1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
* Copyright (C) 2013-2017 Igalia S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderGrid.h"
#include "GridArea.h"
#include "GridPositionsResolver.h"
#include "GridTrackSizingAlgorithm.h"
#include "LayoutRepainter.h"
#include "RenderLayer.h"
#include "RenderView.h"
#include <cstdlib>
namespace WebCore {
static constexpr ItemPosition selfAlignmentNormalBehavior = ItemPositionStretch;
enum TrackSizeRestriction {
AllowInfinity,
ForbidInfinity,
};
struct ContentAlignmentData {
WTF_MAKE_FAST_ALLOCATED;
public:
bool isValid() { return positionOffset >= 0 && distributionOffset >= 0; }
static ContentAlignmentData defaultOffsets() { return {-1, -1}; }
LayoutUnit positionOffset;
LayoutUnit distributionOffset;
};
RenderGrid::RenderGrid(Element& element, RenderStyle&& style)
: RenderBlock(element, WTFMove(style), 0)
, m_grid(*this)
, m_trackSizingAlgorithm(this, m_grid)
{
// All of our children must be block level.
setChildrenInline(false);
}
RenderGrid::~RenderGrid()
{
}
static inline bool defaultAlignmentIsStretch(ItemPosition position)
{
return position == ItemPositionStretch || position == ItemPositionAuto;
}
static inline bool defaultAlignmentChangedToStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle)
{
return !defaultAlignmentIsStretch(oldStyle.justifyItems().position()) && defaultAlignmentIsStretch(newStyle.justifyItems().position());
}
static inline bool defaultAlignmentChangedFromStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle)
{
return defaultAlignmentIsStretch(oldStyle.justifyItems().position()) && !defaultAlignmentIsStretch(newStyle.justifyItems().position());
}
static inline bool defaultAlignmentChangedFromStretchInColumnAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle)
{
return defaultAlignmentIsStretch(oldStyle.alignItems().position()) && !defaultAlignmentIsStretch(newStyle.alignItems().position());
}
static inline bool selfAlignmentChangedToStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle)
{
return childStyle.resolvedJustifySelf(oldStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch
&& childStyle.resolvedJustifySelf(newStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch;
}
static inline bool selfAlignmentChangedFromStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle)
{
return childStyle.resolvedJustifySelf(oldStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch
&& childStyle.resolvedJustifySelf(newStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch;
}
static inline bool selfAlignmentChangedFromStretchInColumnAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle)
{
return childStyle.resolvedAlignSelf(oldStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch
&& childStyle.resolvedAlignSelf(newStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch;
}
void RenderGrid::addChild(RenderObject* newChild, RenderObject* beforeChild)
{
RenderBlock::addChild(newChild, beforeChild);
// Positioned grid items do not take up space or otherwise participate in the layout of the grid,
// for that reason we don't need to mark the grid as dirty when they are added.
if (newChild->isOutOfFlowPositioned())
return;
// The grid needs to be recomputed as it might contain auto-placed items that
// will change their position.
dirtyGrid();
}
void RenderGrid::removeChild(RenderObject& child)
{
RenderBlock::removeChild(child);
// Positioned grid items do not take up space or otherwise participate in the layout of the grid,
// for that reason we don't need to mark the grid as dirty when they are removed.
if (child.isOutOfFlowPositioned())
return;
// The grid needs to be recomputed as it might contain auto-placed items that
// will change their position.
dirtyGrid();
}
void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
if (!oldStyle || diff != StyleDifferenceLayout)
return;
const RenderStyle& newStyle = style();
if (defaultAlignmentChangedToStretchInRowAxis(*oldStyle, newStyle) || defaultAlignmentChangedFromStretchInRowAxis(*oldStyle, newStyle)
|| defaultAlignmentChangedFromStretchInColumnAxis(*oldStyle, newStyle)) {
// Grid items that were not previously stretched in row-axis need to be relayed out so we can compute new available space.
// Grid items that were previously stretching in column-axis need to be relayed out so we can compute new available space.
// This is only necessary for stretching since other alignment values don't change the size of the box.
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned())
continue;
if (selfAlignmentChangedToStretchInRowAxis(*oldStyle, newStyle, child->style()) || selfAlignmentChangedFromStretchInRowAxis(*oldStyle, newStyle, child->style())
|| selfAlignmentChangedFromStretchInColumnAxis(*oldStyle, newStyle, child->style())) {
child->setChildNeedsLayout(MarkOnlyThis);
}
}
}
if (explicitGridDidResize(*oldStyle) || namedGridLinesDefinitionDidChange(*oldStyle) || oldStyle->gridAutoFlow() != style().gridAutoFlow()
|| (style().gridAutoRepeatColumns().size() || style().gridAutoRepeatRows().size()))
dirtyGrid();
}
bool RenderGrid::explicitGridDidResize(const RenderStyle& oldStyle) const
{
return oldStyle.gridColumns().size() != style().gridColumns().size()
|| oldStyle.gridRows().size() != style().gridRows().size()
|| oldStyle.namedGridAreaColumnCount() != style().namedGridAreaColumnCount()
|| oldStyle.namedGridAreaRowCount() != style().namedGridAreaRowCount()
|| oldStyle.gridAutoRepeatColumns().size() != style().gridAutoRepeatColumns().size()
|| oldStyle.gridAutoRepeatRows().size() != style().gridAutoRepeatRows().size();
}
bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle& oldStyle) const
{
return oldStyle.namedGridRowLines() != style().namedGridRowLines()
|| oldStyle.namedGridColumnLines() != style().namedGridColumnLines();
}
LayoutUnit RenderGrid::computeTrackBasedLogicalHeight() const
{
LayoutUnit logicalHeight;
auto& allRows = m_trackSizingAlgorithm.tracks(ForRows);
for (const auto& row : allRows)
logicalHeight += row.baseSize();
logicalHeight += guttersSize(m_grid, ForRows, 0, allRows.size());
return logicalHeight;
}
void RenderGrid::computeTrackSizesForDefiniteSize(GridTrackSizingDirection direction, LayoutUnit availableSpace)
{
LayoutUnit totalGuttersSize = guttersSize(m_grid, direction, 0, m_grid.numTracks(direction));
LayoutUnit freeSpace = availableSpace - totalGuttersSize;
m_trackSizingAlgorithm.setup(direction, numTracks(direction, m_grid), TrackSizing, availableSpace, freeSpace);
m_trackSizingAlgorithm.run();
ASSERT(m_trackSizingAlgorithm.tracksAreWiderThanMinTrackBreadth());
}
void RenderGrid::repeatTracksSizingIfNeeded(LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows)
{
// In orthogonal flow cases column track's size is determined by using the computed
// row track's size, which it was estimated during the first cycle of the sizing
// algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both,
// columns and rows, to determine the final values.
