1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/* Copyright 2016 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Virtual battery cross-platform code for Chrome EC */
#include "battery.h"
#include "charge_state.h"
#include "i2c.h"
#include "system.h"
#include "util.h"
#include "virtual_battery.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_I2C, outstr)
#define CPRINTS(format, args...) cprints(CC_I2C, format, ## args)
#define BATT_MODE_UNINITIALIZED -1
/*
* The state machine used to parse smart battery command
* to support virtual battery.
*/
enum batt_cmd_parse_state {
IDLE = 0, /* initial state */
START = 1, /* received the register address (command code) */
WRITE_VB, /* writing data bytes to the slave */
READ_VB, /* reading data bytes to the slave */
};
static enum batt_cmd_parse_state sb_cmd_state;
static uint8_t cache_hit;
static const uint8_t *batt_cmd_head;
static int acc_write_len;
int virtual_battery_handler(struct ec_response_i2c_passthru *resp,
int in_len, int *err_code, int xferflags,
int read_len, int write_len,
const uint8_t *out)
{
#if defined(CONFIG_BATTERY_PRESENT_GPIO) || \
defined(CONFIG_BATTERY_PRESENT_CUSTOM)
/*
* If the battery isn't present, return a NAK (which we
* would have gotten anyways had we attempted to talk to
* the battery.)
*/
if (battery_is_present() != BP_YES) {
resp->i2c_status = EC_I2C_STATUS_NAK;
return EC_ERROR_INVAL;
}
#endif
switch (sb_cmd_state) {
case IDLE:
/*
* A legal battery command must start
* with a i2c write for reg index.
*/
if (write_len == 0) {
resp->i2c_status = EC_I2C_STATUS_NAK;
return EC_ERROR_INVAL;
}
/* Record the head of battery command. */
batt_cmd_head = out;
sb_cmd_state = START;
*err_code = 0;
break;
case START:
if (write_len > 0) {
sb_cmd_state = WRITE_VB;
*err_code = 0;
} else {
sb_cmd_state = READ_VB;
*err_code = virtual_battery_operation(batt_cmd_head,
NULL, 0, 0);
/*
* If the reg is not handled by virtual battery, we
* do not support it.
*/
if (*err_code)
return EC_ERROR_INVAL;
cache_hit = 1;
}
break;
case WRITE_VB:
if (write_len == 0) {
resp->i2c_status = EC_I2C_STATUS_NAK;
reset_parse_state();
return EC_ERROR_INVAL;
}
*err_code = 0;
break;
case READ_VB:
if (read_len == 0) {
resp->i2c_status = EC_I2C_STATUS_NAK;
reset_parse_state();
return EC_ERROR_INVAL;
}
/*
* Do not send the command to battery
* if the reg is cached.
*/
if (cache_hit)
*err_code = 0;
break;
default:
reset_parse_state();
return EC_ERROR_INVAL;
}
acc_write_len += write_len;
/* the last message */
if (xferflags & I2C_XFER_STOP) {
switch (sb_cmd_state) {
/* write to virtual battery */
case START:
case WRITE_VB:
virtual_battery_operation(batt_cmd_head,
NULL,
0,
acc_write_len);
break;
/* read from virtual battery */
case READ_VB:
if (cache_hit) {
read_len += in_len;
memset(&resp->data[0], 0, read_len);
virtual_battery_operation(batt_cmd_head,
&resp->data[0],
read_len,
0);
}
break;
default:
reset_parse_state();
return EC_ERROR_INVAL;
}
/* Reset the state in the end of messages */
reset_parse_state();
}
return EC_RES_SUCCESS;
}
void reset_parse_state(void)
{
sb_cmd_state = IDLE;
cache_hit = 0;
acc_write_len = 0;
}
/*
* Copy memmap string data from offset to dest, up to size len, in the format
* expected by SBS (first byte of dest contains strlen).
*/
void copy_memmap_string(uint8_t *dest, int offset, int len)
{
uint8_t *memmap_str;
uint8_t memmap_strlen;
if (len == 0)
return;
memmap_str = host_get_memmap(offset);
/* memmap_str might not be NULL terminated */
memmap_strlen = *(memmap_str + EC_MEMMAP_TEXT_MAX - 1) == '\0' ?
strlen(memmap_str) : EC_MEMMAP_TEXT_MAX;
dest[0] = memmap_strlen;
memcpy(dest + 1, memmap_str, MIN(memmap_strlen, len - 1));
}
int virtual_battery_operation(const uint8_t *batt_cmd_head,
uint8_t *dest,
int read_len,
int write_len)
{
int val;
/*
* We cache battery operational mode locally for both read and write
* commands. If MODE_CAPACITY bit is set, battery capacity will be
* reported in 10mW/10mWh, instead of the default unit, mA/mAh.
