summaryrefslogtreecommitdiff
path: root/xen/common/spinlock.c
blob: a15f0a2eb66790b2ac872b3a0a5461612685cde3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
#include <xen/cpu.h>
#include <xen/lib.h>
#include <xen/irq.h>
#include <xen/notifier.h>
#include <xen/param.h>
#include <xen/smp.h>
#include <xen/time.h>
#include <xen/spinlock.h>
#include <xen/guest_access.h>
#include <xen/preempt.h>
#include <public/sysctl.h>
#include <asm/processor.h>
#include <asm/atomic.h>

#ifdef CONFIG_DEBUG_LOCKS

/* Max. number of entries in locks_taken array. */
static unsigned int __ro_after_init lock_depth_size = 64;
integer_param("lock-depth-size", lock_depth_size);

/*
 * Array of addresses of taken locks.
 * nr_locks_taken is the index after the last entry. As locks tend to be
 * nested cleanly, when freeing a lock it will probably be the one before
 * nr_locks_taken, and new entries can be entered at that index. It is fine
 * for a lock to be released out of order, though.
 */
static DEFINE_PER_CPU(const union lock_debug **, locks_taken);
static DEFINE_PER_CPU(unsigned int, nr_locks_taken);
static bool __read_mostly max_depth_reached;

static atomic_t spin_debug __read_mostly = ATOMIC_INIT(0);

static int cf_check cpu_lockdebug_callback(struct notifier_block *nfb,
                                           unsigned long action,
                                           void *hcpu)
{
    unsigned int cpu = (unsigned long)hcpu;

    switch ( action )
    {
    case CPU_UP_PREPARE:
        if ( !per_cpu(locks_taken, cpu) )
            per_cpu(locks_taken, cpu) = xzalloc_array(const union lock_debug *,
                                                      lock_depth_size);
        if ( !per_cpu(locks_taken, cpu) )
            printk(XENLOG_WARNING
                   "cpu %u: failed to allocate lock recursion check area\n",
                   cpu);
        break;

    case CPU_UP_CANCELED:
    case CPU_DEAD:
        XFREE(per_cpu(locks_taken, cpu));
        break;

    default:
        break;
    }

    return 0;
}

static struct notifier_block cpu_lockdebug_nfb = {
    .notifier_call = cpu_lockdebug_callback,
};

static int __init cf_check lockdebug_init(void)
{
    if ( lock_depth_size )
    {
        register_cpu_notifier(&cpu_lockdebug_nfb);
        cpu_lockdebug_callback(&cpu_lockdebug_nfb, CPU_UP_PREPARE,
                               (void *)(unsigned long)smp_processor_id());
    }

    return 0;
}
presmp_initcall(lockdebug_init);

void check_lock(union lock_debug *debug, bool try)
{
    bool irq_safe = !local_irq_is_enabled();
    unsigned int cpu = smp_processor_id();
    const union lock_debug *const *taken = per_cpu(locks_taken, cpu);
    unsigned int nr_taken = per_cpu(nr_locks_taken, cpu);
    unsigned int i;

    BUILD_BUG_ON(LOCK_DEBUG_PAD_BITS <= 0);

    if ( unlikely(atomic_read(&spin_debug) <= 0) )
        return;

    /* A few places take liberties with this. */
    /* BUG_ON(in_irq() && !irq_safe); */

    /*
     * We partition locks into IRQ-safe (always held with IRQs disabled) and
     * IRQ-unsafe (always held with IRQs enabled) types. The convention for
     * every lock must be consistently observed else we can deadlock in
     * IRQ-context rendezvous functions (a rendezvous which gets every CPU
     * into IRQ context before any CPU is released from the rendezvous).
     * 
     * If we can mix IRQ-disabled and IRQ-enabled callers, the following can
     * happen:
     *  * Lock is held by CPU A, with IRQs enabled
     *  * CPU B is spinning on same lock, with IRQs disabled
     *  * Rendezvous starts -- CPU A takes interrupt and enters rendezbous spin
     *  * DEADLOCK -- CPU B will never enter rendezvous, CPU A will never exit
     *                the rendezvous, and will hence never release the lock.
     * 
     * To guard against this subtle bug we latch the IRQ safety of every
     * spinlock in the system, on first use.
     *
     * A spin_trylock() with interrupts off is always fine, as this can't
     * block and above deadlock scenario doesn't apply.
     */
    if ( try && irq_safe )
        return;

