summaryrefslogtreecommitdiff
path: root/TAO/orbsvcs/orbsvcs/Sched/Strategy_Scheduler.cpp
blob: 9421340692ff933ca02db9e8436a837e5a78e59c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
//=============================================================================
/**
 *  @file    Strategy_Scheduler.cpp
 *
 *  @author Chris Gill
 */
//=============================================================================


#include "orbsvcs/Log_Macros.h"
#include "orbsvcs/Sched/Strategy_Scheduler.h"
#include "ace/Sched_Params.h"

//////////////////////////////////////////////
// Helper function type definition for sort //
//////////////////////////////////////////////

// This is awkward, but it makes MSVC++ happy.
extern "C"
{
typedef int (*COMP_FUNC) (const void*, const void*);
}

///////////////////////////////////////////////////
// class ACE_Strategy_Scheduler member functions //
///////////////////////////////////////////////////

// = Constructor.

TAO_BEGIN_VERSIONED_NAMESPACE_DECL

ACE_Strategy_Scheduler::ACE_Strategy_Scheduler (ACE_Scheduler_Strategy &strategy)
  : ACE_DynScheduler (),
    strategy_ (strategy)
{
}


// = Virtual destructor.

ACE_Strategy_Scheduler::~ACE_Strategy_Scheduler ()
{
}


// = Sets up the schedule in the order generated
//   by the strategy's comparison operators.

ACE_DynScheduler::status_t
ACE_Strategy_Scheduler::sort_dispatches (Dispatch_Entry **dispatches,
                                         u_int count)
{
  // Sort the entries in order of priority and subpriority.
  strategy_.sort (dispatches, count);

  return ACE_DynScheduler::SUCCEEDED;
}

// = Assigns priorities and sub-priorities to the sorted schedule,
//   according to the strategy's priority comparison operator.

ACE_DynScheduler::status_t
ACE_Strategy_Scheduler::assign_priorities (
  Dispatch_Entry **dispatches,
  u_int count,
  ACE_Unbounded_Set<RtecScheduler::Scheduling_Anomaly *> &anomaly_set)
{
  // Start with happy status.
  ACE_DynScheduler::status_t status = SUCCEEDED;

  RtecScheduler::Scheduling_Anomaly * anomaly = 0;

  // Start with the highest OS priority in the given range and work downward:
  // if we run out of values to assign, return an error.
  int current_OS_priority = maximum_priority_;

  // Start scheduler priority at 0 (highest priority queue number)
  // NOTE: 0 is highest for priority, lowest for dynamic and static subpriority.
  Preemption_Priority current_scheduler_priority = 0;

  // Value the OS and scheduler priorities in 0th dispatch entry.
  dispatches[0]->OS_priority (current_OS_priority);
  dispatches[0]->priority (current_scheduler_priority);

  // Store the dispatch configuration for the highest priority level.
  Config_Info *config_ptr;
  ACE_NEW_RETURN (config_ptr, Config_Info, ST_VIRTUAL_MEMORY_EXHAUSTED);
  config_ptr->preemption_priority = current_scheduler_priority;
  config_ptr->thread_priority = current_OS_priority;
  config_ptr->dispatching_type = strategy_.dispatch_type (*(dispatches[0]));
  if (config_info_entries_->insert (config_ptr) < 0)
  {
    return ST_VIRTUAL_MEMORY_EXHAUSTED;
  }

  // Traverse ordered dispatch entry array, assigning priority
  // (array is sorted from highest to lowest priority).
  for (u_int i = 1; i < count; ++i)
  {
    switch (strategy_.priority_comp (*(dispatches[i-1]),
                                     *(dispatches[i])))
    {
      case -1:  // The current entry is at lower priority than the previous.
                {
        // Decrease priority by incrementing the current scheduling priority
        // number: 0 is the highest priority number.
        ++current_scheduler_priority;

        // Check for OS priority level boundaries: because OS priority values
        // can run in either increasing or decreasing order, there is no easy,
        // portable way to check other than exact comparison to the bounds
        // that were given in init () or that came from the platform itself.
        if ((current_OS_priority == minimum_priority_) ||
            (current_OS_priority == ACE_Sched_Params::previous_priority (
                                      ACE_SCHED_FIFO,
                                      current_OS_priority,
                                      ACE_SCOPE_PROCESS)))
        {
          // If we have run out of priority levels to assign, indicate
          // this in the return status, unless a more severe problem is
          // already reflected there.  Log an anomaly but keep right on
          // assigning the minimum OS priority in the range to the remaining
          // tasks.
          status = (status == SUCCEEDED)
                   ? ST_INSUFFICIENT_THREAD_PRIORITY_LEVELS
                   : status;

          // Log the anomaly.
          anomaly =
            create_anomaly (ST_INSUFFICIENT_THREAD_PRIORITY_LEVELS);
          if (anomaly)
            {
              anomaly_set.insert (anomaly);
            }
          else
            {
              return ST_VIRTUAL_MEMORY_EXHAUSTED;
            }
        }
        else
        {
          // We're still in range, so decrement the current OS priority level.
          current_OS_priority =
            ACE_Sched_Params::previous_priority (ACE_SCHED_FIFO,
                                                 current_OS_priority,
                                                 ACE_SCOPE_PROCESS);
        }

        // Store the dispatch configuration for the new priority level.
        ACE_NEW_RETURN(config_ptr, Config_Info, ST_VIRTUAL_MEMORY_EXHAUSTED);
        config_ptr->preemption_priority = current_scheduler_priority;
        config_ptr->thread_priority = current_OS_priority;
        config_ptr->dispatching_type = strategy_.dispatch_type (*(dispatches[i]));
        if (config_info_entries_->insert (config_ptr) < 0)
        {
          return ST_VIRTUAL_MEMORY_EXHAUSTED;
        }

                break;
                }
      case 0:  // Still at the same priority level.

        break;

      default: // Should never reach here: something *bad* has happened.

