/* * Copyright (C) 2011 Apple Inc. All rights reserved. * Copyright (C) 2013-2017 Igalia S.L. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "RenderGrid.h" #include "GridArea.h" #include "GridPositionsResolver.h" #include "GridTrackSizingAlgorithm.h" #include "LayoutRepainter.h" #include "RenderLayer.h" #include "RenderView.h" #include namespace WebCore { static constexpr ItemPosition selfAlignmentNormalBehavior = ItemPositionStretch; enum TrackSizeRestriction { AllowInfinity, ForbidInfinity, }; struct ContentAlignmentData { WTF_MAKE_FAST_ALLOCATED; public: bool isValid() { return positionOffset >= 0 && distributionOffset >= 0; } static ContentAlignmentData defaultOffsets() { return {-1, -1}; } LayoutUnit positionOffset; LayoutUnit distributionOffset; }; RenderGrid::RenderGrid(Element& element, RenderStyle&& style) : RenderBlock(element, WTFMove(style), 0) , m_grid(*this) , m_trackSizingAlgorithm(this, m_grid) { // All of our children must be block level. setChildrenInline(false); } RenderGrid::~RenderGrid() { } static inline bool defaultAlignmentIsStretch(ItemPosition position) { return position == ItemPositionStretch || position == ItemPositionAuto; } static inline bool defaultAlignmentChangedToStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle) { return !defaultAlignmentIsStretch(oldStyle.justifyItems().position()) && defaultAlignmentIsStretch(newStyle.justifyItems().position()); } static inline bool defaultAlignmentChangedFromStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle) { return defaultAlignmentIsStretch(oldStyle.justifyItems().position()) && !defaultAlignmentIsStretch(newStyle.justifyItems().position()); } static inline bool defaultAlignmentChangedFromStretchInColumnAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle) { return defaultAlignmentIsStretch(oldStyle.alignItems().position()) && !defaultAlignmentIsStretch(newStyle.alignItems().position()); } static inline bool selfAlignmentChangedToStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle) { return childStyle.resolvedJustifySelf(oldStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch && childStyle.resolvedJustifySelf(newStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch; } static inline bool selfAlignmentChangedFromStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle) { return childStyle.resolvedJustifySelf(oldStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch && childStyle.resolvedJustifySelf(newStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch; } static inline bool selfAlignmentChangedFromStretchInColumnAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle) { return childStyle.resolvedAlignSelf(oldStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch && childStyle.resolvedAlignSelf(newStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch; } void RenderGrid::addChild(RenderObject* newChild, RenderObject* beforeChild) { RenderBlock::addChild(newChild, beforeChild); // Positioned grid items do not take up space or otherwise participate in the layout of the grid, // for that reason we don't need to mark the grid as dirty when they are added. if (newChild->isOutOfFlowPositioned()) return; // The grid needs to be recomputed as it might contain auto-placed items that // will change their position. dirtyGrid(); } void RenderGrid::removeChild(RenderObject& child) { RenderBlock::removeChild(child); // Positioned grid items do not take up space or otherwise participate in the layout of the grid, // for that reason we don't need to mark the grid as dirty when they are removed. if (child.isOutOfFlowPositioned()) return; // The grid needs to be recomputed as it might contain auto-placed items that // will change their position. dirtyGrid(); } void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { RenderBlock::styleDidChange(diff, oldStyle); if (!oldStyle || diff != StyleDifferenceLayout) return; const RenderStyle& newStyle = style(); if (defaultAlignmentChangedToStretchInRowAxis(*oldStyle, newStyle) || defaultAlignmentChangedFromStretchInRowAxis(*oldStyle, newStyle) || defaultAlignmentChangedFromStretchInColumnAxis(*oldStyle, newStyle)) { // Grid items that were not previously stretched in row-axis need to be relayed out so we can compute new available space. // Grid items that were previously stretching in column-axis need to be relayed out so we can compute new available space. // This is only necessary for stretching since other alignment values don't change the size of the box. for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isOutOfFlowPositioned()) continue; if (selfAlignmentChangedToStretchInRowAxis(*oldStyle, newStyle, child->style()) || selfAlignmentChangedFromStretchInRowAxis(*oldStyle, newStyle, child->style()) || selfAlignmentChangedFromStretchInColumnAxis(*oldStyle, newStyle, child->style())) { child->setChildNeedsLayout(MarkOnlyThis); } } } if (explicitGridDidResize(*oldStyle) || namedGridLinesDefinitionDidChange(*oldStyle) || oldStyle->gridAutoFlow() != style().gridAutoFlow() || (style().gridAutoRepeatColumns().size() || style().gridAutoRepeatRows().size())) dirtyGrid(); } bool RenderGrid::explicitGridDidResize(const RenderStyle& oldStyle) const { return oldStyle.gridColumns().size() != style().gridColumns().size() || oldStyle.gridRows().size() != style().gridRows().size() || oldStyle.namedGridAreaColumnCount() != style().namedGridAreaColumnCount() || oldStyle.namedGridAreaRowCount() != style().namedGridAreaRowCount() || oldStyle.gridAutoRepeatColumns().size() != style().gridAutoRepeatColumns().size() || oldStyle.gridAutoRepeatRows().size() != style().gridAutoRepeatRows().size(); } bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle& oldStyle) const { return oldStyle.namedGridRowLines() != style().namedGridRowLines() || oldStyle.namedGridColumnLines() != style().namedGridColumnLines(); } LayoutUnit RenderGrid::computeTrackBasedLogicalHeight() const { LayoutUnit logicalHeight; auto& allRows = m_trackSizingAlgorithm.tracks(ForRows); for (const auto& row : allRows) logicalHeight += row.baseSize(); logicalHeight += guttersSize(m_grid, ForRows, 0, allRows.size()); return logicalHeight; } void RenderGrid::computeTrackSizesForDefiniteSize(GridTrackSizingDirection direction, LayoutUnit availableSpace) { LayoutUnit totalGuttersSize = guttersSize(m_grid, direction, 0, m_grid.numTracks(direction)); LayoutUnit freeSpace = availableSpace - totalGuttersSize; m_trackSizingAlgorithm.setup(direction, numTracks(direction, m_grid), TrackSizing, availableSpace, freeSpace); m_trackSizingAlgorithm.run(); ASSERT(m_trackSizingAlgorithm.tracksAreWiderThanMinTrackBreadth()); } void RenderGrid::repeatTracksSizingIfNeeded(LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows) { // In orthogonal flow cases column track's size is determined by using the computed // row track's size, which it was estimated during the first cycle of the sizing // algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both, // columns and rows, to determine the final values. // TODO (lajava): orthogonal flows is just one of the cases which may require // a new cycle of the sizing algorithm; there may be more. In addition, not all the // cases with orthogonal flows require this extra cycle; we need a more specific // condition to detect whether child's min-content contribution has changed or not. if (m_grid.hasAnyOrthogonalGridItem()) { computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); computeTrackSizesForDefiniteSize(ForRows, availableSpaceForRows); } } bool RenderGrid::canPerformSimplifiedLayout() const { // We cannot perform a simplified layout if we need to position the items and we have some // positioned items to be laid out. if (m_grid.needsItemsPlacement() && posChildNeedsLayout()) return false; return RenderBlock::canPerformSimplifiedLayout(); } void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit) { ASSERT(needsLayout()); if (!relayoutChildren && simplifiedLayout()) return; LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode()); preparePaginationBeforeBlockLayout(relayoutChildren); LayoutSize previousSize = size(); // We need to clear both own and containingBlock override sizes of orthogonal items to ensure