summaryrefslogtreecommitdiff
path: root/xen/common/sched/credit.c
blob: f2cd3d9da34f7efab987676230cf200eed5125e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
/****************************************************************************
 * (C) 2005-2006 - Emmanuel Ackaouy - XenSource Inc.
 ****************************************************************************
 *
 *        File: common/csched_credit.c
 *      Author: Emmanuel Ackaouy
 *
 * Description: Credit-based SMP CPU scheduler
 */

#include <xen/init.h>
#include <xen/lib.h>
#include <xen/param.h>
#include <xen/sched.h>
#include <xen/domain.h>
#include <xen/delay.h>
#include <xen/event.h>
#include <xen/time.h>
#include <xen/softirq.h>
#include <asm/atomic.h>
#include <asm/div64.h>
#include <xen/errno.h>
#include <xen/keyhandler.h>
#include <xen/trace.h>
#include <xen/err.h>

#include "private.h"

/*
 * Locking:
 * - Scheduler-lock (a.k.a. runqueue lock):
 *  + is per-runqueue, and there is one runqueue per-cpu;
 *  + serializes all runqueue manipulation operations;
 * - Private data lock (a.k.a. private scheduler lock):
 *  + serializes accesses to the scheduler global state (weight,
 *    credit, balance_credit, etc);
 *  + serializes updates to the domains' scheduling parameters.
 *
 * Ordering is "private lock always comes first":
 *  + if we need both locks, we must acquire the private
 *    scheduler lock for first;
 *  + if we already own a runqueue lock, we must never acquire
 *    the private scheduler lock.
 */

/*
 * Basic constants
 */
#define CSCHED_DEFAULT_WEIGHT       256
#define CSCHED_TICKS_PER_TSLICE     3
/* Default timeslice: 30ms */
#define CSCHED_DEFAULT_TSLICE_MS    30
#define CSCHED_CREDITS_PER_MSEC     10
/* Never set a timer shorter than this value. */
#define CSCHED_MIN_TIMER            XEN_SYSCTL_SCHED_RATELIMIT_MIN


/*
 * Priorities
 */
#define CSCHED_PRI_TS_BOOST      0      /* time-share waking up */
#define CSCHED_PRI_TS_UNDER     -1      /* time-share w/ credits */
#define CSCHED_PRI_TS_OVER      -2      /* time-share w/o credits */
#define CSCHED_PRI_IDLE         -64     /* idle */


/*
 * Flags
 *
 * Note that svc->flags (where these flags live) is protected by an
 * inconsistent set of locks. Therefore atomic-safe bit operations must
 * be used for accessing it.
 */
#define CSCHED_FLAG_UNIT_PARKED    0x0  /* UNIT over capped credits */
#define CSCHED_FLAG_UNIT_YIELD     0x1  /* UNIT yielding */
#define CSCHED_FLAG_UNIT_MIGRATING 0x2  /* UNIT may have moved to a new pcpu */
#define CSCHED_FLAG_UNIT_PINNED    0x4  /* UNIT can run only on 1 pcpu */


/*
 * Useful macros
 */
#define CSCHED_PRIV(_ops)   \
    ((struct csched_private *)((_ops)->sched_data))
#define CSCHED_PCPU(_c)     \
    ((struct csched_pcpu *)get_sched_res(_c)->sched_priv)
#define CSCHED_UNIT(unit)   ((struct csched_unit *) (unit)->priv)
#define CSCHED_DOM(_dom)    ((struct csched_dom *) (_dom)->sched_priv)
#define RUNQ(_cpu)          (&(CSCHED_PCPU(_cpu)->runq))


/*
 * CSCHED_STATS
 *
 * Manage very basic per-unit counters and stats.
 *
 * Useful for debugging live systems. The stats are displayed
 * with runq dumps ('r' on the Xen console).
 */
#ifdef SCHED_STATS

#define CSCHED_STATS

#define SCHED_UNIT_STATS_RESET(_V)                      \
    do                                                  \
    {                                                   \
        memset(&(_V)->stats, 0, sizeof((_V)->stats));   \
    } while ( 0 )

#define SCHED_UNIT_STAT_CRANK(_V, _X)       (((_V)->stats._X)++)

#define SCHED_UNIT_STAT_SET(_V, _X, _Y)     (((_V)->stats._X) = (_Y))

#else /* !SCHED_STATS */

#undef CSCHED_STATS

#define SCHED_UNIT_STATS_RESET(_V)         do {} while ( 0 )
#define SCHED_UNIT_STAT_CRANK(_V, _X)      do {} while ( 0 )
#define SCHED_UNIT_STAT_SET(_V, _X, _Y)    do {} while ( 0 )

#endif /* SCHED_STATS */


/*
 * Credit tracing events ("only" 512 available!). Check
 * include/public/trace.h for more details.
 */
#define TRC_CSCHED_SCHED_TASKLET TRC_SCHED_CLASS_EVT(CSCHED, 1)
#define TRC_CSCHED_ACCOUNT_START TRC_SCHED_CLASS_EVT(CSCHED, 2)
#define TRC_CSCHED_ACCOUNT_STOP  TRC_SCHED_CLASS_EVT(CSCHED, 3)
#define TRC_CSCHED_STOLEN_UNIT   TRC_SCHED_CLASS_EVT(CSCHED, 4)
#define TRC_CSCHED_PICKED_CPU    TRC_SCHED_CLASS_EVT(CSCHED, 5)
#define TRC_CSCHED_TICKLE        TRC_SCHED_CLASS_EVT(CSCHED, 6)
#define TRC_CSCHED_BOOST_START   TRC_SCHED_CLASS_EVT(CSCHED, 7)
#define TRC_CSCHED_BOOST_END     TRC_SCHED_CLASS_EVT(CSCHED, 8)
#define TRC_CSCHED_SCHEDULE      TRC_SCHED_CLASS_EVT(CSCHED, 9)
#define TRC_CSCHED_RATELIMIT     TRC_SCHED_CLASS_EVT(CSCHED, 10)
#define TRC_CSCHED_STEAL_CHECK   TRC_SCHED_CLASS_EVT(CSCHED, 11)

