1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
// $Id$
// This test program illustrates how the ACE task workers/barrier
// synchronization mechanisms work in conjunction with the ACE_Task
// and the ACE_Thread_Manager. The manual flag not set simulates user
// input, if set input comes from stdin until RETURN only is entered
// which stops all workers via a message block of length 0. This is an
// alernative shutdown of workers compared to queue deactivate. The
// delay_put flag simulates a delay between the shutdown puts. All
// should work with this flag disabled! The BARRIER_TYPE is supposed
// to enable/disable barrier sync on each svc a worker has done.
#include "ace/OS_NS_string.h"
#include "ace/OS_NS_unistd.h"
#include "ace/OS_main.h"
#include "ace/Task.h"
#include "ace/Service_Config.h"
ACE_RCSID(Threads, barrier2, "$Id$")
#if defined (ACE_HAS_THREADS)
#include "ace/Null_Barrier.h"
#define BARRIER_TYPE ACE_Null_Barrier
template <class BARRIER>
class Worker_Task : public ACE_Task<ACE_MT_SYNCH>
{
public:
Worker_Task (ACE_Thread_Manager *thr_mgr,
int n_threads,
int inp_serialize = 1);
virtual int producer (void);
// produce input for workers
virtual int input (ACE_Message_Block *mb);
// Fill one message block via a certain input strategy.
virtual int output (ACE_Message_Block *mb);
// Forward one message block via a certain output strategy to the
// next task if any.
virtual int service (ACE_Message_Block *mb, int iter);
// Perform one message block dependant service.
private:
virtual int put (ACE_Message_Block *mb, ACE_Time_Value *tv=0);
virtual int svc (void);
// Iterate <n_iterations> time printing off a message and "waiting"
// for all other threads to complete this iteration.
// = Not needed for this test.
virtual int open (void *) { return 0; }
virtual int close (u_long)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) in close of worker\n"));
return 0;
}
int nt_;
// Number of worker threads to run.
int inp_serialize_;
BARRIER barrier_;
};
template <class BARRIER>
Worker_Task<BARRIER>::Worker_Task (ACE_Thread_Manager *thr_mgr,
int n_threads,
int inp_serialize)
: ACE_Task<ACE_MT_SYNCH> (thr_mgr),
barrier_ (n_threads)
{
nt_ = n_threads;
// Create worker threads.
inp_serialize_ = inp_serialize;
// Use the task's message queue for serialization (default) or run
// service in the context of the caller thread.
if (nt_ > 0 && inp_serialize == 1)
if (this->activate (THR_NEW_LWP, n_threads) == -1)
ACE_ERROR ((LM_ERROR,
"%p\n",
"activate failed"));
}
// Simply enqueue the Message_Block into the end of the queue.
template <class BARRIER> int
Worker_Task<BARRIER>::put (ACE_Message_Block *mb,
ACE_Time_Value *tv)
{
int result;
if (this->inp_serialize_)
result = this->putq (mb, tv);
else
{
static int iter = 0;
result = this->service (mb, iter++);
if (this->output (mb) < 0)
ACE_DEBUG ((LM_DEBUG,
"(%t) output not connected!\n"));
mb->release ();
}
return result;
}
template <class BARRIER> int
Worker_Task<BARRIER>::service (ACE_Message_Block *mb,
int iter)
{
size_t length = mb->length ();
if (length > 0)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) in iteration %d len=%d text got:\n",
iter,
length));
ACE_OS::write (ACE_STDOUT,
mb->rd_ptr (),
length);
ACE_DEBUG ((LM_DEBUG,
"\n"));
}
return 0;
}
// Iterate <n_iterations> time printing off a message and "waiting"
// for all other threads to complete this iteration.
template <class BARRIER> int
Worker_Task<BARRIER>::svc (void)
{
// Note that the <ACE_Task::svc_run> method automatically adds us to
// the Thread_Manager when the thread begins.