we get the // same result when grid's intrinsic size is computed again in the updateLogicalWidth call bellow. if (sizesLogicalWidthToFitContent(MaxSize) || style().logicalWidth().isIntrinsicOrAuto()) { for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isOutOfFlowPositioned() || !isOrthogonalChild(*child)) continue; child->clearOverrideSize(); child->clearContainingBlockOverrideSize(); child->setNeedsLayout(); child->layoutIfNeeded(); } } setLogicalHeight(0); updateLogicalWidth(); placeItemsOnGrid(m_grid, TrackSizing); // At this point the logical width is always definite as the above call to updateLogicalWidth() // properly resolves intrinsic sizes. We cannot do the same for heights though because many code // paths inside updateLogicalHeight() require a previous call to setLogicalHeight() to resolve // heights properly (like for positioned items for example). LayoutUnit availableSpaceForColumns = availableLogicalWidth(); computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); // FIXME: We should use RenderBlock::hasDefiniteLogicalHeight() but it does not work for positioned stuff. // FIXME: Consider caching the hasDefiniteLogicalHeight value throughout the layout. bool hasDefiniteLogicalHeight = hasOverrideLogicalContentHeight() || computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt); if (!hasDefiniteLogicalHeight) { m_minContentHeight = LayoutUnit(); m_maxContentHeight = LayoutUnit(); computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForRows, m_grid, *m_minContentHeight, *m_maxContentHeight); // FIXME: This should be really added to the intrinsic height in RenderBox::computeContentAndScrollbarLogicalHeightUsing(). // Remove this when that is fixed. ASSERT(m_minContentHeight); ASSERT(m_maxContentHeight); LayoutUnit scrollbarHeight = scrollbarLogicalHeight(); *m_minContentHeight += scrollbarHeight; *m_maxContentHeight += scrollbarHeight; } else computeTrackSizesForDefiniteSize(ForRows, availableLogicalHeight(ExcludeMarginBorderPadding)); LayoutUnit trackBasedLogicalHeight = computeTrackBasedLogicalHeight() + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(); setLogicalHeight(trackBasedLogicalHeight); LayoutUnit oldClientAfterEdge = clientLogicalBottom(); updateLogicalHeight(); // Once grid's indefinite height is resolved, we can compute the // available free space for Content Alignment. if (!hasDefiniteLogicalHeight) m_trackSizingAlgorithm.setFreeSpace(ForRows, logicalHeight() - trackBasedLogicalHeight); // 3- If the min-content contribution of any grid items have changed based on the row // sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content // contribution (once only). repeatTracksSizingIfNeeded(availableSpaceForColumns, contentLogicalHeight()); // Grid container should have the minimum height of a line if it's editable. That does not affect track sizing though. if (hasLineIfEmpty()) { LayoutUnit minHeightForEmptyLine = borderAndPaddingLogicalHeight() + lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes) + scrollbarLogicalHeight(); setLogicalHeight(std::max(logicalHeight(), minHeightForEmptyLine)); } applyStretchAlignmentToTracksIfNeeded(ForColumns); applyStretchAlignmentToTracksIfNeeded(ForRows); layoutGridItems(); m_trackSizingAlgorithm.reset(); if (size() != previousSize) relayoutChildren = true; layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer()); computeOverflow(oldClientAfterEdge); statePusher.pop(); updateLayerTransform(); // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if // we overflow or not. updateScrollInfoAfterLayout(); repainter.repaintAfterLayout(); clearNeedsLayout(); } LayoutUnit RenderGrid::gridGapForDirection(GridTrackSizingDirection direction) const { return valueForLength(direction == ForColumns ? style().gridColumnGap() : style().gridRowGap(), LayoutUnit()); } LayoutUnit RenderGrid::guttersSize(const Grid& grid, GridTrackSizingDirection direction, unsigned startLine, unsigned span) const { if (span <= 1) return { }; LayoutUnit gap = gridGapForDirection(direction); // Fast path, no collapsing tracks. if (!grid.hasAutoRepeatEmptyTracks(direction)) return gap * (span - 1); // If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart // from that, if we have a collapsed track in the edges of the span we're considering, we need // to move forward (or backwards) in order to know whether the collapsed tracks reach the end of // the grid (so the gap becomes 0) or there is a non empty track before that. LayoutUnit gapAccumulator; unsigned endLine = startLine + span; for (unsigned line = startLine; line < endLine - 1; ++line) { if (!grid.isEmptyAutoRepeatTrack(direction, line)) gapAccumulator += gap; } // The above loop adds one extra gap for trailing collapsed tracks. if (gapAccumulator && grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { ASSERT(gapAccumulator >= gap); gapAccumulator -= gap; } // If the startLine is the start line of a collapsed track we need to go backwards till we reach // a non collapsed track. If we find a non collapsed track we need to add that gap. if (startLine && grid.isEmptyAutoRepeatTrack(direction, startLine)) { unsigned nonEmptyTracksBeforeStartLine = startLine; auto begin = grid.autoRepeatEmptyTracks(direction)->begin(); for (auto it = begin; *it != startLine; ++it) { ASSERT(nonEmptyTracksBeforeStartLine); --nonEmptyTracksBeforeStartLine; } if (nonEmptyTracksBeforeStartLine) gapAccumulator += gap; } // If the endLine is the end line of a collapsed track we need to go forward till we reach a non // collapsed track. If we find a non collapsed track we need to add that gap. if (grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { unsigned nonEmptyTracksAfterEndLine = grid.numTracks(direction) - endLine; auto currentEmptyTrack = grid.autoRepeatEmptyTracks(direction)->find(endLine - 1); auto endEmptyTrack = grid.autoRepeatEmptyTracks(direction)->end(); // HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks. for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) { ASSERT(nonEmptyTracksAfterEndLine >= 1); --nonEmptyTracksAfterEndLine; } if (nonEmptyTracksAfterEndLine) gapAccumulator += gap; } return gapAccumulator; } void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const { Grid grid(const_cast(*this)); placeItemsOnGrid(grid, IntrinsicSizeComputation); GridTrackSizingAlgorithm algorithm(this, grid); computeTrackSizesForIndefiniteSize(algorithm, ForColumns, grid, minLogicalWidth, maxLogicalWidth); LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth(); minLogicalWidth += scrollbarWidth; maxLogicalWidth += scrollbarWidth; } void RenderGrid::computeTrackSizesForIndefiniteSize(GridTrackSizingAlgorithm& algorithm, GridTrackSizingDirection direction, Grid& grid, LayoutUnit& minIntrinsicSize, LayoutUnit& maxIntrinsicSize) const { algorithm.setup(direction, numTracks(direction, grid), IntrinsicSizeComputation, std::nullopt, std::nullopt); algorithm.run(); size_t numberOfTracks = algorithm.tracks(direction).size(); LayoutUnit totalGuttersSize = guttersSize(grid, direction, 0, numberOfTracks); minIntrinsicSize = algorithm.minContentSize() + totalGuttersSize; maxIntrinsicSize = algorithm.maxContentSize() + totalGuttersSize; ASSERT(algorithm.tracksAreWiderThanMinTrackBreadth()); } std::optional RenderGrid::computeIntrinsicLogicalContentHeightUsing(Length logicalHeightLength, std::optional intrinsicLogicalHeight, LayoutUnit borderAndPadding) const { if (!intrinsicLogicalHeight) return std::nullopt; if (logicalHeightLength.isMinContent()) return m_minContentHeight; if (logicalHeightLength.isMaxContent()) return m_maxContentHeight; if (logicalHeightLength.isFitContent()) { LayoutUnit fillAvailableExtent = containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding); return std::min(m_maxContentHeight.value_or(0), std::max(m_minContentHeight.value_or(0), fillAvailableExtent)); } if (logicalHeightLength.isFillAvailable()) return containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding) - borderAndPadding; ASSERT_NOT_REACHED(); return std::nullopt; } static std::optional overrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction) { return direction == ForColumns ? child.overrideContainingBlockContentLogicalWidth() : child.overrideContainingBlockContentLogicalHeight(); } bool