/*
 * Boot parameters
 */
static int __read_mostly sched_credit_tslice_ms = CSCHED_DEFAULT_TSLICE_MS;
integer_param("sched_credit_tslice_ms", sched_credit_tslice_ms);

/*
 * Physical CPU
 */
struct csched_pcpu {
    struct list_head runq;
    uint32_t runq_sort_last;

    unsigned int idle_bias;
    unsigned int nr_runnable;

    unsigned int tick;
    struct timer ticker;
};

/*
 * Virtual UNIT
 */
struct csched_unit {
    struct list_head runq_elem;
    struct list_head active_unit_elem;

    /* Up-pointers */
    struct csched_dom *sdom;
    struct sched_unit *unit;

    s_time_t start_time;   /* When we were scheduled (used for credit) */
    unsigned flags;
    int pri;

    atomic_t credit;
    unsigned int residual;

    s_time_t last_sched_time;

#ifdef CSCHED_STATS
    struct {
        int credit_last;
        uint32_t credit_incr;
        uint32_t state_active;
        uint32_t state_idle;
        uint32_t migrate_q;
        uint32_t migrate_r;
        uint32_t kicked_away;
    } stats;
#endif
};

/*
 * Domain
 */
struct csched_dom {
    struct list_head active_unit;
    struct list_head active_sdom_elem;
    struct domain *dom;
    uint16_t active_unit_count;
    uint16_t weight;
    uint16_t cap;
};

/*
 * System-wide private data
 */
struct csched_private {
    /* lock for the whole pluggable scheduler, nests inside cpupool_lock */
    spinlock_t lock;

    cpumask_var_t idlers;
    cpumask_var_t cpus;
    uint32_t *balance_bias;
    uint32_t runq_sort;
    uint32_t ncpus;

    /* Period of master and tick in milliseconds */
    unsigned int tick_period_us, ticks_per_tslice;
    s_time_t ratelimit, tslice, unit_migr_delay;

    struct list_head active_sdom;
    uint32_t weight;
    uint32_t credit;
    int credit_balance;
    unsigned int credits_per_tslice;

    unsigned int master;
    struct timer master_ticker;
};

static void cf_check csched_tick(void *_cpu);
static void cf_check csched_acct(void *dummy);

static inline int
__unit_on_runq(const struct csched_unit *svc)
{
    return !list_empty(&svc->runq_elem);
}

static inline struct csched_unit *
__runq_elem(struct list_head *elem)
{
    return list_entry(elem, struct csched_unit, runq_elem);
}

/* Is the first element of cpu's runq (if any) cpu's idle unit? */
static inline bool is_runq_idle(unsigned int cpu)
{
    /*
     * We're peeking at cpu's runq, we must hold the proper lock.
     */
    ASSERT(spin_is_locked(get_sched_res(cpu)->schedule_lock));

    return list_empty(RUNQ(cpu)) ||
           is_idle_unit(__runq_elem(RUNQ(cpu)->next)->unit);
}

static inline void
inc_nr_runnable(unsigned int cpu)
{
    ASSERT(spin_is_locked(get_sched_res(cpu)->schedule_lock));
    CSCHED_PCPU(cpu)->nr_runnable++;

}

static inline void
dec_nr_runnable(unsigned int cpu)
{
    ASSERT(spin_is_locked(get_sched_res(cpu)->schedule_lock));
    ASSERT(CSCHED_PCPU(cpu)->nr_runnable >= 1);
    CSCHED_PCPU(cpu)->nr_runnable--;
}

static inline void
__runq_insert(struct csched_unit *svc)
{
    unsigned int cpu = sched_unit_master(svc->unit);
    const struct list_head * const runq = RUNQ(cpu);
    struct list_head *iter;

    BUG_ON( __unit_on_runq(svc) );

    list_for_each( iter, runq )
    {
        const struct csched_unit * const iter_svc = __runq_elem(iter);
        if ( svc->pri > iter_svc->pri )
            break;
    }

    /* If the unit yielded, try to put it behind one lower-priority
     * runnable unit if we can.  The next runq_sort will bring it forward
     * within 30ms if the queue too long. */
    if ( test_bit(CSCHED_FLAG_UNIT_YIELD, &svc->flags)
         && __runq_elem(iter)->pri > CSCHED_PRI_IDLE )
    {
        iter=iter->next;

        /* Some sanity checks */
        BUG_ON(iter == runq);
    }

    list_add_tail(&svc->runq_elem, iter);
}

static inline void
runq_insert(struct csched_unit *svc)
{
    __runq_insert(svc);
    inc_nr_runnable(sched_unit_master(svc->unit));
}

static inline void
__runq_remove(struct csched_unit *svc)
{
    BUG_ON( !__unit_on_runq(svc) );
    list_del_init(&svc->runq_elem);
}

static inline void
runq_remove(struct csched_unit *svc)
{
    dec_nr_runnable(sched_unit_master(svc->unit));
    __runq_remove(svc);
}

static void burn_credits(struct csched_unit *svc, s_time_t now)
{
    s_time_t delta;
    uint64_t val;
    unsigned int credits;

    /* Assert svc is current */
    ASSERT( svc == CSCHED_UNIT(curr_on_cpu(sched_unit_master(svc->unit))) );

    if ( (delta = now - svc->start_time) <= 0 )
        return;

    val = delta * CSCHED_CREDITS_PER_MSEC + svc->residual;
    svc->residual = do_div(val, MILLISECS(1));
    credits = val;
    ASSERT(credits == val); /* make sure we haven't truncated val */
    atomic_sub(credits, &svc->credit);
    svc->start_time += (credits * MILLISECS(1)) / CSCHED_CREDITS_PER_MSEC;
}

static bool __read_mostly opt_tickle_one_idle = true;
boolean_param("tickle_one_idle_cpu", opt_tickle_one_idle);

static DEFINE_PER_CPU(unsigned int, last_tickle_cpu);

static inline void __runq_tickle(const struct csched_unit *new)
{
    unsigned int cpu = sched_unit_master(new->unit);
    const struct sched_resource *sr = get_sched_res(cpu);
    const struct sched_unit *unit = new->unit;
    struct csched_unit * const cur = CSCHED_UNIT(curr_on_cpu(cpu));
    struct csched_private *prv = CSCHED_PRIV(sr->scheduler);
    cpumask_t mask, idle_mask, *online;
    int balance_step, idlers_empty;