    if ( unlikely(debug->irq_safe != irq_safe) )
    {
        union lock_debug seen, new = { 0 };

        new.irq_safe = irq_safe;
        seen.val = cmpxchg(&debug->val, LOCK_DEBUG_INITVAL, new.val);

        if ( !seen.unseen && seen.irq_safe == !irq_safe )
        {
            printk("CHECKLOCK FAILURE: prev irqsafe: %d, curr irqsafe %d\n",
                   seen.irq_safe, irq_safe);
            BUG();
        }
    }

    if ( try )
        return;

    for ( i = 0; i < nr_taken; i++ )
        if ( taken[i] == debug )
        {
            printk("CHECKLOCK FAILURE: lock at %p taken recursively\n", debug);
            BUG();
        }
}

static void check_barrier(union lock_debug *debug)
{
    if ( unlikely(atomic_read(&spin_debug) <= 0) )
        return;

    /*
     * For a barrier, we have a relaxed IRQ-safety-consistency check.
     * 
     * It is always safe to spin at the barrier with IRQs enabled -- that does
     * not prevent us from entering an IRQ-context rendezvous, and nor are
     * we preventing anyone else from doing so (since we do not actually
     * acquire the lock during a barrier operation).
     * 
     * However, if we spin on an IRQ-unsafe lock with IRQs disabled then that
     * is clearly wrong, for the same reason outlined in check_lock() above.
     */
    BUG_ON(!local_irq_is_enabled() && !debug->irq_safe);
}

void lock_enter(const union lock_debug *debug)
{
    unsigned int cpu = smp_processor_id();
    const union lock_debug **taken = per_cpu(locks_taken, cpu);
    unsigned int *nr_taken = &per_cpu(nr_locks_taken, cpu);
    unsigned long flags;

    if ( !taken )
        return;

    local_irq_save(flags);

    if ( *nr_taken < lock_depth_size )
        taken[(*nr_taken)++] = debug;
    else if ( !max_depth_reached )
    {
        max_depth_reached = true;
        printk("CHECKLOCK max lock depth %u reached!\n", lock_depth_size);
        WARN();
    }

    local_irq_restore(flags);
}

void lock_exit(const union lock_debug *debug)
{
    unsigned int cpu = smp_processor_id();
    const union lock_debug **taken = per_cpu(locks_taken, cpu);
    unsigned int *nr_taken = &per_cpu(nr_locks_taken, cpu);
    unsigned int i;
    unsigned long flags;

    if ( !taken )
        return;

    local_irq_save(flags);

    for ( i = *nr_taken; i > 0; i-- )
    {
        if ( taken[i - 1] == debug )
        {
            memmove(taken + i - 1, taken + i,
                    (*nr_taken - i) * sizeof(*taken));
            (*nr_taken)--;
            taken[*nr_taken] = NULL;

            local_irq_restore(flags);

            return;
        }
    }

    if ( !max_depth_reached )
    {
        printk("CHECKLOCK released lock at %p not recorded!\n", debug);
        WARN();
    }

    local_irq_restore(flags);
}

static void got_lock(union lock_debug *debug)
{
    debug->cpu = smp_processor_id();

    lock_enter(debug);
}

static void rel_lock(union lock_debug *debug)
{
    if ( atomic_read(&spin_debug) > 0 )
        BUG_ON(debug->cpu != smp_processor_id());

    lock_exit(debug);

    debug->cpu = SPINLOCK_NO_CPU;
}

void spin_debug_enable(void)
{
    atomic_inc(&spin_debug);
}

void spin_debug_disable(void)
{
    atomic_dec(&spin_debug);
}

#else /* CONFIG_DEBUG_LOCKS */

#define check_barrier(l) ((void)0)
#define got_lock(l) ((void)0)
#define rel_lock(l) ((void)0)