        ORBSVCS_ERROR ((
          LM_ERROR,
          "Priority assignment failure: tasks"
          " \"%s\" and \"%s\" are out of order.\n",
          dispatches [i-1]->task_entry ().rt_info ()->entry_point.in (),
          dispatches [i]->task_entry ().rt_info ()->entry_point.in ()));

          status = ACE_DynScheduler::ST_INVALID_PRIORITY_ORDERING;

          // Log the anomaly.
          anomaly =
            create_anomaly (ST_INVALID_PRIORITY_ORDERING);
          if (anomaly)
            {
              anomaly_set.insert (anomaly);
            }
          else
            {
              return ST_VIRTUAL_MEMORY_EXHAUSTED;
            }
    }

    // Set OS priority of the current dispatch entry.
    dispatches[i]->OS_priority (current_OS_priority);

    // Set scheduler priority of the current dispatch entry.
    dispatches[i]->priority (current_scheduler_priority);
  }

  return status;
}


// = Assigns dynamic and static sub-priorities to the sorted dispatch
//   schedule, according to the strategy's subpriority comparisons.

ACE_DynScheduler::status_t
ACE_Strategy_Scheduler::assign_subpriorities (
  Dispatch_Entry **dispatches,
  u_int count,
  ACE_Unbounded_Set<RtecScheduler::Scheduling_Anomaly *> &anomaly_set)
{
  ACE_DynScheduler::status_t status = ACE_DynScheduler::SUCCEEDED;
  RtecScheduler::Scheduling_Anomaly * anomaly = 0;

  // Start subpriority levels and element counts at 1, set level values in
  // the first entry, increment the static subpriority level.
  Sub_Priority dynamic_subpriority_level = 0;
  Sub_Priority static_subpriority_level = 0;
  u_int dynamic_subpriority_elements = 1;
  u_int static_subpriority_elements = 1;
  dispatches [0]->dynamic_subpriority (dynamic_subpriority_level);
  dispatches [0]->static_subpriority (static_subpriority_level);

  // Advance the static subpriority level.
  static_subpriority_level++;

  u_int i,j;
  // Traverse ordered dispatch entry array, assigning priority
  // (array is sorted from highest to lowest priority).
  for (i = 1; i < count; ++i)
  {
    switch (strategy_.priority_comp (*(dispatches [i-1]),
                                     *(dispatches [i])))
    {
      case -1:  // The current entry is at lower priority than the previous.
      {
        // Fill in the high to low dynamic subpriority values by subtracting
        // the previously assigned subpriority value of each of element in the
        // current priority level from the value of last subpriority level.
        for (j = 1; j <= dynamic_subpriority_elements; ++j)
        {
          dispatches [i - j]->
                          dynamic_subpriority (dynamic_subpriority_level -
                                   dispatches [i - j]-> dynamic_subpriority ());
        }
        for (j = 1; j <= static_subpriority_elements; ++j)
        {
          dispatches [i - j]->
                          static_subpriority (static_subpriority_level -
                                  dispatches [i - j]-> static_subpriority () - 1);
        }

        // Reset the subpriority counters, set these values in the
        // current entry, and increment the static subpriority counter.
        dynamic_subpriority_elements = 1;
        static_subpriority_elements = 1;
        dynamic_subpriority_level = 0;
        static_subpriority_level = 0;
        dispatches [i]->dynamic_subpriority (dynamic_subpriority_level);
        dispatches [i]->static_subpriority (static_subpriority_level);

        // Advance the static subpriority level.
        static_subpriority_level++;

        break;
      }

      case 0:  // Still at the same priority level.

        // Compare the dynamic subpriorities.
        switch (strategy_.dynamic_subpriority_comp (*(dispatches[i-1]),
                                                    *(dispatches[i])))
        {
          case -1:  // The current entry is at lower dynamic subpriority.

            // Increment the dynamic subpriority level.
            ++dynamic_subpriority_level;

            // Update the static subpriority as well: this avoids problems
            // with non-determinism if due to run-time conditions, two
            // dispatches line up with identical dynamic subpriority that
            // were considered different with respect to the critical instant.
            dispatches [i]->static_subpriority (static_subpriority_level);
            static_subpriority_level++;
            static_subpriority_elements++;

            break;

          case 0:  // Still at the same dynamic subpriority level.
          {
            switch (strategy_.static_subpriority_comp (*(dispatches[i-1]),
                                                       *(dispatches[i])))
            {
              case -1:
              case  0:

                // Assign and then increment the static subpriority: even if
                // still at the same dynamic or static subpriority level as
                // far as the scheduling strategy is concerned, assign a new
                // one anyway, to give a completely deterministic schedule
                // even if the dynamic subpriorities happen to align due to
                // run-time variation.
                dispatches [i]->static_subpriority (static_subpriority_level);
                static_subpriority_level++;
                static_subpriority_elements++;
                break;

              default: // We should never reach here: something *bad* has happened.