RenderGrid::isOrthogonalChild(const RenderBox& child) const { return child.isHorizontalWritingMode() != isHorizontalWritingMode(); } GridTrackSizingDirection RenderGrid::flowAwareDirectionForChild(const RenderBox& child, GridTrackSizingDirection direction) const { return !isOrthogonalChild(child) ? direction : (direction == ForColumns ? ForRows : ForColumns); } unsigned RenderGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, SizingOperation sizingOperation) const { bool isRowAxis = direction == ForColumns; const auto& autoRepeatTracks = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows(); unsigned autoRepeatTrackListLength = autoRepeatTracks.size(); if (!autoRepeatTrackListLength) return 0; std::optional availableSize; if (isRowAxis) { if (sizingOperation != IntrinsicSizeComputation) availableSize = availableLogicalWidth(); } else { availableSize = computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt); if (!availableSize) { const Length& maxLength = style().logicalMaxHeight(); if (!maxLength.isUndefined()) availableSize = computeContentLogicalHeight(MaxSize, maxLength, std::nullopt); } if (availableSize) availableSize = constrainContentBoxLogicalHeightByMinMax(availableSize.value(), std::nullopt); } bool needsToFulfillMinimumSize = false; if (!availableSize) { const Length& minSize = isRowAxis ? style().logicalMinWidth() : style().logicalMinHeight(); if (!minSize.isSpecified()) return autoRepeatTrackListLength; LayoutUnit containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); availableSize = valueForLength(minSize, containingBlockAvailableSize); needsToFulfillMinimumSize = true; } LayoutUnit autoRepeatTracksSize; for (auto& autoTrackSize : autoRepeatTracks) { ASSERT(autoTrackSize.minTrackBreadth().isLength()); ASSERT(!autoTrackSize.minTrackBreadth().isFlex()); bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized(); auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length(); autoRepeatTracksSize += valueForLength(trackLength, availableSize.value()); } // For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified // value to avoid division by zero. It is suggested that this floor be 1px. autoRepeatTracksSize = std::max(LayoutUnit(1), autoRepeatTracksSize); // There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size. LayoutUnit tracksSize = autoRepeatTracksSize; auto& trackSizes = isRowAxis ? style().gridColumns() : style().gridRows(); for (const auto& track : trackSizes) { bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized(); ASSERT(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized())); tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize.value()); } // Add gutters as if there where only 1 auto repeat track. Gaps between auto repeat tracks will be added later when // computing the repetitions. LayoutUnit gapSize = gridGapForDirection(direction); tracksSize += gapSize * trackSizes.size(); LayoutUnit freeSpace = availableSize.value() - tracksSize; if (freeSpace <= 0) return autoRepeatTrackListLength; unsigned repetitions = 1 + (freeSpace / (autoRepeatTracksSize + gapSize)).toInt(); // Provided the grid container does not have a definite size or max-size in the relevant axis, // if the min size is definite then the number of repetitions is the largest possible positive // integer that fulfills that minimum requirement. if (needsToFulfillMinimumSize) ++repetitions; return repetitions * autoRepeatTrackListLength; } std::unique_ptr RenderGrid::computeEmptyTracksForAutoRepeat(Grid& grid, GridTrackSizingDirection direction) const { bool isRowAxis = direction == ForColumns; if ((isRowAxis && style().gridAutoRepeatColumnsType() != AutoFit) || (!isRowAxis && style().gridAutoRepeatRowsType() != AutoFit)) return nullptr; std::unique_ptr emptyTrackIndexes; unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); unsigned firstAutoRepeatTrack = insertionPoint + std::abs(grid.smallestTrackStart(direction)); unsigned lastAutoRepeatTrack = firstAutoRepeatTrack + grid.autoRepeatTracks(direction); if (!grid.hasGridItems()) { emptyTrackIndexes = std::make_unique(); for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) emptyTrackIndexes->add(trackIndex); } else { for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) { GridIterator iterator(grid, direction, trackIndex); if (!iterator.nextGridItem()) { if (!emptyTrackIndexes) emptyTrackIndexes = std::make_unique(); emptyTrackIndexes->add(trackIndex); } } } return emptyTrackIndexes; } void RenderGrid::placeItemsOnGrid(Grid& grid, SizingOperation sizingOperation) const { unsigned autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, sizingOperation); unsigned autoRepeatRows = computeAutoRepeatTracksCount(ForRows, sizingOperation); if (autoRepeatColumns != grid.autoRepeatTracks(ForColumns) || autoRepeatRows != grid.autoRepeatTracks(ForRows)) { grid.setNeedsItemsPlacement(true); grid.setAutoRepeatTracks(autoRepeatRows, autoRepeatColumns); } if (!grid.needsItemsPlacement()) return; ASSERT(!grid.hasGridItems()); populateExplicitGridAndOrderIterator(grid); Vector autoMajorAxisAutoGridItems; Vector specifiedMajorAxisAutoGridItems; bool hasAnyOrthogonalGridItem = false; for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { if (child->isOutOfFlowPositioned()) continue; hasAnyOrthogonalGridItem = hasAnyOrthogonalGridItem || isOrthogonalChild(*child); GridArea area = grid.gridItemArea(*child); if (!area.rows.isIndefinite()) area.rows.translate(std::abs(grid.smallestTrackStart(ForRows))); if (!area.columns.isIndefinite()) area.columns.translate(std::abs(grid.smallestTrackStart(ForColumns))); if (area.rows.isIndefinite() || area.columns.isIndefinite()) { grid.setGridItemArea(*child, area); bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns; if ((majorAxisDirectionIsForColumns && area.columns.isIndefinite()) || (!majorAxisDirectionIsForColumns && area.rows.isIndefinite())) autoMajorAxisAutoGridItems.append(child); else specifiedMajorAxisAutoGridItems.append(child); continue; } grid.insert(*child, { area.rows, area.columns }); } grid.setHasAnyOrthogonalGridItem(hasAnyOrthogonalGridItem); #if ENABLE(ASSERT) if (grid.hasGridItems()) { ASSERT(grid.numTracks(ForRows) >= GridPositionsResolver::explicitGridRowCount(style(), grid.autoRepeatTracks(ForRows))); ASSERT(grid.numTracks(ForColumns) >= GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns))); } #endif placeSpecifiedMajorAxisItemsOnGrid(grid, specifiedMajorAxisAutoGridItems); placeAutoMajorAxisItemsOnGrid(grid, autoMajorAxisAutoGridItems); // Compute collapsible tracks for auto-fit. grid.setAutoRepeatEmptyColumns(computeEmptyTracksForAutoRepeat(grid, ForColumns)); grid.setAutoRepeatEmptyRows(computeEmptyTracksForAutoRepeat(grid, ForRows)); grid.setNeedsItemsPlacement(false); #if ENABLE(ASSERT) for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { if (child->isOutOfFlowPositioned()) continue; GridArea area = grid.gridItemArea(*child); ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite()); } #endif } void RenderGrid::populateExplicitGridAndOrderIterator(Grid& grid) const { OrderIteratorPopulator populator(grid.orderIterator()); int smallestRowStart = 0; int smallestColumnStart = 0; unsigned autoRepeatRows = grid.autoRepeatTracks(ForRows); unsigned autoRepeatColumns = grid.autoRepeatTracks(ForColumns); unsigned maximumRowIndex = GridPositionsResolver::explicitGridRowCount(style(), autoRepeatRows); unsigned maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(style(), autoRepeatColumns); for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isOutOfFlowPositioned()) continue; populator.collectChild(*child); GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForRows, autoRepeatRows); if (!rowPositions.isIndefinite()) { smallestRowStart = std::min(smallestRowStart, rowPositions.untranslatedStartLine()); maximumRowIndex = std::max(maximumRowIndex, rowPositions.untranslatedEndLine()); } else { // Grow the grid for items with a definite row span, getting the largest such span. unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForRows); maximumRowIndex = std::max(maximumRowIndex, spanSize); } GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForColumns, autoRepeatColumns); if (!columnPositions.isIndefinite()) { smallestColumnStart = std::min(smallestColumnStart, columnPositions.untranslatedStartLine()); maximumColumnIndex = std::max(maximumColumnIndex, columnPositions.untranslatedEndLine()); } else { // Grow the grid for items with a definite column span, getting the largest such span. unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForColumns); maximumColumnIndex = std::max(maximumColumnIndex, spanSize); } grid.setGridItemArea(*child, { rowPositions, columnPositions }); } grid.setSmallestTracksStart(smallestRowStart, smallestColumnStart); grid.ensureGridSize(maximumRowIndex + std::abs(smallestRowStart), maximumColumnIndex + std::abs(smallestColumnStart)); } std::unique_ptr RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(Grid& grid, const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const { GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns; const unsigned endOfCrossDirection = grid.numTracks(crossDirection); unsigned crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, crossDirection); GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize); return std::make_unique(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions); } void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Grid& grid, const Vector& autoGridItems) const { bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns; bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); // Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on // that track. This is needed to implement "sparse" packing for items locked to a given track. // See http://dev.w3.org/csswg/css-grid/#auto-placement-algorithm HashMap::Hash, WTF::UnsignedWithZeroKeyHashTraits> minorAxisCursors; for (auto& autoGridItem : autoGridItems) { GridSpan majorAxisPositions = grid.gridItemSpan(*autoGridItem, autoPlacementMajorAxisDirection()); ASSERT(majorAxisPositions.isTranslatedDefinite()); ASSERT(grid.gridItemSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isIndefinite()); unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *autoGridItem, autoPlacementMinorAxisDirection()); unsigned majorAxisInitialPosition = majorAxisPositions.startLine(); GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition)); std::unique_ptr emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize); if (!emptyGridArea) emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, *autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions); grid.insert(*autoGridItem, *emptyGridArea); if (!isGridAutoFlowDense) minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine()); } } void RenderGrid::placeAutoMajorAxisItemsOnGrid(Grid& grid, const Vector& autoGridItems) const { AutoPlacementCursor autoPlacementCursor = {0, 0}; bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); for (auto& autoGridItem : autoGridItems) { placeAutoMajorAxisItemOnGrid(grid, *autoGridItem, autoPlacementCursor); if (isGridAutoFlowDense) { autoPlacementCursor.first = 0; autoPlacementCursor.second = 0; } } } void RenderGrid::placeAutoMajorAxisItemOnGrid(Grid& grid, RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor) const { ASSERT(grid.gridItemSpan(gridItem, autoPlacementMajorAxisDirection()).isIndefinite()); unsigned majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMajorAxisDirection()); const unsigned endOfMajorAxis = grid.numTracks(autoPlacementMajorAxisDirection()); unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first; unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second; std::unique_ptr emptyGridArea; GridSpan minorAxisPositions = grid.gridItemSpan(gridItem, autoPlacementMinorAxisDirection()); if (minorAxisPositions.isTranslatedDefinite()) { // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor. if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor) majorAxisAutoPlacementCursor++; if (majorAxisAutoPlacementCursor < endOfMajorAxis) { GridIterator iterator(grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor); emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize); } if (!emptyGridArea) emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions); } else { unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMinorAxisDirection()); for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) { GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor); emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize); if (emptyGridArea) { // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()). unsigned minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine(); const unsigned endOfMinorAxis = grid.numTracks(autoPlacementMinorAxisDirection()); if (minorAxisFinalPositionIndex <= endOfMinorAxis) break; // Discard empty grid area as it does not fit in the minor axis direction. // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration. emptyGridArea = nullptr; } // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis. minorAxisAutoPlacementCursor = 0; } if (!emptyGridArea) emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize)); } grid.insert(gridItem, *emptyGridArea); autoPlacementCursor.first = emptyGridArea->rows.startLine(); autoPlacementCursor.second = emptyGridArea->columns.startLine(); } GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const { return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows; } GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const { return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns; } void RenderGrid::dirtyGrid() { if (m_grid.needsItemsPlacement()) return; m_grid.setNeedsItemsPlacement(true); } Vector RenderGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const { bool isRowAxis = direction == ForColumns; auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; size_t numPositions = positions.size(); LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; Vector tracks; if (numPositions < 2) return tracks; ASSERT(!m_grid.needsItemsPlacement()); bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); LayoutUnit gap = !hasCollapsedTracks ? gridGapForDirection(direction) : LayoutUnit(); tracks.reserveCapacity(numPositions - 1); for (size_t i = 0; i < numPositions - 2; ++i) tracks.append(positions[i + 1] - positions[i] - offsetBetweenTracks - gap); tracks.append(positions[numPositions - 1] - positions[numPositions - 2]); if (!hasCollapsedTracks) return tracks; size_t remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size(); size_t lastLine = tracks.size(); gap = gridGapForDirection(direction); for (size_t i = 1; i < lastLine; ++i) { if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) --remainingEmptyTracks; else { // Remove the gap between consecutive non empty tracks. Remove it also just once for an // arbitrary number of empty tracks between two non empty ones. bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) tracks[i - 1] -= gap; } } return tracks; } static const StyleContentAlignmentData& contentAlignmentNormalBehaviorGrid() { static const StyleContentAlignmentData normalBehavior = {ContentPositionNormal, ContentDistributionStretch}; return normalBehavior; } void RenderGrid::applyStretchAlignmentToTracksIfNeeded(GridTrackSizingDirection direction) { std::optional freeSpace = m_trackSizingAlgorithm.freeSpace(direction); if (!freeSpace || freeSpace.value() <= 0 || (direction == ForColumns && style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) != ContentDistributionStretch) || (direction == ForRows && style().resolvedAlignContentDistribution(contentAlignmentNormalBehaviorGrid()) != ContentDistributionStretch)) return; // Spec defines auto-sized tracks as the ones with an 'auto' max-sizing function. Vector& allTracks = m_trackSizingAlgorithm.tracks(direction); Vector autoSizedTracksIndex; for (unsigned i = 0; i < allTracks.size(); ++i) { const GridTrackSize& trackSize = m_trackSizingAlgorithm.gridTrackSize(direction, i, TrackSizing); if (trackSize.hasAutoMaxTrackBreadth()) autoSizedTracksIndex.append(i); } unsigned numberOfAutoSizedTracks = autoSizedTracksIndex.size(); if (numberOfAutoSizedTracks < 1) return; LayoutUnit sizeToIncrease = freeSpace.value() / numberOfAutoSizedTracks; for (const auto& trackIndex : autoSizedTracksIndex) { auto& track = allTracks[trackIndex]; track.setBaseSize(track.baseSize() + sizeToIncrease); } m_trackSizingAlgorithm.setFreeSpace(direction, LayoutUnit()); } void RenderGrid::layoutGridItems() { populateGridPositionsForDirection(ForColumns); populateGridPositionsForDirection(ForRows); for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isOutOfFlowPositioned()) { prepareChildForPositionedLayout(*child); continue; } // Because the grid area cannot be styled, we don't need to adjust // the grid breadth to account for 'box-sizing'. std::optional oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit(); std::optional oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit(); LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns); LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows); if (!oldOverrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalWidth.value() != overrideContainingBlockContentLogicalWidth || ((!oldOverrideContainingBlockContentLogicalHeight || oldOverrideContainingBlockContentLogicalHeight.value() != overrideContainingBlockContentLogicalHeight) && child->hasRelativeLogicalHeight())) child->setNeedsLayout(MarkOnlyThis); child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth); child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight); LayoutRect oldChildRect = child->frameRect(); // Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded // call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly // determine the available space before stretching, are not set yet. applyStretchAlignmentToChildIfNeeded(*child); child->layoutIfNeeded(); // We need pending layouts to be done in order to compute auto-margins properly. updateAutoMarginsInColumnAxisIfNeeded(*child); updateAutoMarginsInRowAxisIfNeeded(*child); child->setLogicalLocation(findChildLogicalPosition(*child)); // If the child moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the child) anyway. if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) child->repaintDuringLayoutIfMoved(oldChildRect); } } void RenderGrid::prepareChildForPositionedLayout(RenderBox& child) { ASSERT(child.isOutOfFlowPositioned()); child.containingBlock()->insertPositionedObject(child); RenderLayer* childLayer = child.layer(); childLayer->setStaticInlinePosition(borderAndPaddingStart()); childLayer->setStaticBlockPosition(borderAndPaddingBefore()); } void RenderGrid::layoutPositionedObject(RenderBox& child, bool relayoutChildren, bool fixedPositionObjectsOnly) { // FIXME: Properly support orthogonal writing mode. if (!isOrthogonalChild(child)) { LayoutUnit columnOffset = LayoutUnit(); LayoutUnit columnBreadth = LayoutUnit(); offsetAndBreadthForPositionedChild(child, ForColumns, columnOffset, columnBreadth); LayoutUnit rowOffset = LayoutUnit(); LayoutUnit rowBreadth = LayoutUnit(); offsetAndBreadthForPositionedChild(child, ForRows, rowOffset, rowBreadth); child.setOverrideContainingBlockContentLogicalWidth(columnBreadth); child.setOverrideContainingBlockContentLogicalHeight(rowBreadth); child.setExtraInlineOffset(columnOffset); child.setExtraBlockOffset(rowOffset); if (child.parent() == this) { auto& childLayer = *child.layer(); childLayer.setStaticInlinePosition(borderStart() + columnOffset); childLayer.setStaticBlockPosition(borderBefore() + rowOffset); } } RenderBlock::layoutPositionedObject(child, relayoutChildren, fixedPositionObjectsOnly); } void RenderGrid::offsetAndBreadthForPositionedChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& offset, LayoutUnit& breadth) { ASSERT(!isOrthogonalChild(child)); bool isRowAxis = direction == ForColumns; unsigned autoRepeatCount = m_grid.autoRepeatTracks(direction); GridSpan positions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), child, direction, autoRepeatCount); if (positions.isIndefinite()) { offset = LayoutUnit(); breadth = isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); return; } // For positioned items we cannot use GridSpan::translate() because we could end up with negative values, as the positioned items do not create implicit tracks per spec. int smallestStart = std::abs(m_grid.smallestTrackStart(direction)); int startLine = positions.untranslatedStartLine() + smallestStart; int endLine = positions.untranslatedEndLine() + smallestStart; GridPosition startPosition = isRowAxis ? child.style().gridItemColumnStart() : child.style().gridItemRowStart(); GridPosition endPosition = isRowAxis ? child.style().gridItemColumnEnd() : child.style().gridItemRowEnd(); int lastLine = numTracks(direction, m_grid); bool startIsAuto = startPosition.isAuto() || (startPosition.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(startPosition.namedGridLine(), style(), (direction == ForColumns) ? ColumnStartSide : RowStartSide)) || (startLine < 0) || (startLine > lastLine); bool endIsAuto = endPosition.isAuto() || (endPosition.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(endPosition.namedGridLine(), style(), (direction == ForColumns) ? ColumnEndSide : RowEndSide)) || (endLine < 0) || (endLine > lastLine); // We're normalizing the positions to avoid issues with RTL (as they're stored in the same order than LTR but adding an offset). LayoutUnit start; if (!startIsAuto) { if (isRowAxis) { if (style().isLeftToRightDirection()) start = m_columnPositions[startLine] - borderLogicalLeft(); else start = logicalWidth() - translateRTLCoordinate(m_columnPositions[startLine]) - borderLogicalRight(); } else start = m_rowPositions[startLine] - borderBefore(); } LayoutUnit end = isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); if (!endIsAuto) { if (isRowAxis) { if (style().isLeftToRightDirection()) end = m_columnPositions[endLine] - borderLogicalLeft(); else end = logicalWidth() - translateRTLCoordinate(m_columnPositions[endLine]) - borderLogicalRight(); } else end = m_rowPositions[endLine] - borderBefore(); // These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid. if (endLine > 0 && endLine < lastLine) { ASSERT(!m_grid.needsItemsPlacement()); end -= guttersSize(m_grid, direction, endLine - 1, 2); end -= isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; } } breadth = end - start; offset = start; if (isRowAxis && !style().isLeftToRightDirection() && !child.style().hasStaticInlinePosition(child.isHorizontalWritingMode())) { // If the child doesn't have a static inline position (i.e. "left" and/or "right" aren't "auto", // we need to calculate the offset from the left (even if we're in RTL). if (endIsAuto) offset = LayoutUnit(); else { offset = translateRTLCoordinate(m_columnPositions[endLine]) - borderLogicalLeft(); if (endLine > 0 && endLine < lastLine) { ASSERT(!m_grid.needsItemsPlacement()); offset += guttersSize(m_grid, direction, endLine - 1, 2); offset += isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; } } } } LayoutUnit RenderGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const RenderBox& child, GridTrackSizingDirection direction) const { // We need the cached value when available because Content Distribution alignment properties // may have some influence in the final grid area breadth. const auto& tracks = m_trackSizingAlgorithm.tracks(direction); const auto& span = m_grid.gridItemSpan(child, direction); const auto& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions; LayoutUnit initialTrackPosition = linePositions[span.startLine()]; LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1]; // Track Positions vector stores the 'start' grid line of each track, so we have to add last track's baseSize. return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize(); } void RenderGrid::populateGridPositionsForDirection(GridTrackSizingDirection direction) { // Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to // assume from now on that we just store positions of the initial grid lines of each track, // except the last one, which is the only one considered as a final grid line of a track. // The grid container's frame elements (border, padding and offset) are sensible to the // inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification // allows us to use the same indexes to identify the columns independently on the inline-axis direction. bool isRowAxis = direction == ForColumns; auto& tracks = m_trackSizingAlgorithm.tracks(direction); unsigned numberOfTracks = tracks.size(); unsigned numberOfLines = numberOfTracks + 1; unsigned lastLine = numberOfLines - 1; ContentAlignmentData offset = computeContentPositionAndDistributionOffset(direction, m_trackSizingAlgorithm.freeSpace(direction).value(), numberOfTracks); auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; positions.resize(numberOfLines); auto borderAndPadding = isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore(); positions[0] = borderAndPadding + offset.positionOffset; if (numberOfLines > 1) { // If we have collapsed tracks we just ignore gaps here and add them later as we might not // compute the gap between two consecutive tracks without examining the surrounding ones. bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); LayoutUnit gap = !hasCollapsedTracks ? gridGapForDirection(direction) : LayoutUnit(); unsigned nextToLastLine = numberOfLines - 2; for (unsigned i = 0; i < nextToLastLine; ++i) positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap; positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize(); // Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they // coincide exactly) except on the edges of the grid where they become 0. if (hasCollapsedTracks) { gap = gridGapForDirection(direction); unsigned remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size(); LayoutUnit gapAccumulator; for (unsigned i = 1; i < lastLine; ++i) { if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) --remainingEmptyTracks; else { // Add gap between consecutive non empty tracks. Add it also just once for an // arbitrary number of empty tracks between two non empty ones. bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) gapAccumulator += gap; } positions[i] += gapAccumulator; } positions[lastLine] += gapAccumulator; } } auto& offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; offsetBetweenTracks = offset.distributionOffset; } static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize) { LayoutUnit offset = trackSize - childSize; switch (overflow) { case OverflowAlignmentSafe: // If overflow is 'safe', we have to make sure we don't overflow the 'start' // edge (potentially cause some data loss as the overflow is unreachable). return std::max(0, offset); case OverflowAlignmentUnsafe: case OverflowAlignmentDefault: // If we overflow our alignment container and overflow is 'true' (default), we // ignore the overflow and just return the value regardless (which may cause data // loss as we overflow the 'start' edge). return offset; } ASSERT_NOT_REACHED(); return 0; } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. bool RenderGrid::needToStretchChildLogicalHeight(const RenderBox& child) const { if (child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).position() != ItemPositionStretch) return false; return isHorizontalWritingMode() && child.style().height().isAuto(); } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. LayoutUnit RenderGrid::marginLogicalHeightForChild(const RenderBox& child) const { return isHorizontalWritingMode() ? child.verticalMarginExtent() : child.horizontalMarginExtent(); } LayoutUnit RenderGrid::computeMarginLogicalSizeForChild(GridTrackSizingDirection direction, const RenderBox& child) const { if (!child.style().hasMargin()) return 0; LayoutUnit marginStart; LayoutUnit marginEnd; if (direction == ForColumns) child.computeInlineDirectionMargins(*this, child.containingBlockLogicalWidthForContentInRegion(nullptr), child.logicalWidth(), marginStart, marginEnd); else child.computeBlockDirectionMargins(*this, marginStart, marginEnd); return marginStart + marginEnd; } LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const { // Because we want to avoid multiple layouts, stretching logic might be performed before // children are laid out, so we can't use the child cached values. Hence, we need to // compute margins in order to determine the available height before stretching. return gridAreaBreadthForChild - (child.needsLayout() ? computeMarginLogicalSizeForChild(ForRows, child) : marginLogicalHeightForChild(child)); } StyleSelfAlignmentData RenderGrid::alignSelfForChild(const RenderBox& child) const { return child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior); } StyleSelfAlignmentData RenderGrid::justifySelfForChild(const RenderBox& child) const { return child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior); } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child) { ASSERT(child.overrideContainingBlockContentLogicalHeight()); // We clear height override values because we will decide now whether it's allowed or // not, evaluating the conditions which might have changed since the old values were set. child.clearOverrideLogicalContentHeight(); GridTrackSizingDirection childBlockDirection = flowAwareDirectionForChild(child, ForRows); bool blockFlowIsColumnAxis = childBlockDirection == ForRows; bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child); if (allowedToStretchChildBlockSize) { LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(overrideContainingBlockContentSizeForChild(child, childBlockDirection).value(), child); LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, LayoutUnit(-1)); child.setOverrideLogicalContentHeight(desiredLogicalHeight - child.borderAndPaddingLogicalHeight()); if (desiredLogicalHeight != child.logicalHeight()) { // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905. child.setLogicalHeight(LayoutUnit()); child.setNeedsLayout(); } } } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const { if (isHorizontalWritingMode()) return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const { if (isHorizontalWritingMode()) return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child) { ASSERT(!child.isOutOfFlowPositioned()); LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalWidth().value() - child.logicalWidth() - child.marginLogicalWidth(); if (availableAlignmentSpace <= 0) return; const RenderStyle& parentStyle = style(); Length marginStart = child.style().marginStartUsing(&parentStyle); Length marginEnd = child.style().marginEndUsing(&parentStyle); if (marginStart.isAuto() && marginEnd.isAuto()) { child.setMarginStart(availableAlignmentSpace / 2, &parentStyle); child.setMarginEnd(availableAlignmentSpace / 2, &parentStyle); } else if (marginStart.isAuto()) { child.setMarginStart(availableAlignmentSpace, &parentStyle); } else if (marginEnd.isAuto()) { child.setMarginEnd(availableAlignmentSpace, &parentStyle); } } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child) { ASSERT(!child.isOutOfFlowPositioned()); LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalHeight().value() - child.logicalHeight() - child.marginLogicalHeight(); if (availableAlignmentSpace <= 0) return; const RenderStyle& parentStyle = style(); Length marginBefore = child.style().marginBeforeUsing(&parentStyle); Length marginAfter = child.style().marginAfterUsing(&parentStyle); if (marginBefore.isAuto() && marginAfter.isAuto()) { child.setMarginBefore(availableAlignmentSpace / 2, &parentStyle); child.setMarginAfter(availableAlignmentSpace / 2, &parentStyle); } else if (marginBefore.isAuto()) { child.setMarginBefore(availableAlignmentSpace, &parentStyle); } else if (marginAfter.isAuto()) { child.setMarginAfter(availableAlignmentSpace, &parentStyle); } } // FIXME: This logic could be refactored somehow and defined in RenderBox. static int synthesizedBaselineFromBorderBox(const RenderBox& box, LineDirectionMode direction) { return (direction == HorizontalLine ? box.size().height() : box.size().width()).toInt(); } bool RenderGrid::isInlineBaselineAlignedChild(const RenderBox& child) const { return alignSelfForChild(child).position() == ItemPositionBaseline && !isOrthogonalChild(child) && !hasAutoMarginsInColumnAxis(child); } // FIXME: This logic is shared by RenderFlexibleBox, so it might be refactored somehow. int RenderGrid::baselinePosition(FontBaseline, bool, LineDirectionMode direction, LinePositionMode mode) const { #if ENABLE(ASSERT) ASSERT(mode == PositionOnContainingLine); #else UNUSED_PARAM(mode); #endif int baseline = firstLineBaseline().value_or(synthesizedBaselineFromBorderBox(*this, direction)); int marginSize = direction == HorizontalLine ? verticalMarginExtent() : horizontalMarginExtent(); return baseline + marginSize; } std::optional RenderGrid::firstLineBaseline() const { if (isWritingModeRoot() || !m_grid.hasGridItems()) return std::nullopt; const RenderBox* baselineChild = nullptr; // Finding the first grid item in grid order. unsigned numColumns = m_grid.numTracks(ForColumns); for (size_t column = 0; column < numColumns; column++) { for (const auto* child : m_grid.cell(0, column)) { // If an item participates in baseline alignment, we select such item. if (isInlineBaselineAlignedChild(*child)) { // FIXME: self-baseline and content-baseline alignment not implemented yet. baselineChild = child; break; } if (!baselineChild) baselineChild = child; } } if (!baselineChild) return std::nullopt; auto baseline = isOrthogonalChild(*baselineChild) ? std::nullopt : baselineChild->firstLineBaseline(); // We take border-box's bottom if no valid baseline. if (!baseline) { // FIXME: We should pass |direction| into firstLineBaseline and stop bailing out if we're a writing // mode root. This would also fix some cases where the grid is orthogonal to its container. LineDirectionMode direction = isHorizontalWritingMode() ? HorizontalLine : VerticalLine; return synthesizedBaselineFromBorderBox(*baselineChild, direction) + baselineChild->logicalTop().toInt(); } return baseline.value() + baselineChild->logicalTop().toInt(); } std::optional RenderGrid::inlineBlockBaseline(LineDirectionMode direction) const { if (std::optional baseline = firstLineBaseline()) return baseline; int marginAscent = direction == HorizontalLine ? marginTop() : marginRight(); return synthesizedBaselineFromBorderBox(*this, direction) + marginAscent; } GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const { bool hasSameWritingMode = child.style().writingMode() == style().writingMode(); bool childIsLTR = child.style().isLeftToRightDirection(); switch (child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).position()) { case ItemPositionSelfStart: // FIXME: Should we implement this logic in a generic utility function ? // Aligns the alignment subject to be flush with the edge of the alignment container // corresponding to the alignment subject's 'start' side in the column axis. if (isOrthogonalChild(child)) { // If orthogonal writing-modes, self-start will be based on the child's inline-axis // direction (inline-start), because it's the one parallel to the column axis. if (style().isFlippedBlocksWritingMode()) return childIsLTR ? GridAxisEnd : GridAxisStart; return childIsLTR ? GridAxisStart : GridAxisEnd; } // self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. return hasSameWritingMode ? GridAxisStart : GridAxisEnd; case ItemPositionSelfEnd: // FIXME: Should we implement this logic in a generic utility function ? // Aligns the alignment subject to be flush with the edge of the alignment container // corresponding to the alignment subject's 'end' side in the column axis. if (isOrthogonalChild(child)) { // If orthogonal writing-modes, self-end will be based on the child's inline-axis // direction, (inline-end) because it's the one parallel to the column axis. if (style().isFlippedBlocksWritingMode()) return childIsLTR ? GridAxisStart : GridAxisEnd; return childIsLTR ? GridAxisEnd : GridAxisStart; } // self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. return hasSameWritingMode ? GridAxisEnd : GridAxisStart; case ItemPositionLeft: // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. return GridAxisStart; case ItemPositionRight: // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. return GridAxisStart; case ItemPositionCenter: return GridAxisCenter; case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'. // Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis. case ItemPositionStart: return GridAxisStart; case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. // Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis. case ItemPositionEnd: return GridAxisEnd; case ItemPositionStretch: return GridAxisStart; case ItemPositionBaseline: case ItemPositionLastBaseline: // FIXME: Implement the previous values. For now, we always 'start' align the child. return GridAxisStart; case ItemPositionAuto: case ItemPositionNormal: break; } ASSERT_NOT_REACHED(); return GridAxisStart; } GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const { bool hasSameDirection = child.style().direction() == style().direction(); bool gridIsLTR = style().isLeftToRightDirection(); switch (child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior).position()) { case ItemPositionSelfStart: // FIXME: Should we implement this logic in a generic utility function ? // Aligns the alignment subject to be flush with the edge of the alignment container // corresponding to the alignment subject's 'start' side in the row axis. if (isOrthogonalChild(child)) { // If orthogonal writing-modes, self-start will be based on the child's block-axis // direction, because it's the one parallel to the row axis. if (child.style().isFlippedBlocksWritingMode()) return gridIsLTR ? GridAxisEnd : GridAxisStart; return gridIsLTR ? GridAxisStart : GridAxisEnd; } // self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. return hasSameDirection ? GridAxisStart : GridAxisEnd; case ItemPositionSelfEnd: // FIXME: Should we implement this logic in a generic utility function ? // Aligns the alignment subject to be flush with the edge of the alignment container // corresponding to the alignment subject's 'end' side in the row axis. if (isOrthogonalChild(child)) { // If orthogonal writing-modes, self-end will be based on the child's block-axis // direction, because it's the one parallel to the row axis. if (child.style().isFlippedBlocksWritingMode()) return gridIsLTR ? GridAxisStart : GridAxisEnd; return gridIsLTR ? GridAxisEnd : GridAxisStart; } // self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. return hasSameDirection ? GridAxisEnd : GridAxisStart; case ItemPositionLeft: // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. // We want the physical 'left' side, so we have to take account, container's inline-flow direction. return gridIsLTR ? GridAxisStart : GridAxisEnd; case ItemPositionRight: // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. // We want the physical 'right' side, so we have to take account, container's inline-flow direction. return gridIsLTR ? GridAxisEnd : GridAxisStart; case ItemPositionCenter: return GridAxisCenter; case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'. // Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis. case ItemPositionStart: return GridAxisStart; case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. // Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis. case ItemPositionEnd: return GridAxisEnd; case ItemPositionStretch: return GridAxisStart; case ItemPositionBaseline: case ItemPositionLastBaseline: // FIXME: Implement the previous values. For now, we always 'start' align the child. return GridAxisStart; case ItemPositionAuto: case ItemPositionNormal: break; } ASSERT_NOT_REACHED(); return GridAxisStart; } LayoutUnit RenderGrid::columnAxisOffsetForChild(const RenderBox& child) const { const GridSpan& rowsSpan = m_grid.gridItemSpan(child, ForRows); unsigned childStartLine = rowsSpan.startLine(); LayoutUnit startOfRow = m_rowPositions[childStartLine]; LayoutUnit startPosition = startOfRow + marginBeforeForChild(child); if (hasAutoMarginsInColumnAxis(child)) return startPosition; GridAxisPosition axisPosition = columnAxisPositionForChild(child); switch (axisPosition) { case GridAxisStart: return startPosition; case GridAxisEnd: case GridAxisCenter: { unsigned childEndLine = rowsSpan.endLine(); LayoutUnit endOfRow = m_rowPositions[childEndLine]; // m_rowPositions include distribution offset (because of content alignment) and gutters // so we need to subtract them to get the actual end position for a given row // (this does not have to be done for the last track as there are no more m_rowPositions after it). if (childEndLine < m_rowPositions.size() - 1) endOfRow -= gridGapForDirection(ForRows) + m_offsetBetweenRows; LayoutUnit columnAxisChildSize = isOrthogonalChild(child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); auto overflow = child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).overflow(); LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize); return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); } } ASSERT_NOT_REACHED(); return 0; } LayoutUnit RenderGrid::rowAxisOffsetForChild(const RenderBox& child) const { const GridSpan& columnsSpan = m_grid.gridItemSpan(child, ForColumns); unsigned childStartLine = columnsSpan.startLine(); LayoutUnit startOfColumn = m_columnPositions[childStartLine]; LayoutUnit startPosition = startOfColumn + marginStartForChild(child); if (hasAutoMarginsInRowAxis(child)) return startPosition; GridAxisPosition axisPosition = rowAxisPositionForChild(child); switch (axisPosition) { case GridAxisStart: return startPosition; case GridAxisEnd: case GridAxisCenter: { unsigned childEndLine = columnsSpan.endLine(); LayoutUnit endOfColumn = m_columnPositions[childEndLine]; // m_columnPositions include distribution offset (because of content alignment) and gutters // so we need to subtract them to get the actual end position for a given column // (this does not have to be done for the last track as there are no more m_columnPositions after it). if (childEndLine < m_columnPositions.size() - 1) endOfColumn -= gridGapForDirection(ForColumns) + m_offsetBetweenColumns; LayoutUnit rowAxisChildSize = isOrthogonalChild(child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth(); auto overflow = child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior).overflow(); LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize); return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); } } ASSERT_NOT_REACHED(); return 0; } ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution) { switch (distribution) { case ContentDistributionSpaceBetween: return ContentPositionStart; case ContentDistributionSpaceAround: return ContentPositionCenter; case ContentDistributionSpaceEvenly: return ContentPositionCenter; case ContentDistributionStretch: return ContentPositionStart; case ContentDistributionDefault: return ContentPositionNormal; } ASSERT_NOT_REACHED(); return ContentPositionNormal; } static ContentAlignmentData contentDistributionOffset(const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistributionType distribution, unsigned numberOfGridTracks) { if (distribution != ContentDistributionDefault && fallbackPosition == ContentPositionNormal) fallbackPosition = resolveContentDistributionFallback(distribution); if (availableFreeSpace <= 0) return ContentAlignmentData::defaultOffsets(); LayoutUnit distributionOffset; switch (distribution) { case ContentDistributionSpaceBetween: if (numberOfGridTracks < 2) return ContentAlignmentData::defaultOffsets(); return {0, availableFreeSpace / (numberOfGridTracks - 1)}; case ContentDistributionSpaceAround: if (numberOfGridTracks < 1) return ContentAlignmentData::defaultOffsets(); distributionOffset = availableFreeSpace / numberOfGridTracks; return {distributionOffset / 2, distributionOffset}; case ContentDistributionSpaceEvenly: distributionOffset = availableFreeSpace / (numberOfGridTracks + 1); return {distributionOffset, distributionOffset}; case ContentDistributionStretch: case ContentDistributionDefault: return ContentAlignmentData::defaultOffsets(); } ASSERT_NOT_REACHED(); return ContentAlignmentData::defaultOffsets(); } ContentAlignmentData RenderGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) const { bool isRowAxis = direction == ForColumns; auto position = isRowAxis ? style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContentPosition(contentAlignmentNormalBehaviorGrid()); auto distribution = isRowAxis ? style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContentDistribution(contentAlignmentNormalBehaviorGrid()); // If value can't be applied, 'position' will become the associated // fallback value. auto contentAlignment = contentDistributionOffset(availableFreeSpace, position, distribution, numberOfGridTracks); if (contentAlignment.isValid()) return contentAlignment; auto overflow = (isRowAxis ? style().justifyContent() : style().alignContent()).overflow(); if (availableFreeSpace <= 0 && overflow == OverflowAlignmentSafe) return {0, 0}; switch (position) { case ContentPositionLeft: // The align-content's axis is always orthogonal to the inline-axis. return {0, 0}; case ContentPositionRight: if (isRowAxis) return {availableFreeSpace, 0}; // The align-content's axis is always orthogonal to the inline-axis. return {0, 0}; case ContentPositionCenter: return {availableFreeSpace / 2, 0}; case ContentPositionFlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'end'. case ContentPositionEnd: if (isRowAxis) return {style().isLeftToRightDirection() ? availableFreeSpace : LayoutUnit(), LayoutUnit()}; return {availableFreeSpace, 0}; case ContentPositionFlexStart: // Only used in flex layout, for other layout, it's equivalent to 'start'. case ContentPositionStart: if (isRowAxis) return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()}; return {0, 0}; case ContentPositionBaseline: case ContentPositionLastBaseline: // FIXME: Implement the previous values. For now, we always 'start' align. // http://webkit.org/b/145566 if (isRowAxis) return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()}; return {0, 0}; case ContentPositionNormal: break; } ASSERT_NOT_REACHED(); return {0, 0}; } LayoutUnit RenderGrid::translateRTLCoordinate(LayoutUnit coordinate) const { ASSERT(!style().isLeftToRightDirection()); LayoutUnit alignmentOffset = m_columnPositions[0]; LayoutUnit rightGridEdgePosition = m_columnPositions[m_columnPositions.size() - 1]; return rightGridEdgePosition + alignmentOffset - coordinate; } LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child) const { LayoutUnit columnAxisOffset = columnAxisOffsetForChild(child); LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child); // We stored m_columnPositions's data ignoring the direction, hence we might need now // to translate positions from RTL to LTR, as it's more convenient for painting. if (!style().isLeftToRightDirection()) rowAxisOffset = translateRTLCoordinate(rowAxisOffset) - (isOrthogonalChild(child) ? child.logicalHeight() : child.logicalWidth()); // "In the positioning phase [...] calculations are performed according to the writing mode // of the containing block of the box establishing the orthogonal flow." However, the // resulting LayoutPoint will be used in 'setLogicalPosition' in order to set the child's // logical position, which will only take into account the child's writing-mode. LayoutPoint childLocation(rowAxisOffset, columnAxisOffset); return isOrthogonalChild(child) ? childLocation.transposedPoint() : childLocation; } unsigned RenderGrid::numTracks(GridTrackSizingDirection direction, const Grid& grid) const { // Due to limitations in our internal representation, we cannot know the number of columns from // m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need // to get it from the style. Note that we know for sure that there are't any implicit tracks, // because not having rows implies that there are no "normal" children (out-of-flow children are // not stored in m_grid). ASSERT(!grid.needsItemsPlacement()); if (direction == ForRows) return grid.numTracks(ForRows); // FIXME: This still requires knowledge about m_grid internals. return grid.numTracks(ForRows) ? grid.numTracks(ForColumns) : GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns)); } void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect) { ASSERT(!m_grid.needsItemsPlacement()); for (RenderBox* child = m_grid.orderIterator().first(); child; child = m_grid.orderIterator().next()) paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock); } const char* RenderGrid::renderName() const { if (isFloating()) return "RenderGrid (floating)"; if (isOutOfFlowPositioned()) return "RenderGrid (positioned)"; if (isAnonymous()) return "RenderGrid (generated)"; if (isRelPositioned()) return "RenderGrid (relative positioned)"; return "RenderGrid"; } } // namespace WebCore