// TODO (lajava): orthogonal flows is just one of the cases which may require
// a new cycle of the sizing algorithm; there may be more. In addition, not all the
// cases with orthogonal flows require this extra cycle; we need a more specific
// condition to detect whether child's min-content contribution has changed or not.
if (m_grid.hasAnyOrthogonalGridItem()) {
computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns);
computeTrackSizesForDefiniteSize(ForRows, availableSpaceForRows);
}
}
bool RenderGrid::canPerformSimplifiedLayout() const
{
// We cannot perform a simplified layout if we need to position the items and we have some
// positioned items to be laid out.
if (m_grid.needsItemsPlacement() && posChildNeedsLayout())
return false;
return RenderBlock::canPerformSimplifiedLayout();
}
void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());
preparePaginationBeforeBlockLayout(relayoutChildren);
LayoutSize previousSize = size();
// We need to clear both own and containingBlock override sizes of orthogonal items to ensure we get the
// same result when grid's intrinsic size is computed again in the updateLogicalWidth call bellow.
if (sizesLogicalWidthToFitContent(MaxSize) || style().logicalWidth().isIntrinsicOrAuto()) {
for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned() || !isOrthogonalChild(*child))
continue;
child->clearOverrideSize();
child->clearContainingBlockOverrideSize();
child->setNeedsLayout();
child->layoutIfNeeded();
}
}
setLogicalHeight(0);
updateLogicalWidth();
placeItemsOnGrid(m_grid, TrackSizing);
// At this point the logical width is always definite as the above call to updateLogicalWidth()
// properly resolves intrinsic sizes. We cannot do the same for heights though because many code
// paths inside updateLogicalHeight() require a previous call to setLogicalHeight() to resolve
// heights properly (like for positioned items for example).
LayoutUnit availableSpaceForColumns = availableLogicalWidth();
computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns);
// FIXME: We should use RenderBlock::hasDefiniteLogicalHeight() but it does not work for positioned stuff.
// FIXME: Consider caching the hasDefiniteLogicalHeight value throughout the layout.
bool hasDefiniteLogicalHeight = hasOverrideLogicalContentHeight() || computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt);
if (!hasDefiniteLogicalHeight) {
m_minContentHeight = LayoutUnit();
m_maxContentHeight = LayoutUnit();
computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForRows, m_grid, *m_minContentHeight, *m_maxContentHeight);
// FIXME: This should be really added to the intrinsic height in RenderBox::computeContentAndScrollbarLogicalHeightUsing().
// Remove this when that is fixed.
ASSERT(m_minContentHeight);
ASSERT(m_maxContentHeight);
LayoutUnit scrollbarHeight = scrollbarLogicalHeight();
*m_minContentHeight += scrollbarHeight;
*m_maxContentHeight += scrollbarHeight;
} else
computeTrackSizesForDefiniteSize(ForRows, availableLogicalHeight(ExcludeMarginBorderPadding));
LayoutUnit trackBasedLogicalHeight = computeTrackBasedLogicalHeight() + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight();
setLogicalHeight(trackBasedLogicalHeight);
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
// Once grid's indefinite height is resolved, we can compute the
// available free space for Content Alignment.
if (!hasDefiniteLogicalHeight)
m_trackSizingAlgorithm.setFreeSpace(ForRows, logicalHeight() - trackBasedLogicalHeight);
// 3- If the min-content contribution of any grid items have changed based on the row
// sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content
// contribution (once only).
repeatTracksSizingIfNeeded(availableSpaceForColumns, contentLogicalHeight());
// Grid container should have the minimum height of a line if it's editable. That does not affect track sizing though.
if (hasLineIfEmpty()) {
LayoutUnit minHeightForEmptyLine = borderAndPaddingLogicalHeight()
+ lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes)
+ scrollbarLogicalHeight();
setLogicalHeight(std::max(logicalHeight(), minHeightForEmptyLine));
}
applyStretchAlignmentToTracksIfNeeded(ForColumns);
applyStretchAlignmentToTracksIfNeeded(ForRows);
layoutGridItems();
m_trackSizingAlgorithm.reset();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer());
computeOverflow(oldClientAfterEdge);
statePusher.pop();
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
repainter.repaintAfterLayout();
clearNeedsLayout();
}
LayoutUnit RenderGrid::gridGapForDirection(GridTrackSizingDirection direction) const
{
return valueForLength(direction == ForColumns ? style().gridColumnGap() : style().gridRowGap(), LayoutUnit());
}
LayoutUnit RenderGrid::guttersSize(const Grid& grid, GridTrackSizingDirection direction, unsigned startLine, unsigned span) const
{
if (span <= 1)
return { };
LayoutUnit gap = gridGapForDirection(direction);
// Fast path, no collapsing tracks.
if (!grid.hasAutoRepeatEmptyTracks(direction))
return gap * (span - 1);
// If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart
// from that, if we have a collapsed track in the edges of the span we're considering, we need
// to move forward (or backwards) in order to know whether the collapsed tracks reach the end of
// the grid (so the gap becomes 0) or there is a non empty track before that.
LayoutUnit gapAccumulator;
unsigned endLine = startLine + span;
for (unsigned line = startLine; line < endLine - 1; ++line) {
if (!grid.isEmptyAutoRepeatTrack(direction, line))
gapAccumulator += gap;
}
// The above loop adds one extra gap for trailing collapsed tracks.
if (gapAccumulator && grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) {
ASSERT(gapAccumulator >= gap);
gapAccumulator -= gap;
}
// If the startLine is the start line of a collapsed track we need to go backwards till we reach
// a non collapsed track. If we find a non collapsed track we need to add that gap.
if (startLine && grid.isEmptyAutoRepeatTrack(direction, startLine)) {
unsigned nonEmptyTracksBeforeStartLine = startLine;
auto begin = grid.autoRepeatEmptyTracks(direction)->begin();
for (auto it = begin; *it != startLine; ++it) {
ASSERT(nonEmptyTracksBeforeStartLine);
--nonEmptyTracksBeforeStartLine;
}
if (nonEmptyTracksBeforeStartLine)
gapAccumulator += gap;
}
// If the endLine is the end line of a collapsed track we need to go forward till we reach a non
// collapsed track. If we find a non collapsed track we need to add that gap.
if (grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) {
unsigned nonEmptyTracksAfterEndLine = grid.numTracks(direction) - endLine;
auto currentEmptyTrack = grid.autoRepeatEmptyTracks(direction)->find(endLine - 1);
auto endEmptyTrack = grid.autoRepeatEmptyTracks(direction)->end();
// HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks.