                ORBSVCS_ERROR ((
                  LM_ERROR,
                  "Static subpriority assignment failure: tasks"
                  " \"%s\" and \"%s\" are out of order.\n",
                  dispatches [i-1]->task_entry ().rt_info ()->entry_point.in (),
                  dispatches [i]->task_entry ().rt_info ()->entry_point.in ()));

                  status = ST_INVALID_PRIORITY_ORDERING;

                  // Log the anomaly.
                  anomaly =
                    create_anomaly (ST_INVALID_PRIORITY_ORDERING);
                  if (anomaly)
                    {
                      anomaly_set.insert (anomaly);
                    }
                  else
                    {
                      return ST_VIRTUAL_MEMORY_EXHAUSTED;
                    }
            }
            break;
          }

          default: // We should never reach here: something *bad* has happened.

            ORBSVCS_ERROR ((
              LM_ERROR,
              "Dynamic subpriority assignment failure: tasks"
              " \"%s\" and \"%s\" are out of order.\n",
              dispatches [i-1]->task_entry ().rt_info ()->entry_point.in (),
              dispatches [i]->task_entry ().rt_info ()->entry_point.in ()));

              status = ACE_DynScheduler::ST_INVALID_PRIORITY_ORDERING;

              // Log the anomaly.
              anomaly =
                create_anomaly (ST_INVALID_PRIORITY_ORDERING);
              if (anomaly)
                {
                  anomaly_set.insert (anomaly);
                }
              else
                {
                  return ST_VIRTUAL_MEMORY_EXHAUSTED;
                }
        }

        dispatches [i]->dynamic_subpriority (dynamic_subpriority_level);
        dynamic_subpriority_elements++;

        break;

      default: // We should never reach here: something *bad* has happened.

        ORBSVCS_ERROR ((
          LM_ERROR,
          "Priority assignment failure: tasks"
          " \"%s\" and \"%s\" are out of order.\n",
          dispatches [i-1]->task_entry ().rt_info ()->entry_point.in (),
          dispatches [i]->task_entry ().rt_info ()->entry_point.in ()));

        status = ACE_DynScheduler::ST_INVALID_PRIORITY_ORDERING;

        // Log the anomaly.
        anomaly =
          create_anomaly (ST_INVALID_PRIORITY_ORDERING);
        if (anomaly)
          {
            anomaly_set.insert (anomaly);
          }
        else
          {
            return ST_VIRTUAL_MEMORY_EXHAUSTED;
          }
    }
  }

  // Fill in the high to low subpriority values for the last priority
  // level by subtracting the previously assigned subpriorities from
  // the total number of subpriorities.
  for (j = 1; j <= dynamic_subpriority_elements; ++j)
  {
    dispatches [i - j]->
      dynamic_subpriority (dynamic_subpriority_level -
                           dispatches [i - j]->dynamic_subpriority ());
  }
  for (j = 1; j <= static_subpriority_elements; ++j)
  {
    dispatches [i - j]->
      static_subpriority (static_subpriority_level -
                          dispatches [i - j]->static_subpriority () - 1);
  }

  return status;
}

// = Determine the minimum critical priority number.

ACE_DynScheduler::Preemption_Priority
ACE_Strategy_Scheduler::minimum_critical_priority ()
{
  return strategy_.minimum_critical_priority ();
}


// = Schedules a dispatch entry into the timeline being created.

ACE_DynScheduler::status_t
ACE_Strategy_Scheduler::schedule_timeline_entry (
  Dispatch_Entry &dispatch_entry,
  ACE_Unbounded_Queue <Dispatch_Entry *> &reschedule_queue)
{
  status_t status = SUCCEEDED;

  // Timeline entries cover the execution time of the dispatch.
  Time remaining_time =
    dispatch_entry.task_entry().rt_info ()->worst_case_execution_time;

  // Initialize last stop time to arrival time of the dispatch.
  Time last_stop = dispatch_entry.arrival ();

  TimeLine_Entry *last_entry = 0;
  TimeLine_Entry *current_entry = 0;
  ACE_Ordered_MultiSet_Iterator <TimeLine_Entry_Link> iter (*timeline_);
  for (iter.first (); (remaining_time > 0U) && (iter.done () == 0);
       iter.advance ())
  {
    TimeLine_Entry_Link *link;
    if ((iter.next (link) == 0) || (! link))
    {
      return ST_BAD_INTERNAL_POINTER;
    }

    // For each entry already in the timeline that is the first one for a
    // dispatch, and has lower dynamic subpriority and does not have greater
    // static priority, and starts in the period in which the new entry would
    // execute, advance the iterator to the next timeline entry
    // having a different dispatch entry (if there is such), add its dispatch
    // entry to the reschedule set, remove all TimeLine_Entry_Links that
    // correspond to that dispatch entry, and delete all its TimeLine_Entry
    // objects as well.  NOTE: 0 is highest priority, 1 next, etc.
    while ((iter.done () == 0) &&
           (link->entry ().start() < last_stop + remaining_time) &&
           (link->entry ().start() >= last_stop) &&
           (link->entry ().prev () == 0) &&
           (link->entry ().dispatch_entry().priority () >=
            dispatch_entry.priority ()) &&
           (strategy_.dynamic_subpriority (dispatch_entry, link->entry ().start ()) >
            strategy_.dynamic_subpriority (link->entry ().dispatch_entry (),
                                           link->entry ().start ())))
    {
      // Point to the dispatch entry whose timeline entries will be removed and
      // rescheduled, and to the timeline entry heading the bilinked list of
      // timeline entries to be removed.
      Dispatch_Entry *removed_dispatch_entry
        = &(link->entry ().dispatch_entry());
      TimeLine_Entry *remove_entry = & (link->entry ());