// Keep looping, reading a message out of the queue, until we get a
// message with a length == 0, which signals us to quit.
for (int iter = 1; ;iter++)
{
ACE_Message_Block *mb = 0;
int result = this->getq (mb);
if (result == -1)
{
ACE_ERROR ((LM_ERROR,
"(%t) in iteration %d\n",
"error waiting for message in iteration",
iter));
break;
}
size_t length = mb->length ();
this->service (mb,iter);
if (length == 0)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) in iteration %d got quit, exit!\n",
iter));
mb->release ();
break;
}
this->barrier_.wait ();
this->output (mb);
mb->release ();
}
// Note that the <ACE_Task::svc_run> method automatically removes us
// from the Thread_Manager when the thread exits.
return 0;
}
template <class BARRIER> int
Worker_Task<BARRIER>::producer (void)
{
// Keep reading stdin, until we reach EOF.
for (;;)
{
// Allocate a new message.
ACE_Message_Block *mb;
ACE_NEW_RETURN (mb,
ACE_Message_Block (BUFSIZ),
-1);
if (this->input (mb) == -1)
return -1;
}
ACE_NOTREACHED (return 0);
}
template <class BARRIER> int
Worker_Task<BARRIER>::output (ACE_Message_Block *mb)
{
return this->put_next (mb);
}
template <class BARRIER> int
Worker_Task<BARRIER>::input (ACE_Message_Block *mb)
{
ACE_Message_Block *mb1;
#if !defined (manual)
static int l = 0;
char str[] = "kalle";
ACE_OS::strcpy (mb->rd_ptr (), str);
size_t n = ACE_OS::strlen (str);
if (l == 1000)
n = 1;
l++;
if (l == 0 || (l % 100 == 0))
ACE_OS::sleep (5);
if (n <= 1)
#else
ACE_DEBUG ((LM_DEBUG,
"(%t) press chars and enter to put a new message into task queue ...\n"));
n = ACE_OS::read (ACE_STDIN,
mb->rd_ptr (),
mb->size ());
if (n <= 1)
#endif /* manual */
{
// Send a shutdown message to the waiting threads and exit.
// cout << "\nvor loop, dump of task msg queue:\n" << endl;
// this->msg_queue ()->dump ();
for (int i = 0; i < nt_; i++)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) eof, sending block for thread=%d\n",
i + 1));
ACE_NEW_RETURN (mb1,
ACE_Message_Block (2),
-1);
mb1->length (0);
if (this->put (mb1) == -1)
ACE_ERROR ((LM_ERROR,
"(%t) %p\n",
"put"));
#if defined (delay_put)
// this sleep helps to shutdown correctly -> was an error!
ACE_OS::sleep (1);
#endif /* delay_put */
}
return -1;
}
else
{
// Send a normal message to the waiting threads and continue
// producing.
mb->wr_ptr (n);
if (this->put (mb) == -1)
ACE_ERROR ((LM_ERROR,
"(%t) %p\n",
"put"));
}
return 0;
}
int
ACE_TMAIN (int argc, ACE_TCHAR *argv[])
{
int n_threads = argc > 1 ? ACE_OS::atoi (argv[1]) : ACE_DEFAULT_THREADS;
ACE_DEBUG ((LM_DEBUG,
"(%t) worker threads running=%d\n",
n_threads));
Worker_Task<BARRIER_TYPE> worker_task (ACE_Thread_Manager::instance (),
/* n_threads */ 0,
0);
worker_task.producer ();
// Wait for all the threads to reach their exit point.
ACE_DEBUG ((LM_DEBUG,
"(%t) waiting with thread manager ...\n"));
ACE_Thread_Manager::instance ()->wait ();
ACE_DEBUG ((LM_DEBUG,
"(%t) done correct!\n"));
return 0;
}
#else
int
ACE_TMAIN (int, ACE_TCHAR *[])
{
ACE_ERROR ((LM_ERROR, "threads not supported on this platform\n"));
return 0;
}
#endif /* ACE_HAS_THREADS */
|