for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) {
ASSERT(nonEmptyTracksAfterEndLine >= 1);
--nonEmptyTracksAfterEndLine;
}
if (nonEmptyTracksAfterEndLine)
gapAccumulator += gap;
}
return gapAccumulator;
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
Grid grid(const_cast<RenderGrid&>(*this));
placeItemsOnGrid(grid, IntrinsicSizeComputation);
GridTrackSizingAlgorithm algorithm(this, grid);
computeTrackSizesForIndefiniteSize(algorithm, ForColumns, grid, minLogicalWidth, maxLogicalWidth);
LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth();
minLogicalWidth += scrollbarWidth;
maxLogicalWidth += scrollbarWidth;
}
void RenderGrid::computeTrackSizesForIndefiniteSize(GridTrackSizingAlgorithm& algorithm, GridTrackSizingDirection direction, Grid& grid, LayoutUnit& minIntrinsicSize, LayoutUnit& maxIntrinsicSize) const
{
algorithm.setup(direction, numTracks(direction, grid), IntrinsicSizeComputation, std::nullopt, std::nullopt);
algorithm.run();
size_t numberOfTracks = algorithm.tracks(direction).size();
LayoutUnit totalGuttersSize = guttersSize(grid, direction, 0, numberOfTracks);
minIntrinsicSize = algorithm.minContentSize() + totalGuttersSize;
maxIntrinsicSize = algorithm.maxContentSize() + totalGuttersSize;
ASSERT(algorithm.tracksAreWiderThanMinTrackBreadth());
}
std::optional<LayoutUnit> RenderGrid::computeIntrinsicLogicalContentHeightUsing(Length logicalHeightLength, std::optional<LayoutUnit> intrinsicLogicalHeight, LayoutUnit borderAndPadding) const
{
if (!intrinsicLogicalHeight)
return std::nullopt;
if (logicalHeightLength.isMinContent())
return m_minContentHeight;
if (logicalHeightLength.isMaxContent())
return m_maxContentHeight;
if (logicalHeightLength.isFitContent()) {
LayoutUnit fillAvailableExtent = containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding);
return std::min(m_maxContentHeight.value_or(0), std::max(m_minContentHeight.value_or(0), fillAvailableExtent));
}
if (logicalHeightLength.isFillAvailable())
return containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding) - borderAndPadding;
ASSERT_NOT_REACHED();
return std::nullopt;
}
static std::optional<LayoutUnit> overrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction)
{
return direction == ForColumns ? child.overrideContainingBlockContentLogicalWidth() : child.overrideContainingBlockContentLogicalHeight();
}
bool RenderGrid::isOrthogonalChild(const RenderBox& child) const
{
return child.isHorizontalWritingMode() != isHorizontalWritingMode();
}
GridTrackSizingDirection RenderGrid::flowAwareDirectionForChild(const RenderBox& child, GridTrackSizingDirection direction) const
{
return !isOrthogonalChild(child) ? direction : (direction == ForColumns ? ForRows : ForColumns);
}
unsigned RenderGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, SizingOperation sizingOperation) const
{
bool isRowAxis = direction == ForColumns;
const auto& autoRepeatTracks = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows();
unsigned autoRepeatTrackListLength = autoRepeatTracks.size();
if (!autoRepeatTrackListLength)
return 0;
std::optional<LayoutUnit> availableSize;
if (isRowAxis) {
if (sizingOperation != IntrinsicSizeComputation)
availableSize = availableLogicalWidth();
} else {
availableSize = computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt);
if (!availableSize) {
const Length& maxLength = style().logicalMaxHeight();
if (!maxLength.isUndefined())
availableSize = computeContentLogicalHeight(MaxSize, maxLength, std::nullopt);
}
if (availableSize)
availableSize = constrainContentBoxLogicalHeightByMinMax(availableSize.value(), std::nullopt);
}
bool needsToFulfillMinimumSize = false;
if (!availableSize) {
const Length& minSize = isRowAxis ? style().logicalMinWidth() : style().logicalMinHeight();
if (!minSize.isSpecified())
return autoRepeatTrackListLength;
LayoutUnit containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding);
availableSize = valueForLength(minSize, containingBlockAvailableSize);
needsToFulfillMinimumSize = true;
}
LayoutUnit autoRepeatTracksSize;
for (auto& autoTrackSize : autoRepeatTracks) {
ASSERT(autoTrackSize.minTrackBreadth().isLength());
ASSERT(!autoTrackSize.minTrackBreadth().isFlex());
bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized();
auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length();
autoRepeatTracksSize += valueForLength(trackLength, availableSize.value());
}
// For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified
// value to avoid division by zero. It is suggested that this floor be 1px.
autoRepeatTracksSize = std::max<LayoutUnit>(LayoutUnit(1), autoRepeatTracksSize);
// There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size.
LayoutUnit tracksSize = autoRepeatTracksSize;
auto& trackSizes = isRowAxis ? style().gridColumns() : style().gridRows();
for (const auto& track : trackSizes) {
bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized();
ASSERT(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized()));
tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize.value());
}
// Add gutters as if there where only 1 auto repeat track. Gaps between auto repeat tracks will be added later when
// computing the repetitions.
LayoutUnit gapSize = gridGapForDirection(direction);
tracksSize += gapSize * trackSizes.size();
LayoutUnit freeSpace = availableSize.value() - tracksSize;
if (freeSpace <= 0)
return autoRepeatTrackListLength;
unsigned repetitions = 1 + (freeSpace / (autoRepeatTracksSize + gapSize)).toInt();
// Provided the grid container does not have a definite size or max-size in the relevant axis,
// if the min size is definite then the number of repetitions is the largest possible positive
// integer that fulfills that minimum requirement.
if (needsToFulfillMinimumSize)
++repetitions;
return repetitions * autoRepeatTrackListLength;
}
std::unique_ptr<OrderedTrackIndexSet> RenderGrid::computeEmptyTracksForAutoRepeat(Grid& grid, GridTrackSizingDirection direction) const
{
bool isRowAxis = direction == ForColumns;
if ((isRowAxis && style().gridAutoRepeatColumnsType() != AutoFit)
|| (!isRowAxis && style().gridAutoRepeatRowsType() != AutoFit))
return nullptr;
std::unique_ptr<OrderedTrackIndexSet> emptyTrackIndexes;
unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint();
unsigned firstAutoRepeatTrack = insertionPoint + std::abs(grid.smallestTrackStart(direction));
unsigned lastAutoRepeatTrack = firstAutoRepeatTrack + grid.autoRepeatTracks(direction);
if (!grid.hasGridItems()) {
emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>();
for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex)
emptyTrackIndexes->add(trackIndex);
} else {
for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) {
GridIterator iterator(grid, direction, trackIndex);
if (!iterator.nextGridItem()) {
if (!emptyTrackIndexes)
emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>();
emptyTrackIndexes->add(trackIndex);
}
}
}
return emptyTrackIndexes;
}
void RenderGrid::placeItemsOnGrid(Grid& grid, SizingOperation sizingOperation) const
{
unsigned autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, sizingOperation);
unsigned autoRepeatRows = computeAutoRepeatTracksCount(ForRows, sizingOperation);
if (autoRepeatColumns != grid.autoRepeatTracks(ForColumns) || autoRepeatRows != grid.autoRepeatTracks(ForRows)) {
grid.setNeedsItemsPlacement(true);
grid.setAutoRepeatTracks(autoRepeatRows, autoRepeatColumns);
}
if (!grid.needsItemsPlacement())
return;
ASSERT(!grid.hasGridItems());
populateExplicitGridAndOrderIterator(grid);
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
bool hasAnyOrthogonalGridItem = false;
for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) {
if (child->isOutOfFlowPositioned())
continue;
hasAnyOrthogonalGridItem = hasAnyOrthogonalGridItem || isOrthogonalChild(*child);
GridArea area = grid.gridItemArea(*child);
if (!area.rows.isIndefinite())
area.rows.translate(std::abs(grid.smallestTrackStart(ForRows)));
if (!area.columns.isIndefinite())
area.columns.translate(std::abs(grid.smallestTrackStart(ForColumns)));
if (area.rows.isIndefinite() || area.columns.isIndefinite()) {
grid.setGridItemArea(*child, area);
bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns;
if ((majorAxisDirectionIsForColumns && area.columns.isIndefinite())
|| (!majorAxisDirectionIsForColumns && area.rows.isIndefinite()))
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
grid.insert(*child, { area.rows, area.columns });
}
grid.setHasAnyOrthogonalGridItem(hasAnyOrthogonalGridItem);
#if ENABLE(ASSERT)
if (grid.hasGridItems()) {
ASSERT(grid.numTracks(ForRows) >= GridPositionsResolver::explicitGridRowCount(style(), grid.autoRepeatTracks(ForRows)));
ASSERT(grid.numTracks(ForColumns) >= GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns)));
}
#endif
placeSpecifiedMajorAxisItemsOnGrid(grid, specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(grid, autoMajorAxisAutoGridItems);
// Compute collapsible tracks for auto-fit.