      // Put the dispatch entry into the set of entries that will be
      // rescheduled at the end of this method (tail recursively).
      reschedule_queue.enqueue_tail (removed_dispatch_entry);

      // Advance the iterator to the next timeline entry (if there is one)
      // that is not for the dispatch entry being removed.
      while (iter.done () == 0)
      {
        // Point to the current link.
        if ((iter.next (link) == 0) || (! link))
        {
          return ST_BAD_INTERNAL_POINTER;
        }

        // Advance until a different dispatch entry is found,
        // or we run off the end of the timeline.
        if (&(link->entry ().dispatch_entry ()) ==
            removed_dispatch_entry)
        {
          iter.advance ();
        }
        else
        {
          break;
        }
      }

      // Remove entries corresponding to the rescheduled
      // dispatch from the timeline and destroy them.
      TimeLine_Entry *next_remove_entry = 0;
      while (remove_entry)
      {
        next_remove_entry = remove_entry->next ();

        timeline_->remove (TimeLine_Entry_Link (*remove_entry));
        delete remove_entry;

        remove_entry = next_remove_entry;
      }
    }

    // Exit the outer loop if there are no more entries in the timeline.
    if (iter.done () != 0)
    {
      break;
    }

    // If there's room, schedule a new timeline entry for the dispatch.
    if (link->entry ().start() > last_stop)
    {
      ACE_NEW_RETURN (
        current_entry,
        TimeLine_Entry (
          dispatch_entry,
          last_stop,
          (((remaining_time + last_stop) < link->entry ().start())
             ? (remaining_time + last_stop) : link->entry ().start()),
          dispatch_entry.arrival (),
          dispatch_entry.deadline (),
          (TimeLine_Entry *) 0, last_entry),
        ST_VIRTUAL_MEMORY_EXHAUSTED);

      // Patch up the pointers within the list of entries for this dispatch.
      if (last_entry)
      {
        last_entry->next (current_entry);
      }
      last_entry = current_entry;

      timeline_->insert(TimeLine_Entry_Link(*current_entry));

      // Update the remaining time and last stop values.
      remaining_time -= ((remaining_time < (link->entry ().start() - last_stop))
                          ? remaining_time : (link->entry ().start() - last_stop));
    }

    // Update the last stop time.
    if (last_stop < link->entry ().stop ())
    {
      last_stop = link->entry ().stop ();
    }
  }

  // If there is still dispatch time remaining, and we've
  // reached the end of the list, insert what's left.
  if (remaining_time > 0U)
  {
    ACE_NEW_RETURN (
      current_entry,
      TimeLine_Entry (
        dispatch_entry,
        last_stop,
        remaining_time + last_stop,
        dispatch_entry.arrival (),
        dispatch_entry.deadline (),
        0, last_entry),
      ST_VIRTUAL_MEMORY_EXHAUSTED);

    // Patch up the pointers within the list of entries for this dispatch.
    if (last_entry)
    {
      last_entry->next (current_entry);
    }

    timeline_->insert(TimeLine_Entry_Link(*current_entry));
  }

  return status;
}


////////////////////////////////////////////////////////////////////
// class template ACE_Strategy_Scheduler_Factory member functions //
////////////////////////////////////////////////////////////////////

// = Constructs and returns a scheduler strategized with
//   an instance of the the parameterized strategy type.

template <class STRATEGY> ACE_Strategy_Scheduler *
ACE_Strategy_Scheduler_Factory<STRATEGY>::create (RtecScheduler::Preemption_Priority_t minimum_critical_priority)
{
  ACE_Strategy_Scheduler *the_scheduler = 0;
  STRATEGY *the_strategy;

  ACE_NEW_RETURN(the_strategy, STRATEGY(minimum_critical_priority), 0);

  ACE_NEW_RETURN (the_scheduler, ACE_Strategy_Scheduler (*the_strategy), 0);

  return the_scheduler;
}


/////////////////////////////////////////////////////////////////
// abstract base class ACE_Scheduler_Strategy member functions //
/////////////////////////////////////////////////////////////////

// = Constructor.

ACE_Scheduler_Strategy::ACE_Scheduler_Strategy (
  ACE_DynScheduler::Preemption_Priority minimum_critical_priority)
  : minimum_critical_priority_ (minimum_critical_priority)
{
}

ACE_Scheduler_Strategy::~ACE_Scheduler_Strategy ()
{
}

// = Compares two dispatch entries using the specific priority, dynamic
//   subpriority, and static subpriority method definitions provided by
//   the derived strategy class to produce the strategy specific sort
//   ordering: returns -1 if the first Dispatch_Entry is greater in the order,
//   0 if they are equivalent, or 1 if the second Dispatch_Entry is greater in
//   the order.

int
ACE_Scheduler_Strategy::sort_comp
  (const Dispatch_Entry &first_entry,
   const Dispatch_Entry &second_entry)
{
  // Order first by the priority ordering.
  int result = priority_comp (first_entry, second_entry);

  // Within same priority, order by dynamic subpriority.
  if (result == 0)
  {
    result = dynamic_subpriority_comp (first_entry, second_entry);
  }

  // If same dynamic subpriority, order by static subpriority.
  if (result == 0)
  {
    result = static_subpriority_comp (first_entry, second_entry);
  }

  return result;
}

// = Provides a lowest level ordering based first on importance (descending),
//   and then on the dependency topological sort finishing time (ascending).