    ASSERT(cur);
    cpumask_clear(&mask);

    online = cpupool_domain_master_cpumask(new->sdom->dom);
    cpumask_and(&idle_mask, prv->idlers, online);
    idlers_empty = cpumask_empty(&idle_mask);

    /*
     * Exclusive pinning is when a unit has hard-affinity with only one
     * cpu, and there is no other unit that has hard-affinity with that
     * same cpu. This is infrequent, but if it happens, is for achieving
     * the most possible determinism, and least possible overhead for
     * the units in question.
     *
     * Try to identify the vast majority of these situations, and deal
     * with them quickly.
     */
    if ( unlikely(test_bit(CSCHED_FLAG_UNIT_PINNED, &new->flags) &&
                  cpumask_test_cpu(cpu, &idle_mask)) )
    {
        ASSERT(cpumask_cycle(cpu, unit->cpu_hard_affinity) == cpu);
        SCHED_STAT_CRANK(tickled_idle_cpu_excl);
        __cpumask_set_cpu(cpu, &mask);
        goto tickle;
    }

    /*
     * If the pcpu is idle, or there are no idlers and the new
     * unit is a higher priority than the old unit, run it here.
     *
     * If there are idle cpus, first try to find one suitable to run
     * new, so we can avoid preempting cur.  If we cannot find a
     * suitable idler on which to run new, run it here, but try to
     * find a suitable idler on which to run cur instead.
     */
    if ( cur->pri == CSCHED_PRI_IDLE
         || (idlers_empty && new->pri > cur->pri) )
    {
        if ( cur->pri != CSCHED_PRI_IDLE )
            SCHED_STAT_CRANK(tickled_busy_cpu);
        else
            SCHED_STAT_CRANK(tickled_idle_cpu);
        __cpumask_set_cpu(cpu, &mask);
    }
    else if ( !idlers_empty )
    {
        /*
         * Soft and hard affinity balancing loop. For units without
         * a useful soft affinity, consider hard affinity only.
         */
        for_each_affinity_balance_step( balance_step )
        {
            int new_idlers_empty;

            if ( balance_step == BALANCE_SOFT_AFFINITY
                 && !has_soft_affinity(unit) )
                continue;

            /* Are there idlers suitable for new (for this balance step)? */
            affinity_balance_cpumask(unit, balance_step,
                                     cpumask_scratch_cpu(cpu));
            cpumask_and(cpumask_scratch_cpu(cpu),
                        cpumask_scratch_cpu(cpu), &idle_mask);
            new_idlers_empty = cpumask_empty(cpumask_scratch_cpu(cpu));

            /*
             * Let's not be too harsh! If there aren't idlers suitable
             * for new in its soft affinity mask, make sure we check its
             * hard affinity as well, before taking final decisions.
             */
            if ( new_idlers_empty
                 && balance_step == BALANCE_SOFT_AFFINITY )
                continue;

            /*
             * If there are no suitable idlers for new, and it's higher
             * priority than cur, check whether we can migrate cur away.
             * We have to do it indirectly, via _VPF_migrating (instead
             * of just tickling any idler suitable for cur) because cur
             * is running.
             *
             * If there are suitable idlers for new, no matter priorities,
             * leave cur alone (as it is running and is, likely, cache-hot)
             * and wake some of them (which is waking up and so is, likely,
             * cache cold anyway).
             */
            if ( new_idlers_empty && new->pri > cur->pri )
            {
                if ( cpumask_intersects(unit->cpu_hard_affinity, &idle_mask) )
                {
                    SCHED_UNIT_STAT_CRANK(cur, kicked_away);
                    SCHED_UNIT_STAT_CRANK(cur, migrate_r);
                    SCHED_STAT_CRANK(migrate_kicked_away);
                    sched_set_pause_flags(cur->unit, _VPF_migrating);
                }
                /* Tickle cpu anyway, to let new preempt cur. */
                SCHED_STAT_CRANK(tickled_busy_cpu);
                __cpumask_set_cpu(cpu, &mask);
            }
            else if ( !new_idlers_empty )
            {
                /* Which of the idlers suitable for new shall we wake up? */
                SCHED_STAT_CRANK(tickled_idle_cpu);
                if ( opt_tickle_one_idle )
                {
                    this_cpu(last_tickle_cpu) =
                        cpumask_cycle(this_cpu(last_tickle_cpu),
                                      cpumask_scratch_cpu(cpu));
                    __cpumask_set_cpu(this_cpu(last_tickle_cpu), &mask);
                }
                else
                    cpumask_or(&mask, &mask, cpumask_scratch_cpu(cpu));
            }

            /* Did we find anyone? */
            if ( !cpumask_empty(&mask) )
                break;
        }
    }

 tickle:
    if ( !cpumask_empty(&mask) )
    {
        if ( unlikely(tb_init_done) )
        {
            /* Avoid TRACE_*: saves checking !tb_init_done each step */
            for_each_cpu(cpu, &mask)
                __trace_var(TRC_CSCHED_TICKLE, 1, sizeof(cpu), &cpu);
        }

