diff options
author | Christian Heimes <christian@python.org> | 2021-10-25 11:25:27 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-10-25 01:25:27 -0700 |
commit | fa26245a1c1aa938cce391348d6bd879da357522 (patch) | |
tree | b193ebf766f3105a880ce8d8f7160b090b0c77b2 /Modules/_math.c | |
parent | 51ed2c56a1852cd6b09c85ba81312dc9782772ce (diff) | |
download | cpython-git-fa26245a1c1aa938cce391348d6bd879da357522.tar.gz |
bpo-45548: Remove _math.c workarounds for pre-C99 libm (GH-29179)
The :mod:`math` and :mod:`cmath` implementation now require a C99 compatible
``libm`` and no longer ship with workarounds for missing acosh, asinh,
expm1, and log1p functions.
The changeset also removes ``_math.c`` and moves the last remaining
workaround into ``_math.h``. This simplifies static builds with
``Modules/Setup`` and resolves symbol conflicts.
Co-authored-by: Mark Dickinson <mdickinson@enthought.com>
Co-authored-by: Brett Cannon <brett@python.org>
Signed-off-by: Christian Heimes <christian@python.org>
Diffstat (limited to 'Modules/_math.c')
-rw-r--r-- | Modules/_math.c | 270 |
1 files changed, 0 insertions, 270 deletions
diff --git a/Modules/_math.c b/Modules/_math.c deleted file mode 100644 index c1936a1088..0000000000 --- a/Modules/_math.c +++ /dev/null @@ -1,270 +0,0 @@ -/* Definitions of some C99 math library functions, for those platforms - that don't implement these functions already. */ - -#ifndef Py_BUILD_CORE_BUILTIN -# define Py_BUILD_CORE_MODULE 1 -#endif - -#include "Python.h" -#include <float.h> -#include "_math.h" - -/* The following copyright notice applies to the original - implementations of acosh, asinh and atanh. */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if !defined(HAVE_ACOSH) || !defined(HAVE_ASINH) -static const double ln2 = 6.93147180559945286227E-01; -static const double two_pow_p28 = 268435456.0; /* 2**28 */ -#endif -#if !defined(HAVE_ASINH) || !defined(HAVE_ATANH) -static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */ -#endif -#if !defined(HAVE_ATANH) && !defined(Py_NAN) -static const double zero = 0.0; -#endif - - -#ifndef HAVE_ACOSH -/* acosh(x) - * Method : - * Based on - * acosh(x) = log [ x + sqrt(x*x-1) ] - * we have - * acosh(x) := log(x)+ln2, if x is large; else - * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else - * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. - * - * Special cases: - * acosh(x) is NaN with signal if x<1. - * acosh(NaN) is NaN without signal. - */ - -double -_Py_acosh(double x) -{ - if (Py_IS_NAN(x)) { - return x+x; - } - if (x < 1.) { /* x < 1; return a signaling NaN */ - errno = EDOM; -#ifdef Py_NAN - return Py_NAN; -#else - return (x-x)/(x-x); -#endif - } - else if (x >= two_pow_p28) { /* x > 2**28 */ - if (Py_IS_INFINITY(x)) { - return x+x; - } - else { - return log(x) + ln2; /* acosh(huge)=log(2x) */ - } - } - else if (x == 1.) { - return 0.0; /* acosh(1) = 0 */ - } - else if (x > 2.) { /* 2 < x < 2**28 */ - double t = x * x; - return log(2.0 * x - 1.0 / (x + sqrt(t - 1.0))); - } - else { /* 1 < x <= 2 */ - double t = x - 1.0; - return m_log1p(t + sqrt(2.0 * t + t * t)); - } -} -#endif /* HAVE_ACOSH */ - - -#ifndef HAVE_ASINH -/* asinh(x) - * Method : - * Based on - * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] - * we have - * asinh(x) := x if 1+x*x=1, - * := sign(x)*(log(x)+ln2) for large |x|, else - * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else - * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) - */ - -double -_Py_asinh(double x) -{ - double w; - double absx = fabs(x); - - if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) { - return x+x; - } - if (absx < two_pow_m28) { /* |x| < 2**-28 */ - return x; /* return x inexact except 0 */ - } - if (absx > two_pow_p28) { /* |x| > 2**28 */ - w = log(absx) + ln2; - } - else