grid.setAutoRepeatEmptyColumns(computeEmptyTracksForAutoRepeat(grid, ForColumns));
grid.setAutoRepeatEmptyRows(computeEmptyTracksForAutoRepeat(grid, ForRows));
grid.setNeedsItemsPlacement(false);
#if ENABLE(ASSERT)
for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) {
if (child->isOutOfFlowPositioned())
continue;
GridArea area = grid.gridItemArea(*child);
ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite());
}
#endif
}
void RenderGrid::populateExplicitGridAndOrderIterator(Grid& grid) const
{
OrderIteratorPopulator populator(grid.orderIterator());
int smallestRowStart = 0;
int smallestColumnStart = 0;
unsigned autoRepeatRows = grid.autoRepeatTracks(ForRows);
unsigned autoRepeatColumns = grid.autoRepeatTracks(ForColumns);
unsigned maximumRowIndex = GridPositionsResolver::explicitGridRowCount(style(), autoRepeatRows);
unsigned maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(style(), autoRepeatColumns);
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned())
continue;
populator.collectChild(*child);
GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForRows, autoRepeatRows);
if (!rowPositions.isIndefinite()) {
smallestRowStart = std::min(smallestRowStart, rowPositions.untranslatedStartLine());
maximumRowIndex = std::max<int>(maximumRowIndex, rowPositions.untranslatedEndLine());
} else {
// Grow the grid for items with a definite row span, getting the largest such span.
unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForRows);
maximumRowIndex = std::max(maximumRowIndex, spanSize);
}
GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForColumns, autoRepeatColumns);
if (!columnPositions.isIndefinite()) {
smallestColumnStart = std::min(smallestColumnStart, columnPositions.untranslatedStartLine());
maximumColumnIndex = std::max<int>(maximumColumnIndex, columnPositions.untranslatedEndLine());
} else {
// Grow the grid for items with a definite column span, getting the largest such span.
unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForColumns);
maximumColumnIndex = std::max(maximumColumnIndex, spanSize);
}
grid.setGridItemArea(*child, { rowPositions, columnPositions });
}
grid.setSmallestTracksStart(smallestRowStart, smallestColumnStart);
grid.ensureGridSize(maximumRowIndex + std::abs(smallestRowStart), maximumColumnIndex + std::abs(smallestColumnStart));
}
std::unique_ptr<GridArea> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(Grid& grid, const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
{
GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
const unsigned endOfCrossDirection = grid.numTracks(crossDirection);
unsigned crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, crossDirection);
GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize);
return std::make_unique<GridArea>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions);
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const
{
bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns;
bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense();
// Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on
// that track. This is needed to implement "sparse" packing for items locked to a given track.
// See http://dev.w3.org/csswg/css-grid/#auto-placement-algorithm
HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors;
for (auto& autoGridItem : autoGridItems) {
GridSpan majorAxisPositions = grid.gridItemSpan(*autoGridItem, autoPlacementMajorAxisDirection());
ASSERT(majorAxisPositions.isTranslatedDefinite());
ASSERT(grid.gridItemSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isIndefinite());
unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *autoGridItem, autoPlacementMinorAxisDirection());
unsigned majorAxisInitialPosition = majorAxisPositions.startLine();
GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition));
std::unique_ptr<GridArea> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize);
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, *autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions);
grid.insert(*autoGridItem, *emptyGridArea);
if (!isGridAutoFlowDense)
minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine());
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const
{
AutoPlacementCursor autoPlacementCursor = {0, 0};
bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense();
for (auto& autoGridItem : autoGridItems) {
placeAutoMajorAxisItemOnGrid(grid, *autoGridItem, autoPlacementCursor);
if (isGridAutoFlowDense) {
autoPlacementCursor.first = 0;
autoPlacementCursor.second = 0;
}
}
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(Grid& grid, RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor) const
{
ASSERT(grid.gridItemSpan(gridItem, autoPlacementMajorAxisDirection()).isIndefinite());
unsigned majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMajorAxisDirection());
const unsigned endOfMajorAxis = grid.numTracks(autoPlacementMajorAxisDirection());
unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first;
unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second;
std::unique_ptr<GridArea> emptyGridArea;
GridSpan minorAxisPositions = grid.gridItemSpan(gridItem, autoPlacementMinorAxisDirection());
if (minorAxisPositions.isTranslatedDefinite()) {
// Move to the next track in major axis if initial position in minor axis is before auto-placement cursor.
if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor)
majorAxisAutoPlacementCursor++;
if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
GridIterator iterator(grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize);
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
} else {
unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMinorAxisDirection());
for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize);
if (emptyGridArea) {
// Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
unsigned minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine();
const unsigned endOfMinorAxis = grid.numTracks(autoPlacementMinorAxisDirection());
if (minorAxisFinalPositionIndex <= endOfMinorAxis)
break;
// Discard empty grid area as it does not fit in the minor axis direction.
// We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
emptyGridArea = nullptr;
}
// As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis.
minorAxisAutoPlacementCursor = 0;
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize));
}
grid.insert(gridItem, *emptyGridArea);
autoPlacementCursor.first = emptyGridArea->rows.startLine();
autoPlacementCursor.second = emptyGridArea->columns.startLine();
}
GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
}
GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
}
void RenderGrid::dirtyGrid()
{
if (m_grid.needsItemsPlacement())
return;
m_grid.setNeedsItemsPlacement(true);
}
Vector<LayoutUnit> RenderGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const
{
bool isRowAxis = direction == ForColumns;
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
size_t numPositions = positions.size();
LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
Vector<LayoutUnit> tracks;
if (numPositions < 2)
return tracks;
ASSERT(!m_grid.needsItemsPlacement());
bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction);
LayoutUnit gap = !hasCollapsedTracks ? gridGapForDirection(direction) : LayoutUnit();
tracks.reserveCapacity(numPositions - 1);
for (size_t i = 0; i < numPositions - 2; ++i)
tracks.append(positions[i + 1] - positions[i] - offsetBetweenTracks - gap);
tracks.append(positions[numPositions - 1] - positions[numPositions - 2]);
if (!hasCollapsedTracks)
return tracks;
size_t remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size();
size_t lastLine = tracks.size();
gap = gridGapForDirection(direction);
for (size_t i = 1; i < lastLine; ++i) {
if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1))
--remainingEmptyTracks;
else {
// Remove the gap between consecutive non empty tracks. Remove it also just once for an
// arbitrary number of empty tracks between two non empty ones.
bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i);
if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i))
tracks[i - 1] -= gap;
}
}
return tracks;
}
static const StyleContentAlignmentData& contentAlignmentNormalBehaviorGrid()
{
static const StyleContentAlignmentData normalBehavior = {ContentPositionNormal, ContentDistributionStretch};
return normalBehavior;
}
void RenderGrid::applyStretchAlignmentToTracksIfNeeded(GridTrackSizingDirection direction)
{
std::optional<LayoutUnit> freeSpace = m_trackSizingAlgorithm.freeSpace(direction);
if (!freeSpace
|| freeSpace.value() <= 0
|| (direction == ForColumns && style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) != ContentDistributionStretch)
|| (direction == ForRows && style().resolvedAlignContentDistribution(contentAlignmentNormalBehaviorGrid()) != ContentDistributionStretch))
return;
// Spec defines auto-sized tracks as the ones with an 'auto' max-sizing function.