        /*
         * Mark the designated CPUs as busy and send them all the scheduler
         * interrupt. We need the for_each_cpu for dealing with the
         * !opt_tickle_one_idle case. We must use cpumask_clear_cpu() and
         * can't use cpumask_andnot(), because prv->idlers needs atomic access.
         *
         * In the default (and most common) case, when opt_rickle_one_idle is
         * true, the loop does only one step, and only one bit is cleared.
         */
        for_each_cpu(cpu, &mask)
            cpumask_clear_cpu(cpu, prv->idlers);
        cpumask_raise_softirq(&mask, SCHEDULE_SOFTIRQ);
    }
    else
        SCHED_STAT_CRANK(tickled_no_cpu);
}

static void cf_check
csched_free_pdata(const struct scheduler *ops, void *pcpu, int cpu)
{
    const struct csched_private *prv = CSCHED_PRIV(ops);

    /*
     * pcpu either points to a valid struct csched_pcpu, or is NULL, if we're
     * beeing called from CPU_UP_CANCELLED, because bringing up a pCPU failed
     * very early. xfree() does not really mind, but we want to be sure that,
     * when we get here, either init_pdata has never been called, or
     * deinit_pdata has been called already.
     */
    ASSERT(!cpumask_test_cpu(cpu, prv->cpus));

    xfree(pcpu);
}

static void cf_check
csched_deinit_pdata(const struct scheduler *ops, void *pcpu, int cpu)
{
    struct csched_private *prv = CSCHED_PRIV(ops);
    struct csched_pcpu *spc = pcpu;
    unsigned int node = cpu_to_node(cpu);
    unsigned long flags;

    /*
     * Scheduler specific data for this pCPU must still be there and and be
     * valid. In fact, if we are here:
     *  1. alloc_pdata must have been called for this cpu, and free_pdata
     *     must not have been called on it before us,
     *  2. init_pdata must have been called on this cpu, and deinit_pdata
     *     (us!) must not have been called on it already.
     */
    ASSERT(spc && cpumask_test_cpu(cpu, prv->cpus));

    spin_lock_irqsave(&prv->lock, flags);

    prv->credit -= prv->credits_per_tslice;
    prv->ncpus--;
    cpumask_clear_cpu(cpu, prv->idlers);
    cpumask_clear_cpu(cpu, prv->cpus);
    if ( (prv->master == cpu) && (prv->ncpus > 0) )
    {
        prv->master = cpumask_first(prv->cpus);
        migrate_timer(&prv->master_ticker, prv->master);
    }
    if ( prv->balance_bias[node] == cpu )
    {
        cpumask_and(cpumask_scratch, prv->cpus, &node_to_cpumask(node));
        if ( !cpumask_empty(cpumask_scratch) )
            prv->balance_bias[node] =  cpumask_first(cpumask_scratch);
    }
    kill_timer(&spc->ticker);
    if ( prv->ncpus == 0 )
        kill_timer(&prv->master_ticker);

    spin_unlock_irqrestore(&prv->lock, flags);
}

static void *cf_check
csched_alloc_pdata(const struct scheduler *ops, int cpu)
{
    struct csched_pcpu *spc;

    /* Allocate per-PCPU info */
    spc = xzalloc(struct csched_pcpu);
    if ( spc == NULL )
        return ERR_PTR(-ENOMEM);

    return spc;
}

static void
init_pdata(struct csched_private *prv, struct csched_pcpu *spc, int cpu)
{
    ASSERT(spin_is_locked(&prv->lock));
    /* cpu data needs to be allocated, but STILL uninitialized. */
    ASSERT(spc && spc->runq.next == NULL && spc->runq.prev == NULL);

    /* Initialize/update system-wide config */
    prv->credit += prv->credits_per_tslice;
    prv->ncpus++;
    cpumask_set_cpu(cpu, prv->cpus);
    if ( prv->ncpus == 1 )
    {
        prv->master = cpu;
        init_timer(&prv->master_ticker, csched_acct, prv, cpu);
        set_timer(&prv->master_ticker, NOW() + prv->tslice);
    }

    cpumask_and(cpumask_scratch, prv->cpus, &node_to_cpumask(cpu_to_node(cpu)));
    if ( cpumask_weight(cpumask_scratch) == 1 )
        prv->balance_bias[cpu_to_node(cpu)] = cpu;

    init_timer(&spc->ticker, csched_tick, (void *)(unsigned long)cpu, cpu);
    set_timer(&spc->ticker, NOW() + MICROSECS(prv->tick_period_us) );

    INIT_LIST_HEAD(&spc->runq);
    spc->runq_sort_last = prv->runq_sort;
    spc->idle_bias = nr_cpu_ids - 1;

    /* Start off idling... */
    BUG_ON(!is_idle_unit(curr_on_cpu(cpu)));
    cpumask_set_cpu(cpu, prv->idlers);
    spc->nr_runnable = 0;
}

static void cf_check
csched_move_timers(const struct scheduler *ops, struct sched_resource *sr)
{
    struct csched_private *prv = CSCHED_PRIV(ops);
    struct csched_pcpu *spc = sr->sched_priv;

    if ( sr->master_cpu == prv->master )
        migrate_timer(&prv->master_ticker, prv->master);

    migrate_timer(&spc->ticker, sr->master_cpu);
}

/* Change the scheduler of cpu to us (Credit). */
static spinlock_t *cf_check
csched_switch_sched(struct scheduler *new_ops, unsigned int cpu,
                    void *pdata, void *vdata)
{
    struct sched_resource *sr = get_sched_res(cpu);
    struct csched_private *prv = CSCHED_PRIV(new_ops);
    struct csched_unit *svc = vdata;

    ASSERT(svc && is_idle_unit(svc->unit));

    sched_idle_unit(cpu)->priv = vdata;

    /*
     * We are holding the runqueue lock already (it's been taken in
     * schedule_cpu_switch()). It actually may or may not be the 'right'
     * one for this cpu, but that is ok for preventing races.
     */
    ASSERT(!local_irq_is_enabled());
    spin_lock(&prv->lock);
    init_pdata(prv, pdata, cpu);
    spin_unlock(&prv->lock);

    return &sr->_lock;
}

#ifndef NDEBUG
static inline void
__csched_unit_check(const struct sched_unit *unit)
{
    struct csched_unit * const svc = CSCHED_UNIT(unit);
    struct csched_dom * const sdom = svc->sdom;

