summaryrefslogtreecommitdiff
path: root/chip/stm32/hwtimer.c
blob: 0fe2168f55f1a9d0d416435f8bffdb5f8c1bf360 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Hardware timers driver */

#include <stdint.h>

#include "board.h"
#include "common.h"
#include "hwtimer.h"
#include "panic.h"
#include "registers.h"
#include "task.h"
#include "watchdog.h"

#define US_PER_SECOND 1000000

/* Divider to get microsecond for the clock */
#define CLOCKSOURCE_DIVIDER (CPU_CLOCK/US_PER_SECOND)

#ifdef CHIP_VARIANT_stm32f100
#define TIM_WD_IRQ	STM32_IRQ_TIM1_UP_TIM16
#define TIM_WD		1	/* Timer to use for watchdog */
#endif

enum {
	TIM_WD_BASE	= STM32_TIM1_BASE,
};

static uint32_t last_deadline;

void __hw_clock_event_set(uint32_t deadline)
{
	last_deadline = deadline;

	if ((deadline >> 16) > STM32_TIM_CNT(3)) {
		/* first set a match on the MSB */
		STM32_TIM_CCR1(3) = deadline >> 16;
		/* disable LSB match */
		STM32_TIM_DIER(4) &= ~2;
		/* Clear the match flags */
		STM32_TIM_SR(3) = ~2;
		STM32_TIM_SR(4) = ~2;
		/* Set the match interrupt */
		STM32_TIM_DIER(3) |= 2;
	}
	/*
	 * In the unlikely case where the MSB on TIM3 has increased and
	 * matched the deadline MSB before we set the match interrupt,
	 * as the STM hardware timer won't trigger an interrupt, we fall back
	 * to the following LSB event code to set another interrupt.
	 */
	if ((deadline >> 16) == STM32_TIM_CNT(3)) {
		/* we can set a match on the LSB only */
		STM32_TIM_CCR1(4) = deadline & 0xffff;
		/* disable MSB match */
		STM32_TIM_DIER(3) &= ~2;
		/* Clear the match flags */
		STM32_TIM_SR(3) = ~2;
		STM32_TIM_SR(4) = ~2;
		/* Set the match interrupt */
		STM32_TIM_DIER(4) |= 2;
	}
	/*
	 * if the LSB deadline is already in the past and won't trigger
	 * an interrupt, the common code in process_timers will deal with
	 * the expired timer and automatically set the next deadline, we
	 * don't need to do anything here.
	 */
}

uint32_t __hw_clock_event_get(void)
{
	return last_deadline;
}

void __hw_clock_event_clear(void)
{
	/* Disable the match interrupts */
	STM32_TIM_DIER(4) &= ~2;
	STM32_TIM_DIER(3) &= ~2;
}

uint32_t __hw_clock_source_read(void)
{
	uint32_t hi;
	uint32_t lo;

	/* ensure the two half-words are coherent */
	do {
		hi = STM32_TIM_CNT(3);
		lo = STM32_TIM_CNT(4);
	} while (hi != STM32_TIM_CNT(3));

	return (hi << 16) | lo;
}

void __hw_clock_source_set(uint32_t ts)
{
	STM32_TIM_CNT(3) = ts >> 16;
	STM32_TIM_CNT(4) = ts & 0xffff;
}

static void __hw_clock_source_irq(void)
{
	uint32_t stat_tim3 = STM32_TIM_SR(3);

	/* clear status */
	STM32_TIM_SR(4) = 0;
	STM32_TIM_SR(3) = 0;

	/*
	 * Find expired timers and set the new timer deadline
	 * signal overflow if the 16-bit MSB counter has overflowed.
	 */
	process_timers(stat_tim3 & 0x01);
}
DECLARE_IRQ(STM32_IRQ_TIM3, __hw_clock_source_irq, 1);
DECLARE_IRQ(STM32_IRQ_TIM4, __hw_clock_source_irq, 1);

int __hw_clock_source_init(uint32_t start_t)
{
	/*
	 * we use 2 chained 16-bit counters to emulate a 32-bit one :
	 * TIM3 is the MSB (Slave)
	 * TIM4 is the LSB (Master)
	 */

	/* Enable TIM3 and TIM4 clocks */
	STM32_RCC_APB1ENR |= 0x6;

