summaryrefslogtreecommitdiff
path: root/Modules/_math.c
diff options
context:
space:
mode:
authorChristian Heimes <christian@python.org>2021-10-25 11:25:27 +0300
committerGitHub <noreply@github.com>2021-10-25 01:25:27 -0700
commitfa26245a1c1aa938cce391348d6bd879da357522 (patch)
treeb193ebf766f3105a880ce8d8f7160b090b0c77b2 /Modules/_math.c
parent51ed2c56a1852cd6b09c85ba81312dc9782772ce (diff)
downloadcpython-git-fa26245a1c1aa938cce391348d6bd879da357522.tar.gz
bpo-45548: Remove _math.c workarounds for pre-C99 libm (GH-29179)
The :mod:`math` and :mod:`cmath` implementation now require a C99 compatible ``libm`` and no longer ship with workarounds for missing acosh, asinh, expm1, and log1p functions. The changeset also removes ``_math.c`` and moves the last remaining workaround into ``_math.h``. This simplifies static builds with ``Modules/Setup`` and resolves symbol conflicts. Co-authored-by: Mark Dickinson <mdickinson@enthought.com> Co-authored-by: Brett Cannon <brett@python.org> Signed-off-by: Christian Heimes <christian@python.org>
Diffstat (limited to 'Modules/_math.c')
-rw-r--r--Modules/_math.c270
1 files changed, 0 insertions, 270 deletions
diff --git a/Modules/_math.c b/Modules/_math.c
deleted file mode 100644
index c1936a1088..0000000000
--- a/Modules/_math.c
+++ /dev/null
@@ -1,270 +0,0 @@
-/* Definitions of some C99 math library functions, for those platforms
- that don't implement these functions already. */
-
-#ifndef Py_BUILD_CORE_BUILTIN
-# define Py_BUILD_CORE_MODULE 1
-#endif
-
-#include "Python.h"
-#include <float.h>
-#include "_math.h"
-
-/* The following copyright notice applies to the original
- implementations of acosh, asinh and atanh. */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#if !defined(HAVE_ACOSH) || !defined(HAVE_ASINH)
-static const double ln2 = 6.93147180559945286227E-01;
-static const double two_pow_p28 = 268435456.0; /* 2**28 */
-#endif
-#if !defined(HAVE_ASINH) || !defined(HAVE_ATANH)
-static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
-#endif
-#if !defined(HAVE_ATANH) && !defined(Py_NAN)
-static const double zero = 0.0;
-#endif
-
-
-#ifndef HAVE_ACOSH
-/* acosh(x)
- * Method :
- * Based on
- * acosh(x) = log [ x + sqrt(x*x-1) ]
- * we have
- * acosh(x) := log(x)+ln2, if x is large; else
- * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
- * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
- *
- * Special cases:
- * acosh(x) is NaN with signal if x<1.
- * acosh(NaN) is NaN without signal.
- */
-
-double
-_Py_acosh(double x)
-{
- if (Py_IS_NAN(x)) {
- return x+x;
- }
- if (x < 1.) { /* x < 1; return a signaling NaN */
- errno = EDOM;
-#ifdef Py_NAN
- return Py_NAN;
-#else
- return (x-x)/(x-x);
-#endif
- }
- else if (x >= two_pow_p28) { /* x > 2**28 */
- if (Py_IS_INFINITY(x)) {
- return x+x;
- }
- else {
- return log(x) + ln2; /* acosh(huge)=log(2x) */
- }
- }
- else if (x == 1.) {
- return 0.0; /* acosh(1) = 0 */
- }
- else if (x > 2.) { /* 2 < x < 2**28 */
- double t = x * x;
- return log(2.0 * x - 1.0 / (x + sqrt(t - 1.0)));
- }
- else { /* 1 < x <= 2 */
- double t = x - 1.0;
- return m_log1p(t + sqrt(2.0 * t + t * t));
- }
-}
-#endif /* HAVE_ACOSH */
-
-
-#ifndef HAVE_ASINH
-/* asinh(x)
- * Method :
- * Based on
- * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
- * we have
- * asinh(x) := x if 1+x*x=1,
- * := sign(x)*(log(x)+ln2) for large |x|, else
- * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
- * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
- */
-
-double
-_Py_asinh(double x)
-{
- double w;
- double absx = fabs(x);
-
- if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
- return x+x;
- }
- if (absx < two_pow_m28) { /* |x| < 2**-28 */
- return x; /* return x inexact except 0 */
- }
- if (absx > two_pow_p28) { /* |x| > 2**28 */