    BUG_ON( svc->unit != unit );
    BUG_ON( sdom != CSCHED_DOM(unit->domain) );
    if ( sdom )
    {
        BUG_ON( is_idle_unit(unit) );
        BUG_ON( sdom->dom != unit->domain );
    }
    else
    {
        BUG_ON( !is_idle_unit(unit) );
    }

    SCHED_STAT_CRANK(unit_check);
}
#define CSCHED_UNIT_CHECK(unit)  (__csched_unit_check(unit))
#else
#define CSCHED_UNIT_CHECK(unit)
#endif

/*
 * Delay, in microseconds, between migrations of a UNIT between PCPUs.
 * This prevents rapid fluttering of a UNIT between CPUs, and reduces the
 * implicit overheads such as cache-warming. 1ms (1000) has been measured
 * as a good value.
 */
static unsigned int vcpu_migration_delay_us;
integer_param("vcpu_migration_delay", vcpu_migration_delay_us);

static inline bool
__csched_vcpu_is_cache_hot(const struct csched_private *prv,
                           const struct csched_unit *svc)
{
    bool hot = prv->unit_migr_delay &&
               (NOW() - svc->last_sched_time) < prv->unit_migr_delay;

    if ( hot )
        SCHED_STAT_CRANK(unit_hot);

    return hot;
}

static inline int
__csched_unit_is_migrateable(const struct csched_private *prv,
                             const struct sched_unit *unit,
                             int dest_cpu, const cpumask_t *mask)
{
    const struct csched_unit *svc = CSCHED_UNIT(unit);
    /*
     * Don't pick up work that's hot on peer PCPU, or that can't (or
     * would prefer not to) run on cpu.
     *
     * The caller is supposed to have already checked that unit is also
     * not running.
     */
    ASSERT(!unit->is_running);

    return !__csched_vcpu_is_cache_hot(prv, svc) &&
           cpumask_test_cpu(dest_cpu, mask);
}

static int
_csched_cpu_pick(const struct scheduler *ops, const struct sched_unit *unit,
                 bool commit)
{
    int cpu = sched_unit_master(unit);
    /* We must always use cpu's scratch space */
    cpumask_t *cpus = cpumask_scratch_cpu(cpu);
    cpumask_t idlers;
    const cpumask_t *online = cpupool_domain_master_cpumask(unit->domain);
    struct csched_pcpu *spc = NULL;
    int balance_step;

    for_each_affinity_balance_step( balance_step )
    {
        affinity_balance_cpumask(unit, balance_step, cpus);
        cpumask_and(cpus, online, cpus);
        /*
         * We want to pick up a pcpu among the ones that are online and
         * can accommodate vc. As far as hard affinity is concerned, there
         * always will be at least one of these pcpus in the scratch cpumask,
         * hence, the calls to cpumask_cycle() and cpumask_test_cpu() below
         * are ok.
         *
         * On the other hand, when considering soft affinity, it is possible
         * that the mask is empty (for instance, if the domain has been put
         * in a cpupool that does not contain any of the pcpus in its soft
         * affinity), which would result in the ASSERT()-s inside cpumask_*()
         * operations triggering (in debug builds).
         *
         * Therefore, if that is the case, we just skip the soft affinity
         * balancing step all together.
         */
        if ( balance_step == BALANCE_SOFT_AFFINITY &&
             (!has_soft_affinity(unit) || cpumask_empty(cpus)) )
            continue;

        /* If present, prefer vc's current processor */
        cpu = cpumask_test_cpu(sched_unit_master(unit), cpus)
                ? sched_unit_master(unit)
                : cpumask_cycle(sched_unit_master(unit), cpus);
        ASSERT(cpumask_test_cpu(cpu, cpus));

        /*
         * Try to find an idle processor within the above constraints.
         *
         * In multi-core and multi-threaded CPUs, not all idle execution
         * vehicles are equal!
         *
         * We give preference to the idle execution vehicle with the most
         * idling neighbours in its grouping. This distributes work across
         * distinct cores first and guarantees we don't do something stupid
         * like run two UNITs on co-hyperthreads while there are idle cores
         * or sockets.
         *
         * Notice that, when computing the "idleness" of cpu, we may want to
         * discount unit. That is, iff unit is the currently running and the
         * only runnable unit on cpu, we add cpu to the idlers.
         */
        cpumask_and(&idlers, &cpu_online_map, CSCHED_PRIV(ops)->idlers);
        if ( sched_unit_master(unit) == cpu && is_runq_idle(cpu) )
            __cpumask_set_cpu(cpu, &idlers);
        cpumask_and(cpus, &idlers, cpus);

        /*
         * It is important that cpu points to an idle processor, if a suitable
         * one exists (and we can use cpus to check and, possibly, choose a new
         * CPU, as we just &&-ed it with idlers). In fact, if we are on SMT, and
         * cpu points to a busy thread with an idle sibling, both the threads
         * will be considered the same, from the "idleness" calculation point
         * of view", preventing unit from being moved to the thread that is
         * actually idle.
         *
         * Notice that cpumask_test_cpu() is quicker than cpumask_empty(), so
         * we check for it first.
         */
        if ( !cpumask_test_cpu(cpu, cpus) && !cpumask_empty(cpus) )
            cpu = cpumask_cycle(cpu, cpus);
        __cpumask_clear_cpu(cpu, cpus);

        while ( !cpumask_empty(cpus) )
        {
            cpumask_t cpu_idlers;
            cpumask_t nxt_idlers;
            int nxt, weight_cpu, weight_nxt;
            int migrate_factor;

            nxt = cpumask_cycle(cpu, cpus);