if (absx > 2.0) { /* 2 < |x| < 2**28 */ - w = log(2.0 * absx + 1.0 / (sqrt(x * x + 1.0) + absx)); - } - else { /* 2**-28 <= |x| < 2= */ - double t = x*x; - w = m_log1p(absx + t / (1.0 + sqrt(1.0 + t))); - } - return copysign(w, x); - -} -#endif /* HAVE_ASINH */ - - -#ifndef HAVE_ATANH -/* atanh(x) - * Method : - * 1.Reduced x to positive by atanh(-x) = -atanh(x) - * 2.For x>=0.5 - * 1 2x x - * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * -------) - * 2 1 - x 1 - x - * - * For x<0.5 - * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) - * - * Special cases: - * atanh(x) is NaN if |x| >= 1 with signal; - * atanh(NaN) is that NaN with no signal; - * - */ - -double -_Py_atanh(double x) -{ - double absx; - double t; - - if (Py_IS_NAN(x)) { - return x+x; - } - absx = fabs(x); - if (absx >= 1.) { /* |x| >= 1 */ - errno = EDOM; -#ifdef Py_NAN - return Py_NAN; -#else - return x / zero; -#endif - } - if (absx < two_pow_m28) { /* |x| < 2**-28 */ - return x; - } - if (absx < 0.5) { /* |x| < 0.5 */ - t = absx+absx; - t = 0.5 * m_log1p(t + t*absx / (1.0 - absx)); - } - else { /* 0.5 <= |x| <= 1.0 */ - t = 0.5 * m_log1p((absx + absx) / (1.0 - absx)); - } - return copysign(t, x); -} -#endif /* HAVE_ATANH */ - - -#ifndef HAVE_EXPM1 -/* Mathematically, expm1(x) = exp(x) - 1. The expm1 function is designed - to avoid the significant loss of precision that arises from direct - evaluation of the expression exp(x) - 1, for x near 0. */ - -double -_Py_expm1(double x) -{ - /* For abs(x) >= log(2), it's safe to evaluate exp(x) - 1 directly; this - also works fine for infinities and nans. - - For smaller x, we can use a method due to Kahan that achieves close to - full accuracy. - */ - - if (fabs(x) < 0.7) { - double u; - u = exp(x); - if (u == 1.0) - return x; - else - return (u - 1.0) * x / log(u); - } - else - return exp(x) - 1.0; -} -#endif /* HAVE_EXPM1 */ - - -/* log1p(x) = log(1+x). The log1p function is designed to avoid the - significant loss of precision that arises from direct evaluation when x is - small. */ - -double -_Py_log1p(double x) -{ -#ifdef HAVE_LOG1P - /* Some platforms supply a log1p function but don't respect the sign of - zero: log1p(-0.0) gives 0.0 instead of the correct result of -0.0. - - To save fiddling with configure tests and platform checks, we handle the - special case of zero input directly on all platforms. - */ - if (x == 0.0) { - return x; - } - else { - return log1p(x); - } -#else - /* For x small, we use the following approach. Let y be the nearest float - to 1+x, then - - 1+x = y * (1 - (y-1-x)/y) - - so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, the - second term is well approximated by (y-1-x)/y. If abs(x) >= - DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest - then y-1-x will be exactly representable, and is computed exactly by - (y-1)-x. - - If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be - round-to-nearest then this method is slightly dangerous: 1+x could be - rounded up to 1+DBL_EPSILON instead of down to 1, and in that case - y-1-x will not be exactly representable any more and the result can be - off by many ulps. But this is easily fixed: for a floating-point - number |x| < DBL_EPSILON/2., the closest floating-point number to - log(1+x) is exactly x. - */ - - double y; - if (fabs(x) < DBL_EPSILON / 2.) { - return x; - } - else if (-0.5 <= x && x <= 1.) { - /* WARNING: it's possible that an overeager compiler - will incorrectly optimize the following two lines - to the equivalent of "return log(1.+x)". If this - happens, then results from log1p will be inaccurate - for small x. */ - y = 1.+x; - return log(y) - ((y - 1.) - x) / y; - } - else { - /* NaNs and infinities should end up here */ - return log(1.+x); - } -#endif /* ifdef HAVE_LOG1P */ -} - |