#endif

#ifdef CONFIG_DEBUG_LOCK_PROFILE

#define LOCK_PROFILE_REL                                                     \
    if (lock->profile)                                                       \
    {                                                                        \
        lock->profile->time_hold += NOW() - lock->profile->time_locked;      \
        lock->profile->lock_cnt++;                                           \
    }
#define LOCK_PROFILE_VAR    s_time_t block = 0
#define LOCK_PROFILE_BLOCK  block = block ? : NOW();
#define LOCK_PROFILE_GOT                                                     \
    if (lock->profile)                                                       \
    {                                                                        \
        lock->profile->time_locked = NOW();                                  \
        if (block)                                                           \
        {                                                                    \
            lock->profile->time_block += lock->profile->time_locked - block; \
            lock->profile->block_cnt++;                                      \
        }                                                                    \
    }

#else

#define LOCK_PROFILE_REL
#define LOCK_PROFILE_VAR
#define LOCK_PROFILE_BLOCK
#define LOCK_PROFILE_GOT

#endif

static always_inline spinlock_tickets_t observe_lock(spinlock_tickets_t *t)
{
    spinlock_tickets_t v;

    smp_rmb();
    v.head_tail = read_atomic(&t->head_tail);
    return v;
}

static always_inline u16 observe_head(spinlock_tickets_t *t)
{
    smp_rmb();
    return read_atomic(&t->head);
}

void inline _spin_lock_cb(spinlock_t *lock, void (*cb)(void *), void *data)
{
    spinlock_tickets_t tickets = SPINLOCK_TICKET_INC;
    LOCK_PROFILE_VAR;

    check_lock(&lock->debug, false);
    preempt_disable();
    tickets.head_tail = arch_fetch_and_add(&lock->tickets.head_tail,
                                           tickets.head_tail);
    while ( tickets.tail != observe_head(&lock->tickets) )
    {
        LOCK_PROFILE_BLOCK;
        if ( unlikely(cb) )
            cb(data);
        arch_lock_relax();
    }
    arch_lock_acquire_barrier();
    got_lock(&lock->debug);
    LOCK_PROFILE_GOT;
}

void _spin_lock(spinlock_t *lock)
{
     _spin_lock_cb(lock, NULL, NULL);
}

void _spin_lock_irq(spinlock_t *lock)
{
    ASSERT(local_irq_is_enabled());
    local_irq_disable();
    _spin_lock(lock);
}

unsigned long _spin_lock_irqsave(spinlock_t *lock)
{
    unsigned long flags;

    local_irq_save(flags);
    _spin_lock(lock);
    return flags;
}

void _spin_unlock(spinlock_t *lock)
{
    LOCK_PROFILE_REL;
    rel_lock(&lock->debug);
    arch_lock_release_barrier();
    add_sized(&lock->tickets.head, 1);
    arch_lock_signal();
    preempt_enable();
}

void _spin_unlock_irq(spinlock_t *lock)
{
    _spin_unlock(lock);
    local_irq_enable();
}

void _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)
{
    _spin_unlock(lock);
    local_irq_restore(flags);
}

int _spin_is_locked(const spinlock_t *lock)
{
    /*
     * Recursive locks may be locked by another CPU, yet we return
     * "false" here, making this function suitable only for use in
     * ASSERT()s and alike.
     */
    return lock->recurse_cpu == SPINLOCK_NO_CPU
           ? lock->tickets.head != lock->tickets.tail
           : lock->recurse_cpu == smp_processor_id();
}

int _spin_trylock(spinlock_t *lock)
{
    spinlock_tickets_t old, new;

    preempt_disable();
    check_lock(&lock->debug, true);
    old = observe_lock(&lock->tickets);
    if ( old.head != old.tail )
    {
        preempt_enable();
        return 0;
    }
    new = old;
    new.tail++;
    if ( cmpxchg(&lock->tickets.head_tail,
                 old.head_tail, new.head_tail) != old.head_tail )
    {
        preempt_enable();
        return 0;
    }
    /*
     * cmpxchg() is a full barrier so no need for an
     * arch_lock_acquire_barrier().
     */
    got_lock(&lock->debug);
#ifdef CONFIG_DEBUG_LOCK_PROFILE
    if (lock->profile)
        lock->profile->time_locked = NOW();
#endif
    return 1;
}

void _spin_barrier(spinlock_t *lock)
{
    spinlock_tickets_t sample;
#ifdef CONFIG_DEBUG_LOCK_PROFILE
    s_time_t block = NOW();
#endif

    check_barrier(&lock->debug);
    smp_mb();
    sample = observe_lock(&lock->tickets);
    if ( sample.head != sample.tail )
    {
        while ( observe_head(&lock->tickets) == sample.head )
            arch_lock_relax();
#ifdef CONFIG_DEBUG_LOCK_PROFILE
        if ( lock->profile )
        {
            lock->profile->time_block += NOW() - block;
            lock->profile->block_cnt++;
        }
#endif
    }
    smp_mb();
}

int _spin_trylock_recursive(spinlock_t *lock)
{
    unsigned int cpu = smp_processor_id();