            if ( cpumask_test_cpu(cpu, per_cpu(cpu_core_mask, nxt)) )
            {
                /* We're on the same socket, so check the busy-ness of threads.
                 * Migrate if # of idlers is less at all */
                ASSERT( cpumask_test_cpu(nxt, per_cpu(cpu_core_mask, cpu)) );
                migrate_factor = 1;
                cpumask_and(&cpu_idlers, &idlers, per_cpu(cpu_sibling_mask,
                            cpu));
                cpumask_and(&nxt_idlers, &idlers, per_cpu(cpu_sibling_mask,
                            nxt));
            }
            else
            {
                /* We're on different sockets, so check the busy-ness of cores.
                 * Migrate only if the other core is twice as idle */
                ASSERT( !cpumask_test_cpu(nxt, per_cpu(cpu_core_mask, cpu)) );
                migrate_factor = 2;
                cpumask_and(&cpu_idlers, &idlers, per_cpu(cpu_core_mask, cpu));
                cpumask_and(&nxt_idlers, &idlers, per_cpu(cpu_core_mask, nxt));
            }

            weight_cpu = cpumask_weight(&cpu_idlers);
            weight_nxt = cpumask_weight(&nxt_idlers);
            /* smt_power_savings: consolidate work rather than spreading it */
            if ( sched_smt_power_savings ?
                 weight_cpu > weight_nxt :
                 weight_cpu * migrate_factor < weight_nxt )
            {
                cpumask_and(&nxt_idlers, &nxt_idlers, cpus);
                spc = CSCHED_PCPU(nxt);
                cpu = cpumask_cycle(spc->idle_bias, &nxt_idlers);
                cpumask_andnot(cpus, cpus, per_cpu(cpu_sibling_mask, cpu));
            }
            else
            {
                cpumask_andnot(cpus, cpus, &nxt_idlers);
            }
        }

        /* Stop if cpu is idle */
        if ( cpumask_test_cpu(cpu, &idlers) )
            break;
    }

    if ( commit && spc )
       spc->idle_bias = cpu;

    TRACE_3D(TRC_CSCHED_PICKED_CPU, unit->domain->domain_id, unit->unit_id,
             cpu);

    return cpu;
}

static struct sched_resource *cf_check
csched_res_pick(const struct scheduler *ops, const struct sched_unit *unit)
{
    struct csched_unit *svc = CSCHED_UNIT(unit);

    /*
     * We have been called by vcpu_migrate() (in schedule.c), as part
     * of the process of seeing if vc can be migrated to another pcpu.
     * We make a note about this in svc->flags so that later, in
     * csched_unit_wake() (still called from vcpu_migrate()) we won't
     * get boosted, which we don't deserve as we are "only" migrating.
     */
    set_bit(CSCHED_FLAG_UNIT_MIGRATING, &svc->flags);
    return get_sched_res(_csched_cpu_pick(ops, unit, true));
}

static inline void
__csched_unit_acct_start(struct csched_private *prv, struct csched_unit *svc)
{
    struct csched_dom * const sdom = svc->sdom;
    unsigned long flags;

    spin_lock_irqsave(&prv->lock, flags);

    if ( list_empty(&svc->active_unit_elem) )
    {
        SCHED_UNIT_STAT_CRANK(svc, state_active);
        SCHED_STAT_CRANK(acct_unit_active);

        sdom->active_unit_count++;
        list_add(&svc->active_unit_elem, &sdom->active_unit);
        /* Make weight per-unit */
        prv->weight += sdom->weight;
        if ( list_empty(&sdom->active_sdom_elem) )
        {
            list_add(&sdom->active_sdom_elem, &prv->active_sdom);
        }
    }

    TRACE_3D(TRC_CSCHED_ACCOUNT_START, sdom->dom->domain_id,
             svc->unit->unit_id, sdom->active_unit_count);

    spin_unlock_irqrestore(&prv->lock, flags);
}

static inline void
__csched_unit_acct_stop_locked(struct csched_private *prv,
    struct csched_unit *svc)
{
    struct csched_dom * const sdom = svc->sdom;

    BUG_ON( list_empty(&svc->active_unit_elem) );

    SCHED_UNIT_STAT_CRANK(svc, state_idle);
    SCHED_STAT_CRANK(acct_unit_idle);

    BUG_ON( prv->weight < sdom->weight );
    sdom->active_unit_count--;
    list_del_init(&svc->active_unit_elem);
    prv->weight -= sdom->weight;
    if ( list_empty(&sdom->active_unit) )
    {
        list_del_init(&sdom->active_sdom_elem);
    }

    TRACE_3D(TRC_CSCHED_ACCOUNT_STOP, sdom->dom->domain_id,
             svc->unit->unit_id, sdom->active_unit_count);
}

static void
csched_unit_acct(struct csched_private *prv, unsigned int cpu)
{
    struct sched_unit *currunit = current->sched_unit;
    struct csched_unit * const svc = CSCHED_UNIT(currunit);
    const struct sched_resource *sr = get_sched_res(cpu);
    const struct scheduler *ops = sr->scheduler;

    ASSERT( sched_unit_master(currunit) == cpu );
    ASSERT( svc->sdom != NULL );
    ASSERT( !is_idle_unit(svc->unit) );

    /*
     * If this UNIT's priority was boosted when it last awoke, reset it.
     * If the UNIT is found here, then it's consuming a non-negligeable
     * amount of CPU resources and should no longer be boosted.
     */
    if ( svc->pri == CSCHED_PRI_TS_BOOST )
    {
        svc->pri = CSCHED_PRI_TS_UNDER;
        TRACE_2D(TRC_CSCHED_BOOST_END, svc->sdom->dom->domain_id,
                 svc->unit->unit_id);
    }

    /*
     * Update credits
     */
    burn_credits(svc, NOW());

    /*
     * Put this UNIT and domain back on the active list if it was
     * idling.
     */
    if ( list_empty(&svc->active_unit_elem) )
    {
        __csched_unit_acct_start(prv, svc);
    }
    else
    {
        unsigned int new_cpu;
        unsigned long flags;
        spinlock_t *lock = unit_schedule_lock_irqsave(currunit, &flags);

