
+ expo = MPC_MAX (mpfr_get_exp (a), mpfr_get_exp (b));
+ expo = expo - mpfr_get_exp (y) + 1;
+ err = 3 - mpfr_get_exp (y);
+ /* error(j) <= [1 + 2^expo + 7*2^err] ulp(j) */
+ if (expo <= err) /* error(j) <= [1 + 2^{err+1}] ulp(j) */
+ err = (err < 0) ? 1 : err + 2;
+ else
+ err = (expo < 0) ? 1 : expo + 2;
+
+ mpfr_div_2ui (y, y, 2, GMP_RNDN);
+ MPC_ASSERT (!mpfr_zero_p (y));
+ /* FIXME: underflow. Since the main term of the Taylor series
+ in y=0 is 1/(x^2+1) * y, this means that y is very small
+ and/or x very large; but then the mpfr_zero_p (y) above
+ should be true. This needs a proof, or better yet,
+ special code. */
+
+ ok = mpfr_can_round (y, p - err, GMP_RNDU, GMP_RNDD,
+ prec + (MPC_RND_IM (rnd) == GMP_RNDN));
+ }
+ } while (ok == 0);
+
+ inex = mpc_set_fr_fr (rop, x, y, rnd);
+
+ mpfr_clears (a, b, x, y, (mpfr_ptr) 0);
+ return inex;
+ }
+}