int
ACE_Scheduler_Strategy::static_subpriority_comp (
  const Dispatch_Entry &first_entry,
  const Dispatch_Entry &second_entry)
{
  // Order first by importance assigned to underlying RT_Info (descending).
  if (first_entry.task_entry ().rt_info ()->importance   >
      second_entry.task_entry ().rt_info ()->importance)
  {
    return -1;
  }
  else if (first_entry.task_entry ().rt_info ()->importance   <
           second_entry.task_entry ().rt_info ()->importance)
  {
    return 1;
  }
  else
  {
    // Order last by the topological sort finishing time (ascending).
    if (first_entry.task_entry ().finished ()   <
        second_entry.task_entry ().finished ())
    {
      return -1;
    }
    else if (first_entry.task_entry ().finished ()   >
             second_entry.task_entry ().finished ())
    {
      return 1;
    }
    else
    {
      return 0;
    }
  }
}


// = Base class supplies default behavior: returns 0
//   for minimum critical priority number.

ACE_DynScheduler::Preemption_Priority
ACE_Scheduler_Strategy::minimum_critical_priority ()
{
  return 0;
}


/////////////////////////////////////////////////////////////////////////
// class ACE_MUF_Scheduler_Strategy static data member initializations //
/////////////////////////////////////////////////////////////////////////

ACE_MUF_Scheduler_Strategy * ACE_MUF_Scheduler_Strategy::instance_ = 0;

///////////////////////////////////////////////////////
// class ACE_MUF_Scheduler_Strategy member functions //
///////////////////////////////////////////////////////

// = Returns an instance of the strategy.

ACE_MUF_Scheduler_Strategy *
ACE_MUF_Scheduler_Strategy::instance ()
{
  if (0 == ACE_MUF_Scheduler_Strategy::instance_)
  {
    ACE_NEW_RETURN (ACE_MUF_Scheduler_Strategy::instance_,
                    ACE_MUF_Scheduler_Strategy, 0);
  }

  return ACE_MUF_Scheduler_Strategy::instance_;
}

// = Compares two dispatch entries by maximum criticality: returns -1 if the
//   first Dispatch_Entry is greater in the order, 0 if they're equivalent, or
//   1 if the second Dispatch_Entry is greater in the order.

int
ACE_MUF_Scheduler_Strategy::priority_comp (const Dispatch_Entry &first_entry,
                                           const Dispatch_Entry &second_entry)
{
  // Order by criticality (descending).
  if (first_entry.task_entry ().rt_info ()->criticality   >
      second_entry.task_entry ().rt_info ()->criticality)
  {
    return -1;
  }
  else if (first_entry.task_entry ().rt_info ()->criticality   <
           second_entry.task_entry ().rt_info ()->criticality)
  {
    return 1;
  }
  else
  {
    return 0;  // Same priority level.
  }
}


// = Sorts the dispatch entry pointer array in descending urgency order.

void
ACE_MUF_Scheduler_Strategy::sort (Dispatch_Entry **dispatch_entries, u_int size)
{
  ACE_OS::qsort ((void *) dispatch_entries,
                 size,
                 sizeof (Dispatch_Entry *),
                 (COMP_FUNC) ACE_MUF_Scheduler_Strategy::sort_function);
}


// = Default constructor.

ACE_MUF_Scheduler_Strategy::ACE_MUF_Scheduler_Strategy (
  ACE_DynScheduler::Preemption_Priority minimum_critical_priority)
  :ACE_Scheduler_Strategy (minimum_critical_priority)
{
}


// = Virtual destructor.

ACE_MUF_Scheduler_Strategy::~ACE_MUF_Scheduler_Strategy ()
{
}


// = Returns a dynamic subpriority value for the given entry and the
//   current time: if the operation has non-negative laxity, then the
//   value is positive, and a lower laxity gives a higher dynamic
//   subpriority; if the operation has negative laxity, the value
//   is the (negative) laxity value.

long
ACE_MUF_Scheduler_Strategy::dynamic_subpriority (Dispatch_Entry &entry,
                                                 RtecScheduler::Time current_time)
{
  long laxity =
    ACE_U64_TO_U32 (entry.deadline () - current_time -
      entry.task_entry ().rt_info ()->worst_case_execution_time);

  return (laxity > 0) ? LONG_MAX - laxity : laxity;
}


// = Orders two dispatch entries by ascending laxity: returns -1 if the
// first Dispatch_Entry is greater in the order, 0 if they're equivalent,
// 1 if the second Dispatch_Entry is greater in the order.

int
ACE_MUF_Scheduler_Strategy::dynamic_subpriority_comp
  (const Dispatch_Entry &first_entry,
   const Dispatch_Entry &second_entry)
{
  // Order by descending dynamic priority according to ascending laxity.
  u_long laxity1 =
    ACE_U64_TO_U32 (first_entry.deadline () - first_entry.arrival () -
      first_entry.task_entry ().rt_info ()->worst_case_execution_time);

  u_long laxity2 =
    ACE_U64_TO_U32 (second_entry.deadline () - first_entry.arrival () -
      second_entry.task_entry ().rt_info ()->worst_case_execution_time);

  if (laxity1 < laxity2)
  {
    return -1;
  }
  else if (laxity1 > laxity2)
  {
    return 1;
  }
  else
  {
    return 0;
  }
}


// = Comparison function to pass to qsort.

int
ACE_MUF_Scheduler_Strategy::sort_function (void *arg1, void *arg2)
{
  return ACE_MUF_Scheduler_Strategy::instance ()->
           sort_comp (** static_cast<Dispatch_Entry **> (arg1),
                      ** static_cast<Dispatch_Entry **> (arg2));
}


// = Returns the minimum critical priority number.