Vector<GridTrack>& allTracks = m_trackSizingAlgorithm.tracks(direction);
Vector<unsigned> autoSizedTracksIndex;
for (unsigned i = 0; i < allTracks.size(); ++i) {
const GridTrackSize& trackSize = m_trackSizingAlgorithm.gridTrackSize(direction, i, TrackSizing);
if (trackSize.hasAutoMaxTrackBreadth())
autoSizedTracksIndex.append(i);
}
unsigned numberOfAutoSizedTracks = autoSizedTracksIndex.size();
if (numberOfAutoSizedTracks < 1)
return;
LayoutUnit sizeToIncrease = freeSpace.value() / numberOfAutoSizedTracks;
for (const auto& trackIndex : autoSizedTracksIndex) {
auto& track = allTracks[trackIndex];
track.setBaseSize(track.baseSize() + sizeToIncrease);
}
m_trackSizingAlgorithm.setFreeSpace(direction, LayoutUnit());
}
void RenderGrid::layoutGridItems()
{
populateGridPositionsForDirection(ForColumns);
populateGridPositionsForDirection(ForRows);
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned()) {
prepareChildForPositionedLayout(*child);
continue;
}
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
std::optional<LayoutUnit> oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
std::optional<LayoutUnit> oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows);
if (!oldOverrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalWidth.value() != overrideContainingBlockContentLogicalWidth
|| ((!oldOverrideContainingBlockContentLogicalHeight || oldOverrideContainingBlockContentLogicalHeight.value() != overrideContainingBlockContentLogicalHeight)
&& child->hasRelativeLogicalHeight()))
child->setNeedsLayout(MarkOnlyThis);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
LayoutRect oldChildRect = child->frameRect();
// Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded
// call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly
// determine the available space before stretching, are not set yet.
applyStretchAlignmentToChildIfNeeded(*child);
child->layoutIfNeeded();
// We need pending layouts to be done in order to compute auto-margins properly.
updateAutoMarginsInColumnAxisIfNeeded(*child);
updateAutoMarginsInRowAxisIfNeeded(*child);
child->setLogicalLocation(findChildLogicalPosition(*child));
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldChildRect);
}
}
void RenderGrid::prepareChildForPositionedLayout(RenderBox& child)
{
ASSERT(child.isOutOfFlowPositioned());
child.containingBlock()->insertPositionedObject(child);
RenderLayer* childLayer = child.layer();
childLayer->setStaticInlinePosition(borderAndPaddingStart());
childLayer->setStaticBlockPosition(borderAndPaddingBefore());
}
void RenderGrid::layoutPositionedObject(RenderBox& child, bool relayoutChildren, bool fixedPositionObjectsOnly)
{
// FIXME: Properly support orthogonal writing mode.
if (!isOrthogonalChild(child)) {
LayoutUnit columnOffset = LayoutUnit();
LayoutUnit columnBreadth = LayoutUnit();
offsetAndBreadthForPositionedChild(child, ForColumns, columnOffset, columnBreadth);
LayoutUnit rowOffset = LayoutUnit();
LayoutUnit rowBreadth = LayoutUnit();
offsetAndBreadthForPositionedChild(child, ForRows, rowOffset, rowBreadth);
child.setOverrideContainingBlockContentLogicalWidth(columnBreadth);
child.setOverrideContainingBlockContentLogicalHeight(rowBreadth);
child.setExtraInlineOffset(columnOffset);
child.setExtraBlockOffset(rowOffset);
if (child.parent() == this) {
auto& childLayer = *child.layer();
childLayer.setStaticInlinePosition(borderStart() + columnOffset);
childLayer.setStaticBlockPosition(borderBefore() + rowOffset);
}
}
RenderBlock::layoutPositionedObject(child, relayoutChildren, fixedPositionObjectsOnly);
}
void RenderGrid::offsetAndBreadthForPositionedChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& offset, LayoutUnit& breadth)
{
ASSERT(!isOrthogonalChild(child));
bool isRowAxis = direction == ForColumns;
unsigned autoRepeatCount = m_grid.autoRepeatTracks(direction);
GridSpan positions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), child, direction, autoRepeatCount);
if (positions.isIndefinite()) {
offset = LayoutUnit();
breadth = isRowAxis ? clientLogicalWidth() : clientLogicalHeight();
return;
}
// For positioned items we cannot use GridSpan::translate() because we could end up with negative values, as the positioned items do not create implicit tracks per spec.
int smallestStart = std::abs(m_grid.smallestTrackStart(direction));
int startLine = positions.untranslatedStartLine() + smallestStart;
int endLine = positions.untranslatedEndLine() + smallestStart;
GridPosition startPosition = isRowAxis ? child.style().gridItemColumnStart() : child.style().gridItemRowStart();
GridPosition endPosition = isRowAxis ? child.style().gridItemColumnEnd() : child.style().gridItemRowEnd();
int lastLine = numTracks(direction, m_grid);
bool startIsAuto = startPosition.isAuto()
|| (startPosition.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(startPosition.namedGridLine(), style(), (direction == ForColumns) ? ColumnStartSide : RowStartSide))
|| (startLine < 0)
|| (startLine > lastLine);
bool endIsAuto = endPosition.isAuto()
|| (endPosition.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(endPosition.namedGridLine(), style(), (direction == ForColumns) ? ColumnEndSide : RowEndSide))
|| (endLine < 0)
|| (endLine > lastLine);
// We're normalizing the positions to avoid issues with RTL (as they're stored in the same order than LTR but adding an offset).