	/*
	 * Timer configuration : Upcounter, counter disabled, update event only
	 * on overflow.
	 */
	STM32_TIM_CR1(3) = 0x0004;
	STM32_TIM_CR1(4) = 0x0004;
	/* TIM4 (master mode) generates a periodic trigger signal on each UEV */
	STM32_TIM_CR2(3) = 0x0000;
	STM32_TIM_CR2(4) = 0x0020;
	/* TIM3 (slave mode) uses ITR3 as internal trigger */
	STM32_TIM_SMCR(3) = 0x0037;
	STM32_TIM_SMCR(4) = 0x0000;
	/* Auto-reload value : 16-bit free-running counters */
	STM32_TIM_ARR(3) = 0xffff;
	STM32_TIM_ARR(4) = 0xffff;
	/* Pre-scaler value :
	 * TIM4 is counting microseconds, TIM3 is counting every TIM4 overflow.
	 */
	STM32_TIM_PSC(3) = 0;
	STM32_TIM_PSC(4) = CLOCKSOURCE_DIVIDER - 1;

	/* Reload the pre-scaler */
	STM32_TIM_EGR(3) = 0x0001;
	STM32_TIM_EGR(4) = 0x0001;

	/* setup the overflow interrupt on TIM3 */
	STM32_TIM_DIER(3) = 0x0001;
	STM32_TIM_DIER(4) = 0x0000;

	/* Start counting */
	STM32_TIM_CR1(3) |= 1;
	STM32_TIM_CR1(4) |= 1;

	/* Override the count with the start value now that counting has
	 * started. */
	__hw_clock_source_set(start_t);

	/* Enable timer interrupts */
	task_enable_irq(STM32_IRQ_TIM3);
	task_enable_irq(STM32_IRQ_TIM4);

	return STM32_IRQ_TIM4;
}

/*
 * We don't have TIM1 on STM32L, so don't support this function for now.
 * TIM5 doesn't appear to exist in either variant, and TIM9 cannot be
 * triggered as a slave from TIM4. We could perhaps use TIM9 as our
 * fast counter on STM32L.
 */
#ifdef CHIP_VARIANT_stm32f100

void watchdog_check(uint32_t excep_lr, uint32_t excep_sp)
{
	struct timer_ctlr *timer = (struct timer_ctlr *)TIM_WD_BASE;

	/* clear status */
	timer->sr = 0;

	watchdog_trace(excep_lr, excep_sp);
}

void IRQ_HANDLER(TIM_WD_IRQ)(void) __attribute__((naked));
void IRQ_HANDLER(TIM_WD_IRQ)(void)
{
	/* Naked call so we can extract raw LR and SP */
	asm volatile("mov r0, lr\n"
		     "mov r1, sp\n"
		     /* Must push registers in pairs to keep 64-bit aligned
		      * stack for ARM EABI.  This also conveninently saves
		      * R0=LR so we can pass it to task_resched_if_needed. */
		     "push {r0, lr}\n"
		     "bl watchdog_check\n"
		     "pop {r0, lr}\n"
		     "b task_resched_if_needed\n");
}
const struct irq_priority IRQ_BUILD_NAME(prio_, TIM_WD_IRQ, )
	__attribute__((section(".rodata.irqprio")))
		= {TIM_WD_IRQ, 0}; /* put the watchdog at the highest
					    priority */

void hwtimer_setup_watchdog(void)
{
	struct timer_ctlr *timer = (struct timer_ctlr *)TIM_WD_BASE;

	/* Enable clock */
#if TIM_WD == 1
	STM32_RCC_APB2ENR |= 1 << 11;
#else
	STM32_RCC_APB1ENR |= 1 << (TIM_WD - 2);
#endif

	/*
	 * Timer configuration : Down counter, counter disabled, update
	 * event only on overflow.
	 */
	timer->cr1 = 0x0014 | (1 << 7);

	/* TIM (slave mode) uses ITR3 as internal trigger */
	timer->smcr = 0x0037;

	/*
	 * The auto-reload value is based on the period between rollovers
	 * for TIM4. Since TIM4 runs at 1MHz, it will overflow in 65.536ms.
	 * We divide our required watchdog period by this amount to obtain
	 * the number of times TIM4 can overflow before we generate an
	 * interrupt.
	 */
	timer->arr = timer->cnt = WATCHDOG_PERIOD_MS * 1000 / (1 << 16);

	/* count on every TIM4 overflow */
	timer->psc = 0;

	/* Reload the pre-scaler from arr when it goes below zero */
	timer->egr = 0x0000;

	/* setup the overflow interrupt */
	timer->dier = 0x0001;

	/* Start counting */
	timer->cr1 |= 1;

	/* Enable timer interrupts */
	task_enable_irq(TIM_WD_IRQ);
}

void hwtimer_reset_watchdog(void)
{
	struct timer_ctlr *timer = (struct timer_ctlr *)TIM_WD_BASE;

	timer->cnt = timer->arr;
}
#endif