ACE_DynScheduler::Preemption_Priority
ACE_MUF_Scheduler_Strategy::minimum_critical_priority ()
{
  return minimum_critical_priority_;
}


// = Provides the dispatching queue type for the given dispatch entry.

ACE_DynScheduler::Dispatching_Type
ACE_MUF_Scheduler_Strategy::dispatch_type (const Dispatch_Entry & /* entry */)
{
  return RtecScheduler::LAXITY_DISPATCHING;
}



/////////////////////////////////////////////////////////////////////////
// class ACE_RMS_Scheduler_Strategy static data member initializations //
/////////////////////////////////////////////////////////////////////////

ACE_RMS_Scheduler_Strategy * ACE_RMS_Scheduler_Strategy::instance_ = 0;

///////////////////////////////////////////////////////
// class ACE_RMS_Scheduler_Strategy member functions //
///////////////////////////////////////////////////////

// = Returns an instance of the strategy.

ACE_RMS_Scheduler_Strategy *
ACE_RMS_Scheduler_Strategy::instance ()
{
  if (0 == ACE_RMS_Scheduler_Strategy::instance_)
  {
    ACE_NEW_RETURN (ACE_RMS_Scheduler_Strategy::instance_,
                    ACE_RMS_Scheduler_Strategy, 0);
  }

  return ACE_RMS_Scheduler_Strategy::instance_;
}

// = Compares two dispatch entries by minimum period: returns -1 if the
//   first Dispatch_Entry is greater in the order, 0 if they're equivalent,
//   or 1 if the second Dispatch_Entry is greater in the order.

int
ACE_RMS_Scheduler_Strategy::priority_comp (const Dispatch_Entry &first_entry,
                                           const Dispatch_Entry &second_entry)
{
  // compare by decreasing dispatch period
  if ((first_entry.deadline () - first_entry.arrival ())    <
      (second_entry.deadline () - second_entry.arrival ()))
  {
    return -1;
  }
  else if ((first_entry.deadline () - first_entry.arrival ())    >
           (second_entry.deadline () - second_entry.arrival ()))
  {
    return 1;
  }
  else
  {
    return 0;  // same priority level
  }
}


// = Sorts the dispatch entry pointer array in descending RMS (rate) order.

void
ACE_RMS_Scheduler_Strategy::sort (
  Dispatch_Entry **dispatch_entries_, u_int size)
{
  ACE_OS::qsort ((void *) dispatch_entries_,
                 size,
                 sizeof (Dispatch_Entry *),
                 (COMP_FUNC) ACE_RMS_Scheduler_Strategy::sort_function);
}


// = Default constructor.

ACE_RMS_Scheduler_Strategy::ACE_RMS_Scheduler_Strategy (
  ACE_DynScheduler::Preemption_Priority minimum_critical_priority)
  :ACE_Scheduler_Strategy (minimum_critical_priority)
{
}


// = Virtual destructor.

ACE_RMS_Scheduler_Strategy::~ACE_RMS_Scheduler_Strategy ()
{
}


// = All entries have the same dynamic subpriority value.

long
ACE_RMS_Scheduler_Strategy::dynamic_subpriority (
  Dispatch_Entry & /* entry */,
  RtecScheduler::Time /* current_time */)
{
  return 0;
}


// = All tasks in a given priority level have the same dynamic
//   subpriority under RMS.

int
ACE_RMS_Scheduler_Strategy::dynamic_subpriority_comp
  (const Dispatch_Entry & /* first_entry */,
   const Dispatch_Entry & /* second_entry */)
{
  return 0;
}


// Comparison function to pass to qsort.

int
ACE_RMS_Scheduler_Strategy::sort_function (void *arg1, void *arg2)
{
  return ACE_RMS_Scheduler_Strategy::instance ()->
           sort_comp (** static_cast<Dispatch_Entry **> (arg1),
                      ** static_cast<Dispatch_Entry **> (arg2));
}


// = Returns minimum critical priority number.

ACE_DynScheduler::Preemption_Priority
ACE_RMS_Scheduler_Strategy::minimum_critical_priority ()
{
  return minimum_critical_priority_;
}


// = Provide the dispatching queue type for the given dispatch entry.

ACE_DynScheduler::Dispatching_Type
ACE_RMS_Scheduler_Strategy::dispatch_type (const Dispatch_Entry & /* entry */)
{
  return RtecScheduler::STATIC_DISPATCHING;
}


/////////////////////////////////////////////////////////////////////////
// class ACE_MLF_Scheduler_Strategy static data member initializations //
/////////////////////////////////////////////////////////////////////////

ACE_MLF_Scheduler_Strategy * ACE_MLF_Scheduler_Strategy::instance_ = 0;

///////////////////////////////////////////////////////
// class ACE_MLF_Scheduler_Strategy member functions //
///////////////////////////////////////////////////////

// = Returns an instance of the strategy.

ACE_MLF_Scheduler_Strategy *
ACE_MLF_Scheduler_Strategy::instance ()
{
  if (0 == ACE_MLF_Scheduler_Strategy::instance_)
  {
    ACE_NEW_RETURN (ACE_MLF_Scheduler_Strategy::instance_,
                    ACE_MLF_Scheduler_Strategy, 0);
  }

  return ACE_MLF_Scheduler_Strategy::instance_;
}


// = Just returns 0, as all dispatch entries are of equivalent
//   static priority under MLF.

int
ACE_MLF_Scheduler_Strategy::priority_comp (const Dispatch_Entry & /* first_entry */,
                                           const Dispatch_Entry & /* second_entry */)
{
  return 0;
}


// = Sorts the dispatch entry pointer array in ascending laxity order.

void
ACE_MLF_Scheduler_Strategy::sort (
  Dispatch_Entry **dispatch_entries_, u_int size)
{
  ACE_OS::qsort ((void *) dispatch_entries_,
                 size,
                 sizeof (Dispatch_Entry *),
                 (COMP_FUNC) ACE_MLF_Scheduler_Strategy::sort_function);
}


// = Default constructor.