* Note that we don't update the cached capacity: We do a real-time
* conversion and return the converted values.
*/
static int batt_mode_cache = BATT_MODE_UNINITIALIZED;
const struct batt_params *curr_batt;
/*
* Don't allow host reads into arbitrary memory space, most params
* are two bytes.
*/
int bounded_read_len = MIN(read_len, 2);
curr_batt = charger_current_battery_params();
switch (*batt_cmd_head) {
case SB_BATTERY_MODE:
if (write_len == 3) {
batt_mode_cache = batt_cmd_head[1] |
(batt_cmd_head[2] << 8);
} else if (read_len > 0) {
if (batt_mode_cache == BATT_MODE_UNINITIALIZED)
/*
* Read the battery operational mode from
* the battery to initialize batt_mode_cache.
* This may cause an i2c transaction.
*/
if (battery_get_mode(&batt_mode_cache) ==
EC_ERROR_UNIMPLEMENTED)
/*
* Register not supported, choose
* typical SB defaults.
*/
batt_mode_cache =
MODE_INTERNAL_CHARGE_CONTROLLER |
MODE_ALARM |
MODE_CHARGER;
memcpy(dest, &batt_mode_cache, bounded_read_len);
}
break;
case SB_SERIAL_NUMBER:
val = strtoi(host_get_memmap(EC_MEMMAP_BATT_SERIAL), NULL, 16);
memcpy(dest, &val, bounded_read_len);
break;
case SB_VOLTAGE:
memcpy(dest, &(curr_batt->voltage), bounded_read_len);
break;
case SB_RELATIVE_STATE_OF_CHARGE:
memcpy(dest, &(curr_batt->state_of_charge), bounded_read_len);
break;
case SB_TEMPERATURE:
memcpy(dest, &(curr_batt->temperature), bounded_read_len);
break;
case SB_CURRENT:
memcpy(dest, &(curr_batt->current), bounded_read_len);
break;
case SB_FULL_CHARGE_CAPACITY:
val = curr_batt->full_capacity;
if (batt_mode_cache & MODE_CAPACITY)
val = val * curr_batt->voltage / 10000;
memcpy(dest, &val, bounded_read_len);
break;
case SB_BATTERY_STATUS:
memcpy(dest, &(curr_batt->status), bounded_read_len);
break;
case SB_CYCLE_COUNT:
memcpy(dest, (int *)host_get_memmap(EC_MEMMAP_BATT_CCNT),
bounded_read_len);
break;
case SB_DESIGN_CAPACITY:
val = *(int *)host_get_memmap(EC_MEMMAP_BATT_DCAP);
if (batt_mode_cache & MODE_CAPACITY)
val = val * curr_batt->voltage / 10000;
memcpy(dest, &val, bounded_read_len);
break;
case SB_DESIGN_VOLTAGE:
memcpy(dest, (int *)host_get_memmap(EC_MEMMAP_BATT_DVLT),
bounded_read_len);
break;
case SB_REMAINING_CAPACITY:
val = curr_batt->remaining_capacity;
if (batt_mode_cache & MODE_CAPACITY)
val = val * curr_batt->voltage / 10000;
memcpy(dest, &val, bounded_read_len);
break;
case SB_MANUFACTURER_NAME:
copy_memmap_string(dest, EC_MEMMAP_BATT_MFGR, read_len);
break;
case SB_DEVICE_NAME:
copy_memmap_string(dest, EC_MEMMAP_BATT_MODEL, read_len);
break;
case SB_AVERAGE_TIME_TO_FULL:
/* This may cause an i2c transaction */
if (battery_time_to_full(&val))
return EC_ERROR_INVAL;
memcpy(dest, &val, bounded_read_len);
break;
case SB_AVERAGE_TIME_TO_EMPTY:
/* This may cause an i2c transaction */
if (battery_time_to_empty(&val))
return EC_ERROR_INVAL;
memcpy(dest, &val, bounded_read_len);
break;
case SB_MANUFACTURER_ACCESS:
/* No manuf. access reg access allowed over VB interface */
return EC_ERROR_INVAL;
default:
CPRINTS("Unhandled VB reg %x", *batt_cmd_head);
return EC_ERROR_INVAL;
}
return EC_SUCCESS;
}
|