LayoutUnit start;
if (!startIsAuto) {
if (isRowAxis) {
if (style().isLeftToRightDirection())
start = m_columnPositions[startLine] - borderLogicalLeft();
else
start = logicalWidth() - translateRTLCoordinate(m_columnPositions[startLine]) - borderLogicalRight();
} else
start = m_rowPositions[startLine] - borderBefore();
}
LayoutUnit end = isRowAxis ? clientLogicalWidth() : clientLogicalHeight();
if (!endIsAuto) {
if (isRowAxis) {
if (style().isLeftToRightDirection())
end = m_columnPositions[endLine] - borderLogicalLeft();
else
end = logicalWidth() - translateRTLCoordinate(m_columnPositions[endLine]) - borderLogicalRight();
} else
end = m_rowPositions[endLine] - borderBefore();
// These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid.
if (endLine > 0 && endLine < lastLine) {
ASSERT(!m_grid.needsItemsPlacement());
end -= guttersSize(m_grid, direction, endLine - 1, 2);
end -= isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
}
}
breadth = end - start;
offset = start;
if (isRowAxis && !style().isLeftToRightDirection() && !child.style().hasStaticInlinePosition(child.isHorizontalWritingMode())) {
// If the child doesn't have a static inline position (i.e. "left" and/or "right" aren't "auto",
// we need to calculate the offset from the left (even if we're in RTL).
if (endIsAuto)
offset = LayoutUnit();
else {
offset = translateRTLCoordinate(m_columnPositions[endLine]) - borderLogicalLeft();
if (endLine > 0 && endLine < lastLine) {
ASSERT(!m_grid.needsItemsPlacement());
offset += guttersSize(m_grid, direction, endLine - 1, 2);
offset += isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
}
}
}
}
LayoutUnit RenderGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const RenderBox& child, GridTrackSizingDirection direction) const
{
// We need the cached value when available because Content Distribution alignment properties
// may have some influence in the final grid area breadth.
const auto& tracks = m_trackSizingAlgorithm.tracks(direction);
const auto& span = m_grid.gridItemSpan(child, direction);
const auto& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions;
LayoutUnit initialTrackPosition = linePositions[span.startLine()];
LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1];
// Track Positions vector stores the 'start' grid line of each track, so we have to add last track's baseSize.
return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize();
}
void RenderGrid::populateGridPositionsForDirection(GridTrackSizingDirection direction)
{
// Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to
// assume from now on that we just store positions of the initial grid lines of each track,
// except the last one, which is the only one considered as a final grid line of a track.
// The grid container's frame elements (border, padding and <content-position> offset) are sensible to the
// inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification
// allows us to use the same indexes to identify the columns independently on the inline-axis direction.
bool isRowAxis = direction == ForColumns;
auto& tracks = m_trackSizingAlgorithm.tracks(direction);
unsigned numberOfTracks = tracks.size();
unsigned numberOfLines = numberOfTracks + 1;
unsigned lastLine = numberOfLines - 1;
ContentAlignmentData offset = computeContentPositionAndDistributionOffset(direction, m_trackSizingAlgorithm.freeSpace(direction).value(), numberOfTracks);
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
positions.resize(numberOfLines);
auto borderAndPadding = isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore();
positions[0] = borderAndPadding + offset.positionOffset;
if (numberOfLines > 1) {
// If we have collapsed tracks we just ignore gaps here and add them later as we might not
// compute the gap between two consecutive tracks without examining the surrounding ones.
bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction);
LayoutUnit gap = !hasCollapsedTracks ? gridGapForDirection(direction) : LayoutUnit();
unsigned nextToLastLine = numberOfLines - 2;
for (unsigned i = 0; i < nextToLastLine; ++i)
positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap;
positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize();
// Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they
// coincide exactly) except on the edges of the grid where they become 0.
if (hasCollapsedTracks) {
gap = gridGapForDirection(direction);
unsigned remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size();
LayoutUnit gapAccumulator;
for (unsigned i = 1; i < lastLine; ++i) {
if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1))
--remainingEmptyTracks;
else {
// Add gap between consecutive non empty tracks. Add it also just once for an
// arbitrary number of empty tracks between two non empty ones.
bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i);
if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i))
gapAccumulator += gap;
}
positions[i] += gapAccumulator;
}
positions[lastLine] += gapAccumulator;
}
}
auto& offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
offsetBetweenTracks = offset.distributionOffset;
}
static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize)
{
LayoutUnit offset = trackSize - childSize;
switch (overflow) {
case OverflowAlignmentSafe:
// If overflow is 'safe', we have to make sure we don't overflow the 'start'
// edge (potentially cause some data loss as the overflow is unreachable).
return std::max<LayoutUnit>(0, offset);
case OverflowAlignmentUnsafe:
case OverflowAlignmentDefault:
// If we overflow our alignment container and overflow is 'true' (default), we
// ignore the overflow and just return the value regardless (which may cause data
// loss as we overflow the 'start' edge).
return offset;
}
ASSERT_NOT_REACHED();
return 0;
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::needToStretchChildLogicalHeight(const RenderBox& child) const
{
if (child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).position() != ItemPositionStretch)
return false;
return isHorizontalWritingMode() && child.style().height().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::marginLogicalHeightForChild(const RenderBox& child) const
{
return isHorizontalWritingMode() ? child.verticalMarginExtent() : child.horizontalMarginExtent();
}
LayoutUnit RenderGrid::computeMarginLogicalSizeForChild(GridTrackSizingDirection direction, const RenderBox& child) const
{
if (!child.style().hasMargin())
return 0;
LayoutUnit marginStart;
LayoutUnit marginEnd;
if (direction == ForColumns)
child.computeInlineDirectionMargins(*this, child.containingBlockLogicalWidthForContentInRegion(nullptr), child.logicalWidth(), marginStart, marginEnd);
else
child.computeBlockDirectionMargins(*this, marginStart, marginEnd);
return marginStart + marginEnd;
}
LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const
{
// Because we want to avoid multiple layouts, stretching logic might be performed before
// children are laid out, so we can't use the child cached values. Hence, we need to
// compute margins in order to determine the available height before stretching.
return gridAreaBreadthForChild - (child.needsLayout() ? computeMarginLogicalSizeForChild(ForRows, child) : marginLogicalHeightForChild(child));
}
StyleSelfAlignmentData RenderGrid::alignSelfForChild(const RenderBox& child) const
{
return child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior);
}
StyleSelfAlignmentData RenderGrid::justifySelfForChild(const RenderBox& child) const
{
return child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior);
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child)
{
ASSERT(child.overrideContainingBlockContentLogicalHeight());
// We clear height override values because we will decide now whether it's allowed or
// not, evaluating the conditions which might have changed since the old values were set.
child.clearOverrideLogicalContentHeight();
GridTrackSizingDirection childBlockDirection = flowAwareDirectionForChild(child, ForRows);
bool blockFlowIsColumnAxis = childBlockDirection == ForRows;
bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child);
if (allowedToStretchChildBlockSize) {
LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(overrideContainingBlockContentSizeForChild(child, childBlockDirection).value(), child);
LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, LayoutUnit(-1));
child.setOverrideLogicalContentHeight(desiredLogicalHeight - child.borderAndPaddingLogicalHeight());
if (desiredLogicalHeight != child.logicalHeight()) {
// FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905.