- w = log(absx) + ln2;
- }
- else if (absx > 2.0) { /* 2 < |x| < 2**28 */
- w = log(2.0 * absx + 1.0 / (sqrt(x * x + 1.0) + absx));
- }
- else { /* 2**-28 <= |x| < 2= */
- double t = x*x;
- w = m_log1p(absx + t / (1.0 + sqrt(1.0 + t)));
- }
- return copysign(w, x);
-
-}
-#endif /* HAVE_ASINH */
-
-
-#ifndef HAVE_ATANH
-/* atanh(x)
- * Method :
- * 1.Reduced x to positive by atanh(-x) = -atanh(x)
- * 2.For x>=0.5
- * 1 2x x
- * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * -------)
- * 2 1 - x 1 - x
- *
- * For x<0.5
- * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
- *
- * Special cases:
- * atanh(x) is NaN if |x| >= 1 with signal;
- * atanh(NaN) is that NaN with no signal;
- *
- */
-
-double
-_Py_atanh(double x)
-{
- double absx;
- double t;
-
- if (Py_IS_NAN(x)) {
- return x+x;
- }
- absx = fabs(x);
- if (absx >= 1.) { /* |x| >= 1 */
- errno = EDOM;
-#ifdef Py_NAN
- return Py_NAN;
-#else
- return x / zero;
-#endif
- }
- if (absx < two_pow_m28) { /* |x| < 2**-28 */
- return x;
- }
- if (absx < 0.5) { /* |x| < 0.5 */
- t = absx+absx;
- t = 0.5 * m_log1p(t + t*absx / (1.0 - absx));
- }
- else { /* 0.5 <= |x| <= 1.0 */
- t = 0.5 * m_log1p((absx + absx) / (1.0 - absx));
- }
- return copysign(t, x);
-}
-#endif /* HAVE_ATANH */
-
-
-#ifndef HAVE_EXPM1
-/* Mathematically, expm1(x) = exp(x) - 1. The expm1 function is designed
- to avoid the significant loss of precision that arises from direct
- evaluation of the expression exp(x) - 1, for x near 0. */
-
-double
-_Py_expm1(double x)
-{
- /* For abs(x) >= log(2), it's safe to evaluate exp(x) - 1 directly; this
- also works fine for infinities and nans.
-
- For smaller x, we can use a method due to Kahan that achieves close to
- full accuracy.
- */
-
- if (fabs(x) < 0.7) {
- double u;
- u = exp(x);
- if (u == 1.0)
- return x;
- else
- return (u - 1.0) * x / log(u);
- }
- else
- return exp(x) - 1.0;
-}
-#endif /* HAVE_EXPM1 */
-
-
-/* log1p(x) = log(1+x). The log1p function is designed to avoid the
- significant loss of precision that arises from direct evaluation when x is
- small. */
-
-double
-_Py_log1p(double x)
-{
-#ifdef HAVE_LOG1P
- /* Some platforms supply a log1p function but don't respect the sign of
- zero: log1p(-0.0) gives 0.0 instead of the correct result of -0.0.
-
- To save fiddling with configure tests and platform checks, we handle the
- special case of zero input directly on all platforms.
- */
- if (x == 0.0) {
- return x;
- }
- else {
- return log1p(x);
- }
-#else
- /* For x small, we use the following approach. Let y be the nearest float
- to 1+x, then
-
- 1+x = y * (1 - (y-1-x)/y)
-
- so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, the
- second term is well approximated by (y-1-x)/y. If abs(x) >=
- DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
- then y-1-x will be exactly representable, and is computed exactly by
- (y-1)-x.
-
- If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
- round-to-nearest then this method is slightly dangerous: 1+x could be
- rounded up to 1+DBL_EPSILON instead of down to 1, and in that case
- y-1-x will not be exactly representable any more and the result can be
- off by many ulps. But this is easily fixed: for a floating-point
- number |x| < DBL_EPSILON/2., the closest floating-point number to
- log(1+x) is exactly x.
- */
-
- double y;
- if (fabs(x) < DBL_EPSILON / 2.) {
- return x;
- }
- else if (-0.5 <= x && x <= 1.) {
- /* WARNING: it's possible that an overeager compiler
- will incorrectly optimize the following two lines
- to the equivalent of "return log(1.+x)". If this
- happens, then results from log1p will be inaccurate
- for small x. */
- y = 1.+x;
- return log(y) - ((y - 1.) - x) / y;
- }
- else {
- /* NaNs and infinities should end up here */
- return log(1.+x);
- }
-#endif /* ifdef HAVE_LOG1P */
-}
-