    /* Don't allow overflow of recurse_cpu field. */
    BUILD_BUG_ON(NR_CPUS > SPINLOCK_NO_CPU);
    BUILD_BUG_ON(SPINLOCK_RECURSE_BITS < 3);

    check_lock(&lock->debug, true);

    if ( likely(lock->recurse_cpu != cpu) )
    {
        if ( !spin_trylock(lock) )
            return 0;
        lock->recurse_cpu = cpu;
    }

    /* We support only fairly shallow recursion, else the counter overflows. */
    ASSERT(lock->recurse_cnt < SPINLOCK_MAX_RECURSE);
    lock->recurse_cnt++;

    return 1;
}

void _spin_lock_recursive(spinlock_t *lock)
{
    unsigned int cpu = smp_processor_id();

    if ( likely(lock->recurse_cpu != cpu) )
    {
        _spin_lock(lock);
        lock->recurse_cpu = cpu;
    }

    /* We support only fairly shallow recursion, else the counter overflows. */
    ASSERT(lock->recurse_cnt < SPINLOCK_MAX_RECURSE);
    lock->recurse_cnt++;
}

void _spin_unlock_recursive(spinlock_t *lock)
{
    if ( likely(--lock->recurse_cnt == 0) )
    {
        lock->recurse_cpu = SPINLOCK_NO_CPU;
        spin_unlock(lock);
    }
}

#ifdef CONFIG_DEBUG_LOCK_PROFILE

struct lock_profile_anc {
    struct lock_profile_qhead *head_q;   /* first head of this type */
    const char                *name;     /* descriptive string for print */
};

typedef void lock_profile_subfunc(
    struct lock_profile *, int32_t, int32_t, void *);

extern struct lock_profile *__lock_profile_start;
extern struct lock_profile *__lock_profile_end;

static s_time_t lock_profile_start;
static struct lock_profile_anc lock_profile_ancs[] = {
    [LOCKPROF_TYPE_GLOBAL] = { .name = "Global" },
    [LOCKPROF_TYPE_PERDOM] = { .name = "Domain" },
};
static struct lock_profile_qhead lock_profile_glb_q;
static spinlock_t lock_profile_lock = SPIN_LOCK_UNLOCKED;

static void spinlock_profile_iterate(lock_profile_subfunc *sub, void *par)
{
    int i;
    struct lock_profile_qhead *hq;
    struct lock_profile *eq;

    spin_lock(&lock_profile_lock);
    for ( i = 0; i < LOCKPROF_TYPE_N; i++ )
        for ( hq = lock_profile_ancs[i].head_q; hq; hq = hq->head_q )
            for ( eq = hq->elem_q; eq; eq = eq->next )
                sub(eq, i, hq->idx, par);
    spin_unlock(&lock_profile_lock);
}

static void cf_check spinlock_profile_print_elem(struct lock_profile *data,
    int32_t type, int32_t idx, void *par)
{
    struct spinlock *lock = data->lock;

    printk("%s ", lock_profile_ancs[type].name);
    if ( type != LOCKPROF_TYPE_GLOBAL )
        printk("%d ", idx);
    printk("%s: addr=%p, lockval=%08x, ", data->name, lock,
           lock->tickets.head_tail);
    if ( lock->debug.cpu == SPINLOCK_NO_CPU )
        printk("not locked\n");
    else
        printk("cpu=%d\n", lock->debug.cpu);
    printk("  lock:%" PRId64 "(%" PRI_stime "), block:%" PRId64 "(%" PRI_stime ")\n",
           data->lock_cnt, data->time_hold, data->block_cnt, data->time_block);
}