        /*
         * If it's been active a while, check if we'd be better off
         * migrating it to run elsewhere (see multi-core and multi-thread
         * support in csched_res_pick()).
         */
        new_cpu = _csched_cpu_pick(ops, currunit, false);

        unit_schedule_unlock_irqrestore(lock, flags, currunit);

        if ( new_cpu != cpu )
        {
            SCHED_UNIT_STAT_CRANK(svc, migrate_r);
            SCHED_STAT_CRANK(migrate_running);
            sched_set_pause_flags(currunit, _VPF_migrating);
            /*
             * As we are about to tickle cpu, we should clear its bit in
             * idlers. But, if we are here, it means there is someone running
             * on it, and hence the bit must be zero already.
             */
            ASSERT(!cpumask_test_cpu(cpu, CSCHED_PRIV(ops)->idlers));
            cpu_raise_softirq(cpu, SCHEDULE_SOFTIRQ);
        }
    }
}

static void *cf_check csched_alloc_udata(
    const struct scheduler *ops, struct sched_unit *unit, void *dd)
{
    struct csched_unit *svc;

    /* Allocate per-UNIT info */
    svc = xzalloc(struct csched_unit);
    if ( svc == NULL )
        return NULL;

    INIT_LIST_HEAD(&svc->runq_elem);
    INIT_LIST_HEAD(&svc->active_unit_elem);
    svc->sdom = dd;
    svc->unit = unit;
    svc->pri = is_idle_unit(unit) ?
        CSCHED_PRI_IDLE : CSCHED_PRI_TS_UNDER;
    SCHED_UNIT_STATS_RESET(svc);
    SCHED_STAT_CRANK(unit_alloc);
    return svc;
}

static void cf_check
csched_unit_insert(const struct scheduler *ops, struct sched_unit *unit)
{
    struct csched_unit *svc = unit->priv;
    spinlock_t *lock;

    BUG_ON( is_idle_unit(unit) );

    /* csched_res_pick() looks in vc->processor's runq, so we need the lock. */
    lock = unit_schedule_lock_irq(unit);

    sched_set_res(unit, csched_res_pick(ops, unit));

    spin_unlock_irq(lock);

    lock = unit_schedule_lock_irq(unit);

    if ( !__unit_on_runq(svc) && unit_runnable(unit) && !unit->is_running )
        runq_insert(svc);

    unit_schedule_unlock_irq(lock, unit);

    SCHED_STAT_CRANK(unit_insert);
}

static void cf_check
csched_free_udata(const struct scheduler *ops, void *priv)
{
    struct csched_unit *svc = priv;

    BUG_ON( !list_empty(&svc->runq_elem) );

    xfree(svc);
}

static void cf_check
csched_unit_remove(const struct scheduler *ops, struct sched_unit *unit)
{
    struct csched_private *prv = CSCHED_PRIV(ops);
    struct csched_unit * const svc = CSCHED_UNIT(unit);
    struct csched_dom * const sdom = svc->sdom;

    SCHED_STAT_CRANK(unit_remove);

    ASSERT(!__unit_on_runq(svc));

    if ( test_and_clear_bit(CSCHED_FLAG_UNIT_PARKED, &svc->flags) )
    {
        SCHED_STAT_CRANK(unit_unpark);
        sched_unit_unpause(svc->unit);
    }

    spin_lock_irq(&prv->lock);

    if ( !list_empty(&svc->active_unit_elem) )
        __csched_unit_acct_stop_locked(prv, svc);

    spin_unlock_irq(&prv->lock);

    BUG_ON( sdom == NULL );
}

static void cf_check
csched_unit_sleep(const struct scheduler *ops, struct sched_unit *unit)
{
    struct csched_unit * const svc = CSCHED_UNIT(unit);
    unsigned int cpu = sched_unit_master(unit);
    const struct sched_resource *sr = get_sched_res(cpu);

    SCHED_STAT_CRANK(unit_sleep);

    BUG_ON( is_idle_unit(unit) );

    if ( curr_on_cpu(cpu) == unit )
    {
        /*
         * We are about to tickle cpu, so we should clear its bit in idlers.
         * But, we are here because unit is going to sleep while running on cpu,
         * so the bit must be zero already.
         */
        ASSERT(!cpumask_test_cpu(cpu, CSCHED_PRIV(sr->scheduler)->idlers));
        cpu_raise_softirq(cpu, SCHEDULE_SOFTIRQ);
    }
    else if ( __unit_on_runq(svc) )
        runq_remove(svc);
}

static void cf_check
csched_unit_wake(const struct scheduler *ops, struct sched_unit *unit)
{
    struct csched_unit * const svc = CSCHED_UNIT(unit);
    bool migrating;

    BUG_ON( is_idle_unit(unit) );

    if ( unlikely(curr_on_cpu(sched_unit_master(unit)) == unit) )
    {
        SCHED_STAT_CRANK(unit_wake_running);
        return;
    }
    if ( unlikely(__unit_on_runq(svc)) )
    {
        SCHED_STAT_CRANK(unit_wake_onrunq);
        return;
    }

    if ( likely(unit_runnable(unit)) )
        SCHED_STAT_CRANK(unit_wake_runnable);
    else
        SCHED_STAT_CRANK(unit_wake_not_runnable);

    /*
     * We temporarily boost the priority of awaking UNITs!
     *
     * If this UNIT consumes a non negligible amount of CPU, it
     * will eventually find itself in the credit accounting code
     * path where its priority will be reset to normal.
     *
     * If on the other hand the UNIT consumes little CPU and is
     * blocking and awoken a lot (doing I/O for example), its
     * priority will remain boosted, optimizing it's wake-to-run
     * latencies.
     *
     * This allows wake-to-run latency sensitive UNITs to preempt
     * more CPU resource intensive UNITs without impacting overall
     * system fairness.
     *
     * There are two cases, when we don't want to boost:
     *  - UNITs that are waking up after a migration, rather than
     *    after having block;
     *  - UNITs of capped domains unpausing after earning credits
     *    they had overspent.
     */
    migrating = test_and_clear_bit(CSCHED_FLAG_UNIT_MIGRATING, &svc->flags);

    if ( !migrating && svc->pri == CSCHED_PRI_TS_UNDER &&
         !test_bit(CSCHED_FLAG_UNIT_PARKED, &svc->flags) )
    {
        TRACE_2D(TRC_CSCHED_BOOST_START, unit->domain->domain_id,
                 unit->unit_id);
        SCHED_STAT_CRANK(unit_boost);
        svc->pri = CSCHED_PRI_TS_BOOST;
    }