ACE_MLF_Scheduler_Strategy::ACE_MLF_Scheduler_Strategy (
  ACE_DynScheduler::Preemption_Priority /* minimum_critical_priority */)
  :ACE_Scheduler_Strategy (0)
{
}


// = Virtual destructor

ACE_MLF_Scheduler_Strategy::~ACE_MLF_Scheduler_Strategy ()
{
}


// = Returns a dynamic subpriority value for the given entry and the
//   current time relative to its arrival.

long
ACE_MLF_Scheduler_Strategy::dynamic_subpriority (Dispatch_Entry &entry,
                                                 RtecScheduler::Time current_time)
{
  long laxity =
    ACE_U64_TO_U32 (entry.deadline () - current_time -
      entry.task_entry ().rt_info ()->worst_case_execution_time);

  return (laxity > 0) ? LONG_MAX - laxity : laxity;
}


// = Orders two dispatch entries by ascending laxity: returns -1 if the
//   first Dispatch_Entry is greater in the order, 0 if they're equivalent,
//   or 1 if the second Dispatch_Entry is greater in the order.

int
ACE_MLF_Scheduler_Strategy::dynamic_subpriority_comp
  (const Dispatch_Entry &first_entry,
   const Dispatch_Entry &second_entry)
{
  // Order by descending dynamic priority according to ascending laxity.
  u_long laxity1 =
    ACE_U64_TO_U32 (first_entry.deadline () - first_entry.arrival () -
      first_entry.task_entry ().rt_info ()->worst_case_execution_time);

  u_long laxity2 =
    ACE_U64_TO_U32 (second_entry.deadline () - first_entry.arrival () -
      second_entry.task_entry ().rt_info ()->worst_case_execution_time);

  if (laxity1 < laxity2)
  {
    return -1;
  }
  else if (laxity1 > laxity2)
  {
    return 1;
  }
  else
  {
    return 0;
  }
}


// = Comparison function to pass to qsort.

int
ACE_MLF_Scheduler_Strategy::sort_function (void *arg1, void *arg2)
{
  return ACE_MLF_Scheduler_Strategy::instance ()->
           sort_comp (** static_cast<Dispatch_Entry **> (arg1),
                      ** static_cast<Dispatch_Entry **> (arg2));
}


// = Provides the dispatching queue type for the given dispatch entry.

ACE_DynScheduler::Dispatching_Type
ACE_MLF_Scheduler_Strategy::dispatch_type (const Dispatch_Entry & /* entry */)
{
  return RtecScheduler::LAXITY_DISPATCHING;
}


/////////////////////////////////////////////////////////////////////////
// class ACE_EDF_Scheduler_Strategy static data member initializations //
/////////////////////////////////////////////////////////////////////////

ACE_EDF_Scheduler_Strategy * ACE_EDF_Scheduler_Strategy::instance_ = 0;

///////////////////////////////////////////////////////
// class ACE_EDF_Scheduler_Strategy member functions //
///////////////////////////////////////////////////////

// = Returns an instance of the strategy.

ACE_EDF_Scheduler_Strategy *
ACE_EDF_Scheduler_Strategy::instance ()
{
  if (0 == ACE_EDF_Scheduler_Strategy::instance_)
  {
    ACE_NEW_RETURN (ACE_EDF_Scheduler_Strategy::instance_,
                    ACE_EDF_Scheduler_Strategy, 0);
  }

  return ACE_EDF_Scheduler_Strategy::instance_;
}

// = Just returns 0, as all dispatch entries are of
//   equivalent static priority under EDF.

int
ACE_EDF_Scheduler_Strategy::priority_comp (const Dispatch_Entry & /* first_entry */,
                                           const Dispatch_Entry & /* second_entry */)
{
  return 0;
}


// = Sort the dispatch entry pointer array in ascending deadline (period) order.

void
ACE_EDF_Scheduler_Strategy::sort (
  Dispatch_Entry **dispatch_entries_, u_int size)
{
  ACE_OS::qsort ((void *) dispatch_entries_,
                 size,
                 sizeof (Dispatch_Entry *),
                 (COMP_FUNC) ACE_EDF_Scheduler_Strategy::sort_function);
}


// = Default constructor.

ACE_EDF_Scheduler_Strategy::ACE_EDF_Scheduler_Strategy (
  ACE_DynScheduler::Preemption_Priority /* minimum_critical_priority */)
  :ACE_Scheduler_Strategy (0)
{
}


// = Virtual destructor.