child.setLogicalHeight(LayoutUnit());
child.setNeedsLayout();
}
}
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const
{
if (isHorizontalWritingMode())
return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto();
return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const
{
if (isHorizontalWritingMode())
return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto();
return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child)
{
ASSERT(!child.isOutOfFlowPositioned());
LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalWidth().value() - child.logicalWidth() - child.marginLogicalWidth();
if (availableAlignmentSpace <= 0)
return;
const RenderStyle& parentStyle = style();
Length marginStart = child.style().marginStartUsing(&parentStyle);
Length marginEnd = child.style().marginEndUsing(&parentStyle);
if (marginStart.isAuto() && marginEnd.isAuto()) {
child.setMarginStart(availableAlignmentSpace / 2, &parentStyle);
child.setMarginEnd(availableAlignmentSpace / 2, &parentStyle);
} else if (marginStart.isAuto()) {
child.setMarginStart(availableAlignmentSpace, &parentStyle);
} else if (marginEnd.isAuto()) {
child.setMarginEnd(availableAlignmentSpace, &parentStyle);
}
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child)
{
ASSERT(!child.isOutOfFlowPositioned());
LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalHeight().value() - child.logicalHeight() - child.marginLogicalHeight();
if (availableAlignmentSpace <= 0)
return;
const RenderStyle& parentStyle = style();
Length marginBefore = child.style().marginBeforeUsing(&parentStyle);
Length marginAfter = child.style().marginAfterUsing(&parentStyle);
if (marginBefore.isAuto() && marginAfter.isAuto()) {
child.setMarginBefore(availableAlignmentSpace / 2, &parentStyle);
child.setMarginAfter(availableAlignmentSpace / 2, &parentStyle);
} else if (marginBefore.isAuto()) {
child.setMarginBefore(availableAlignmentSpace, &parentStyle);
} else if (marginAfter.isAuto()) {
child.setMarginAfter(availableAlignmentSpace, &parentStyle);
}
}
// FIXME: This logic could be refactored somehow and defined in RenderBox.
static int synthesizedBaselineFromBorderBox(const RenderBox& box, LineDirectionMode direction)
{
return (direction == HorizontalLine ? box.size().height() : box.size().width()).toInt();
}
bool RenderGrid::isInlineBaselineAlignedChild(const RenderBox& child) const
{
return alignSelfForChild(child).position() == ItemPositionBaseline && !isOrthogonalChild(child) && !hasAutoMarginsInColumnAxis(child);
}
// FIXME: This logic is shared by RenderFlexibleBox, so it might be refactored somehow.
int RenderGrid::baselinePosition(FontBaseline, bool, LineDirectionMode direction, LinePositionMode mode) const
{
#if ENABLE(ASSERT)
ASSERT(mode == PositionOnContainingLine);
#else
UNUSED_PARAM(mode);
#endif
int baseline = firstLineBaseline().value_or(synthesizedBaselineFromBorderBox(*this, direction));
int marginSize = direction == HorizontalLine ? verticalMarginExtent() : horizontalMarginExtent();
return baseline + marginSize;
}
std::optional<int> RenderGrid::firstLineBaseline() const
{
if (isWritingModeRoot() || !m_grid.hasGridItems())
return std::nullopt;
const RenderBox* baselineChild = nullptr;
// Finding the first grid item in grid order.
unsigned numColumns = m_grid.numTracks(ForColumns);
for (size_t column = 0; column < numColumns; column++) {
for (const auto* child : m_grid.cell(0, column)) {
// If an item participates in baseline alignment, we select such item.
if (isInlineBaselineAlignedChild(*child)) {
// FIXME: self-baseline and content-baseline alignment not implemented yet.
baselineChild = child;
break;
}
if (!baselineChild)
baselineChild = child;
}
}
if (!baselineChild)
return std::nullopt;
auto baseline = isOrthogonalChild(*baselineChild) ? std::nullopt : baselineChild->firstLineBaseline();
// We take border-box's bottom if no valid baseline.
if (!baseline) {
// FIXME: We should pass |direction| into firstLineBaseline and stop bailing out if we're a writing
// mode root. This would also fix some cases where the grid is orthogonal to its container.
LineDirectionMode direction = isHorizontalWritingMode() ? HorizontalLine : VerticalLine;
return synthesizedBaselineFromBorderBox(*baselineChild, direction) + baselineChild->logicalTop().toInt();
}
return baseline.value() + baselineChild->logicalTop().toInt();
}
std::optional<int> RenderGrid::inlineBlockBaseline(LineDirectionMode direction) const
{
if (std::optional<int> baseline = firstLineBaseline())
return baseline;
int marginAscent = direction == HorizontalLine ? marginTop() : marginRight();
return synthesizedBaselineFromBorderBox(*this, direction) + marginAscent;
}
GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const
{
bool hasSameWritingMode = child.style().writingMode() == style().writingMode();
bool childIsLTR = child.style().isLeftToRightDirection();
switch (child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).position()) {
case ItemPositionSelfStart:
// FIXME: Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'start' side in the column axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-start will be based on the child's inline-axis
// direction (inline-start), because it's the one parallel to the column axis.
if (style().isFlippedBlocksWritingMode())
return childIsLTR ? GridAxisEnd : GridAxisStart;
return childIsLTR ? GridAxisStart : GridAxisEnd;
}
// self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction.
return hasSameWritingMode ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// FIXME: Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'end' side in the column axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-end will be based on the child's inline-axis
// direction, (inline-end) because it's the one parallel to the column axis.
if (style().isFlippedBlocksWritingMode())
return childIsLTR ? GridAxisStart : GridAxisEnd;
return childIsLTR ? GridAxisEnd : GridAxisStart;
}
// self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction.
return hasSameWritingMode ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// Aligns the alignment subject to be flush with the alignment container's 'line-left' edge.
// The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'.
return GridAxisStart;
case ItemPositionRight:
// Aligns the alignment subject to be flush with the alignment container's 'line-right' edge.
// The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'.
return GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'.
// Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis.
case ItemPositionStart:
return GridAxisStart;
case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'.
// Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align the child.
return GridAxisStart;
case ItemPositionAuto:
case ItemPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const
{
bool hasSameDirection = child.style().direction() == style().direction();
bool gridIsLTR = style().isLeftToRightDirection();
switch (child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior).position()) {
case ItemPositionSelfStart:
// FIXME: Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'start' side in the row axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-start will be based on the child's block-axis
// direction, because it's the one parallel to the row axis.
if (child.style().isFlippedBlocksWritingMode())
return gridIsLTR ? GridAxisEnd : GridAxisStart;
return gridIsLTR ? GridAxisStart : GridAxisEnd;
}
// self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction.
return hasSameDirection ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// FIXME: Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'end' side in the row axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-end will be based on the child's block-axis
// direction, because it's the one parallel to the row axis.
if (child.style().isFlippedBlocksWritingMode())
return gridIsLTR ? GridAxisStart : GridAxisEnd;
return gridIsLTR ? GridAxisEnd : GridAxisStart;
}
// self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction.
return hasSameDirection ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// Aligns the alignment subject to be flush with the alignment container's 'line-left' edge.
// We want the physical 'left' side, so we have to take account, container's inline-flow direction.
return gridIsLTR ? GridAxisStart : GridAxisEnd;
case ItemPositionRight:
// Aligns the alignment subject to be flush with the alignment container's 'line-right' edge.
// We want the physical 'right' side, so we have to take account, container's inline-flow direction.
return gridIsLTR ? GridAxisEnd : GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'.
// Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis.
case ItemPositionStart:
return GridAxisStart;
case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'.
// Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align the child.
return GridAxisStart;
case ItemPositionAuto:
case ItemPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
LayoutUnit RenderGrid::columnAxisOffsetForChild(const RenderBox& child) const
{
const GridSpan& rowsSpan = m_grid.gridItemSpan(child, ForRows);
unsigned childStartLine = rowsSpan.startLine();
LayoutUnit startOfRow = m_rowPositions[childStartLine];
LayoutUnit startPosition = startOfRow + marginBeforeForChild(child);
if (hasAutoMarginsInColumnAxis(child))
return startPosition;
GridAxisPosition axisPosition = columnAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
unsigned childEndLine = rowsSpan.endLine();
LayoutUnit endOfRow = m_rowPositions[childEndLine];
// m_rowPositions include distribution offset (because of content alignment) and gutters
// so we need to subtract them to get the actual end position for a given row
// (this does not have to be done for the last track as there are no more m_rowPositions after it).
if (childEndLine < m_rowPositions.size() - 1)
endOfRow -= gridGapForDirection(ForRows) + m_offsetBetweenRows;
LayoutUnit columnAxisChildSize = isOrthogonalChild(child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight();
auto overflow = child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).overflow();
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize);
return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::rowAxisOffsetForChild(const RenderBox& child) const
{
const GridSpan& columnsSpan = m_grid.gridItemSpan(child, ForColumns);
unsigned childStartLine = columnsSpan.startLine();
LayoutUnit startOfColumn = m_columnPositions[childStartLine];
LayoutUnit startPosition = startOfColumn + marginStartForChild(child);
if (hasAutoMarginsInRowAxis(child))
return startPosition;
GridAxisPosition axisPosition = rowAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
unsigned childEndLine = columnsSpan.endLine();
LayoutUnit endOfColumn = m_columnPositions[childEndLine];
// m_columnPositions include distribution offset (because of content alignment) and gutters
// so we need to subtract them to get the actual end position for a given column
// (this does not have to be done for the last track as there are no more m_columnPositions after it).
if (childEndLine < m_columnPositions.size() - 1)
endOfColumn -= gridGapForDirection(ForColumns) + m_offsetBetweenColumns;
LayoutUnit rowAxisChildSize = isOrthogonalChild(child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth();
auto overflow = child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior).overflow();
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize);
return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return 0;
}
ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution)
{
switch (distribution) {
case ContentDistributionSpaceBetween:
return ContentPositionStart;
case ContentDistributionSpaceAround:
return ContentPositionCenter;
case ContentDistributionSpaceEvenly:
return ContentPositionCenter;
case ContentDistributionStretch:
return ContentPositionStart;
case ContentDistributionDefault:
return ContentPositionNormal;
}
ASSERT_NOT_REACHED();
return ContentPositionNormal;
}
static ContentAlignmentData contentDistributionOffset(const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistributionType distribution, unsigned numberOfGridTracks)
{
if (distribution != ContentDistributionDefault && fallbackPosition == ContentPositionNormal)
fallbackPosition = resolveContentDistributionFallback(distribution);
if (availableFreeSpace <= 0)
return ContentAlignmentData::defaultOffsets();
LayoutUnit distributionOffset;
switch (distribution) {
case ContentDistributionSpaceBetween:
if (numberOfGridTracks < 2)
return ContentAlignmentData::defaultOffsets();
return {0, availableFreeSpace / (numberOfGridTracks - 1)};
case ContentDistributionSpaceAround:
if (numberOfGridTracks < 1)
return ContentAlignmentData::defaultOffsets();
distributionOffset = availableFreeSpace / numberOfGridTracks;
return {distributionOffset / 2, distributionOffset};
case ContentDistributionSpaceEvenly:
distributionOffset = availableFreeSpace / (numberOfGridTracks + 1);
return {distributionOffset, distributionOffset};
case ContentDistributionStretch:
case ContentDistributionDefault:
return ContentAlignmentData::defaultOffsets();
}
ASSERT_NOT_REACHED();
return ContentAlignmentData::defaultOffsets();
}
ContentAlignmentData RenderGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) const
{
bool isRowAxis = direction == ForColumns;
auto position = isRowAxis ? style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContentPosition(contentAlignmentNormalBehaviorGrid());
auto distribution = isRowAxis ? style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContentDistribution(contentAlignmentNormalBehaviorGrid());
// If <content-distribution> value can't be applied, 'position' will become the associated
// <content-position> fallback value.
auto contentAlignment = contentDistributionOffset(availableFreeSpace, position, distribution, numberOfGridTracks);
if (contentAlignment.isValid())
return contentAlignment;
auto overflow = (isRowAxis ? style().justifyContent() : style().alignContent()).overflow();
if (availableFreeSpace <= 0 && overflow == OverflowAlignmentSafe)
return {0, 0};
switch (position) {
case ContentPositionLeft:
// The align-content's axis is always orthogonal to the inline-axis.
return {0, 0};
case ContentPositionRight:
if (isRowAxis)
return {availableFreeSpace, 0};
// The align-content's axis is always orthogonal to the inline-axis.
return {0, 0};
case ContentPositionCenter:
return {availableFreeSpace / 2, 0};
case ContentPositionFlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'end'.
case ContentPositionEnd:
if (isRowAxis)
return {style().isLeftToRightDirection() ? availableFreeSpace : LayoutUnit(), LayoutUnit()};
return {availableFreeSpace, 0};
case ContentPositionFlexStart: // Only used in flex layout, for other layout, it's equivalent to 'start'.
case ContentPositionStart:
if (isRowAxis)
return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()};
return {0, 0};
case ContentPositionBaseline:
case ContentPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align.
// http://webkit.org/b/145566
if (isRowAxis)
return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()};
return {0, 0};
case ContentPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return {0, 0};
}
LayoutUnit RenderGrid::translateRTLCoordinate(LayoutUnit coordinate) const
{
ASSERT(!style().isLeftToRightDirection());
LayoutUnit alignmentOffset = m_columnPositions[0];
LayoutUnit rightGridEdgePosition = m_columnPositions[m_columnPositions.size() - 1];
return rightGridEdgePosition + alignmentOffset - coordinate;
}
LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child) const
{
LayoutUnit columnAxisOffset = columnAxisOffsetForChild(child);
LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child);
// We stored m_columnPositions's data ignoring the direction, hence we might need now
// to translate positions from RTL to LTR, as it's more convenient for painting.
if (!style().isLeftToRightDirection())
rowAxisOffset = translateRTLCoordinate(rowAxisOffset) - (isOrthogonalChild(child) ? child.logicalHeight() : child.logicalWidth());
// "In the positioning phase [...] calculations are performed according to the writing mode
// of the containing block of the box establishing the orthogonal flow." However, the
// resulting LayoutPoint will be used in 'setLogicalPosition' in order to set the child's
// logical position, which will only take into account the child's writing-mode.
LayoutPoint childLocation(rowAxisOffset, columnAxisOffset);
return isOrthogonalChild(child) ? childLocation.transposedPoint() : childLocation;
}
unsigned RenderGrid::numTracks(GridTrackSizingDirection direction, const Grid& grid) const
{
// Due to limitations in our internal representation, we cannot know the number of columns from
// m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need
// to get it from the style. Note that we know for sure that there are't any implicit tracks,
// because not having rows implies that there are no "normal" children (out-of-flow children are
// not stored in m_grid).
ASSERT(!grid.needsItemsPlacement());
if (direction == ForRows)
return grid.numTracks(ForRows);
// FIXME: This still requires knowledge about m_grid internals.
return grid.numTracks(ForRows) ? grid.numTracks(ForColumns) : GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns));
}
void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect)
{
ASSERT(!m_grid.needsItemsPlacement());
for (RenderBox* child = m_grid.orderIterator().first(); child; child = m_grid.orderIterator().next())
paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock);
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace WebCore
|