void cf_check spinlock_profile_printall(unsigned char key)
{
    s_time_t now = NOW();
    s_time_t diff;

    diff = now - lock_profile_start;
    printk("Xen lock profile info SHOW  (now = %"PRI_stime" total = "
           "%"PRI_stime")\n", now, diff);
    spinlock_profile_iterate(spinlock_profile_print_elem, NULL);
}

static void cf_check spinlock_profile_reset_elem(struct lock_profile *data,
    int32_t type, int32_t idx, void *par)
{
    data->lock_cnt = 0;
    data->block_cnt = 0;
    data->time_hold = 0;
    data->time_block = 0;
}

void cf_check spinlock_profile_reset(unsigned char key)
{
    s_time_t now = NOW();

    if ( key != '\0' )
        printk("Xen lock profile info RESET (now = %"PRI_stime")\n", now);
    lock_profile_start = now;
    spinlock_profile_iterate(spinlock_profile_reset_elem, NULL);
}

typedef struct {
    struct xen_sysctl_lockprof_op *pc;
    int                      rc;
} spinlock_profile_ucopy_t;

static void cf_check spinlock_profile_ucopy_elem(struct lock_profile *data,
    int32_t type, int32_t idx, void *par)
{
    spinlock_profile_ucopy_t *p = par;
    struct xen_sysctl_lockprof_data elem;

    if ( p->rc )
        return;

    if ( p->pc->nr_elem < p->pc->max_elem )
    {
        safe_strcpy(elem.name, data->name);
        elem.type = type;
        elem.idx = idx;
        elem.lock_cnt = data->lock_cnt;
        elem.block_cnt = data->block_cnt;
        elem.lock_time = data->time_hold;
        elem.block_time = data->time_block;
        if ( copy_to_guest_offset(p->pc->data, p->pc->nr_elem, &elem, 1) )
            p->rc = -EFAULT;
    }

    if ( !p->rc )
        p->pc->nr_elem++;
}

/* Dom0 control of lock profiling */
int spinlock_profile_control(struct xen_sysctl_lockprof_op *pc)
{
    int rc = 0;
    spinlock_profile_ucopy_t par;

    switch ( pc->cmd )
    {
    case XEN_SYSCTL_LOCKPROF_reset:
        spinlock_profile_reset('\0');
        break;
    case XEN_SYSCTL_LOCKPROF_query:
        pc->nr_elem = 0;
        par.rc = 0;
        par.pc = pc;
        spinlock_profile_iterate(spinlock_profile_ucopy_elem, &par);
        pc->time = NOW() - lock_profile_start;
        rc = par.rc;
        break;
    default:
        rc = -EINVAL;
        break;
    }

    return rc;
}

void _lock_profile_register_struct(
    int32_t type, struct lock_profile_qhead *qhead, int32_t idx)
{
    qhead->idx = idx;
    spin_lock(&lock_profile_lock);
    qhead->head_q = lock_profile_ancs[type].head_q;
    lock_profile_ancs[type].head_q = qhead;
    spin_unlock(&lock_profile_lock);
}

void _lock_profile_deregister_struct(
    int32_t type, struct lock_profile_qhead *qhead)
{
    struct lock_profile_qhead **q;

    spin_lock(&lock_profile_lock);
    for ( q = &lock_profile_ancs[type].head_q; *q; q = &(*q)->head_q )
    {
        if ( *q == qhead )
        {
            *q = qhead->head_q;
            break;
        }
    }
    spin_unlock(&lock_profile_lock);
}

static int __init cf_check lock_prof_init(void)
{
    struct lock_profile **q;

    BUILD_BUG_ON(ARRAY_SIZE(lock_profile_ancs) != LOCKPROF_TYPE_N);

    for ( q = &__lock_profile_start; q < &__lock_profile_end; q++ )
    {
        (*q)->next = lock_profile_glb_q.elem_q;
        lock_profile_glb_q.elem_q = *q;
        (*q)->lock->profile = *q;
    }

    _lock_profile_register_struct(LOCKPROF_TYPE_GLOBAL,
                                  &lock_profile_glb_q, 0);

    return 0;
}
__initcall(lock_prof_init);

#endif /* CONFIG_DEBUG_LOCK_PROFILE */