ACE_EDF_Scheduler_Strategy::~ACE_EDF_Scheduler_Strategy ()
{
}

// = Returns a dynamic subpriority value for the given entry and the
//   current time relative to its arrival.

long
ACE_EDF_Scheduler_Strategy::dynamic_subpriority (Dispatch_Entry &entry,
                                                 RtecScheduler::Time current_time)
{
  long time_to_deadline =
      ACE_U64_TO_U32 (entry.deadline () - current_time);

  return (time_to_deadline > 0)
         ? LONG_MAX - time_to_deadline : time_to_deadline;
}


// = Orders two dispatch entries by ascending time to deadline: returns -1 if
//   the first Dispatch_Entry is greater in the order, 0 if they're equivalent,
//   or 1 if the second Dispatch_Entry is greater in the order.

int
ACE_EDF_Scheduler_Strategy::dynamic_subpriority_comp
  (const Dispatch_Entry &first_entry,
   const Dispatch_Entry &second_entry)
{
  // Order by dispatchable interval (ascending).
  if (first_entry.deadline () - first_entry.arrival () <
      second_entry.deadline () - first_entry.arrival ())
  {
    return -1;
  }
  else if (first_entry.deadline () - first_entry.arrival () >
           second_entry.deadline () - first_entry.arrival ())
  {
    return 1;
  }
  else
  {
    return 0;
  }
}


// = Comparison function to pass to qsort.

int
ACE_EDF_Scheduler_Strategy::sort_function (void *arg1, void *arg2)
{
  return ACE_EDF_Scheduler_Strategy::instance ()->
           sort_comp (** static_cast<Dispatch_Entry **> (arg1),
                      ** static_cast<Dispatch_Entry **> (arg2));
}

// = Provides the dispatching queue type for the given dispatch entry.

ACE_DynScheduler::Dispatching_Type
ACE_EDF_Scheduler_Strategy::dispatch_type (const Dispatch_Entry & /* entry */)
{
  return RtecScheduler::DEADLINE_DISPATCHING;
}


//////////////////////////////////////////////
// class ACE_Criticality_Scheduler_Strategy //
//   static data member initializations     //
//////////////////////////////////////////////

ACE_Criticality_Scheduler_Strategy *
ACE_Criticality_Scheduler_Strategy::instance_ = 0;

///////////////////////////////////////////////////////////////
// class ACE_Criticality_Scheduler_Strategy member functions //
///////////////////////////////////////////////////////////////

// = Returns an instance of the strategy.

ACE_Criticality_Scheduler_Strategy *
ACE_Criticality_Scheduler_Strategy::instance ()
{
  if (0 == ACE_Criticality_Scheduler_Strategy::instance_)
  {
    ACE_NEW_RETURN (ACE_Criticality_Scheduler_Strategy::instance_,
                    ACE_Criticality_Scheduler_Strategy, 0);
  }

  return ACE_Criticality_Scheduler_Strategy::instance_;
}

// = Compares two dispatch entries by minimum period: returns -1 if the
//   first Dispatch_Entry is greater in the order, 0 if they're equivalent,
//   or 1 if the second Dispatch_Entry is greater in the order.

int
ACE_Criticality_Scheduler_Strategy::priority_comp (
    const Dispatch_Entry &first_entry,
    const Dispatch_Entry &second_entry)
{
  // Order by criticality (descending).
  if (first_entry.task_entry ().rt_info ()->criticality   >
      second_entry.task_entry ().rt_info ()->criticality)
  {
    return -1;
  }
  else if (first_entry.task_entry ().rt_info ()->criticality   <
           second_entry.task_entry ().rt_info ()->criticality)
  {
    return 1;
  }
  else
  {
    return 0;  // Same priority level.
  }
}

// = Sorts the dispatch entry pointer array in descending criticality order.

void
ACE_Criticality_Scheduler_Strategy::sort (
  Dispatch_Entry **dispatch_entries_, u_int size)
{
  ACE_OS::qsort ((void *) dispatch_entries_,
                 size,
                 sizeof (Dispatch_Entry *),
                 (COMP_FUNC) ACE_Criticality_Scheduler_Strategy::sort_function);
}


// = Default constructor.

ACE_Criticality_Scheduler_Strategy::ACE_Criticality_Scheduler_Strategy (
  ACE_DynScheduler::Preemption_Priority minimum_critical_priority)
  :ACE_Scheduler_Strategy (minimum_critical_priority)
{
}


// = Virtual destructor.

ACE_Criticality_Scheduler_Strategy::~ACE_Criticality_Scheduler_Strategy ()
{
}

// = All entries have the same dynamic subpriority value.

long
ACE_Criticality_Scheduler_Strategy::dynamic_subpriority (
  Dispatch_Entry & /* entry */,
  RtecScheduler::Time /* current_time */)
{
  return 0;
}


// = All tasks in a given priority level have the same dynamic
//   subpriority under this strategy.

int
ACE_Criticality_Scheduler_Strategy::dynamic_subpriority_comp
  (const Dispatch_Entry & /* first_entry */,
   const Dispatch_Entry & /* second_entry */)
{
  return 0;
}


// = Comparison function to pass to qsort.

int
ACE_Criticality_Scheduler_Strategy::sort_function (void *arg1, void *arg2)
{
  return ACE_Criticality_Scheduler_Strategy::instance ()->
           sort_comp (** static_cast<Dispatch_Entry **> (arg1),
                      ** static_cast<Dispatch_Entry **> (arg2));
}


// = Returns minimum critical priority number.

ACE_DynScheduler::Preemption_Priority
ACE_Criticality_Scheduler_Strategy::minimum_critical_priority ()
{
  return minimum_critical_priority_;
}

// = Provides the dispatching queue type for the given dispatch entry.

ACE_DynScheduler::Dispatching_Type
ACE_Criticality_Scheduler_Strategy::dispatch_type (
  const Dispatch_Entry & /* entry */)
{
  return RtecScheduler::STATIC_DISPATCHING;
}

TAO_END_VERSIONED_NAMESPACE_DECL