    /* Put the UNIT on the runq and tickle CPUs */
    runq_insert(svc);
    __runq_tickle(svc);
}

static void cf_check
csched_unit_yield(const struct scheduler *ops, struct sched_unit *unit)
{
    struct csched_unit * const svc = CSCHED_UNIT(unit);

    /* Let the scheduler know that this vcpu is trying to yield */
    set_bit(CSCHED_FLAG_UNIT_YIELD, &svc->flags);
}

static int cf_check
csched_dom_cntl(
    const struct scheduler *ops,
    struct domain *d,
    struct xen_domctl_scheduler_op *op)
{
    struct csched_dom * const sdom = CSCHED_DOM(d);
    struct csched_private *prv = CSCHED_PRIV(ops);
    unsigned long flags;
    int rc = 0;

    /* Protect both get and put branches with the pluggable scheduler
     * lock. Runq lock not needed anywhere in here. */
    spin_lock_irqsave(&prv->lock, flags);

    switch ( op->cmd )
    {
    case XEN_DOMCTL_SCHEDOP_getinfo:
        op->u.credit.weight = sdom->weight;
        op->u.credit.cap = sdom->cap;
        break;
    case XEN_DOMCTL_SCHEDOP_putinfo:
        if ( op->u.credit.weight != 0 )
        {
            if ( !list_empty(&sdom->active_sdom_elem) )
            {
                prv->weight -= sdom->weight * sdom->active_unit_count;
                prv->weight += op->u.credit.weight * sdom->active_unit_count;
            }
            sdom->weight = op->u.credit.weight;
        }

        if ( op->u.credit.cap != (uint16_t)~0U )
            sdom->cap = op->u.credit.cap;
        break;
    default:
        rc = -EINVAL;
        break;
    }

    spin_unlock_irqrestore(&prv->lock, flags);

    return rc;
}

static void cf_check
csched_aff_cntl(const struct scheduler *ops, struct sched_unit *unit,
                const cpumask_t *hard, const cpumask_t *soft)
{
    struct csched_unit *svc = CSCHED_UNIT(unit);

    if ( !hard )
        return;

    /* Are we becoming exclusively pinned? */
    if ( cpumask_weight(hard) == 1 )
        set_bit(CSCHED_FLAG_UNIT_PINNED, &svc->flags);
    else
        clear_bit(CSCHED_FLAG_UNIT_PINNED, &svc->flags);
}

static inline void
__csched_set_tslice(struct csched_private *prv, unsigned int timeslice_ms)
{
    prv->tslice = MILLISECS(timeslice_ms);
    prv->ticks_per_tslice = CSCHED_TICKS_PER_TSLICE;
    if ( timeslice_ms < prv->ticks_per_tslice )
        prv->ticks_per_tslice = 1;
    prv->tick_period_us = timeslice_ms * 1000 / prv->ticks_per_tslice;
    prv->credits_per_tslice = CSCHED_CREDITS_PER_MSEC * timeslice_ms;
    prv->credit = prv->credits_per_tslice * prv->ncpus;
}

static int cf_check
csched_sys_cntl(const struct scheduler *ops,
                        struct xen_sysctl_scheduler_op *sc)
{
    int rc = -EINVAL;
    struct xen_sysctl_credit_schedule *params = &sc->u.sched_credit;
    struct csched_private *prv = CSCHED_PRIV(ops);
    unsigned long flags;

    switch ( sc->cmd )
    {
    case XEN_SYSCTL_SCHEDOP_putinfo:
        if ( params->tslice_ms > XEN_SYSCTL_CSCHED_TSLICE_MAX
             || params->tslice_ms < XEN_SYSCTL_CSCHED_TSLICE_MIN
             || (params->ratelimit_us
                 && (params->ratelimit_us > XEN_SYSCTL_SCHED_RATELIMIT_MAX
                     || params->ratelimit_us < XEN_SYSCTL_SCHED_RATELIMIT_MIN))
             || MICROSECS(params->ratelimit_us) > MILLISECS(params->tslice_ms)
             || params->vcpu_migr_delay_us > XEN_SYSCTL_CSCHED_MGR_DLY_MAX_US )
                goto out;

        spin_lock_irqsave(&prv->lock, flags);
        __csched_set_tslice(prv, params->tslice_ms);
        if ( !prv->ratelimit && params->ratelimit_us )
            printk(XENLOG_INFO "Enabling context switch rate limiting\n");
        else if ( prv->ratelimit && !params->ratelimit_us )
            printk(XENLOG_INFO "Disabling context switch rate limiting\n");
        prv->ratelimit = MICROSECS(params->ratelimit_us);
        prv->unit_migr_delay = MICROSECS(params->vcpu_migr_delay_us);
        spin_unlock_irqrestore(&prv->lock, flags);

        /* FALLTHRU */
    case XEN_SYSCTL_SCHEDOP_getinfo:
        params->tslice_ms = prv->tslice / MILLISECS(1);
        params->ratelimit_us = prv->ratelimit / MICROSECS(1);
        params->vcpu_migr_delay_us = prv->unit_migr_delay / MICROSECS(1);
        rc = 0;
        break;
    }
    out:
    return rc;
}

static void *cf_check
csched_alloc_domdata(const struct scheduler *ops, struct domain *dom)
{
    struct csched_dom *sdom;

    sdom = xzalloc(struct csched_dom);
    if ( sdom == NULL )
        return ERR_PTR(-ENOMEM);

    /* Initialize credit and weight */
    INIT_LIST_HEAD(&sdom->active_unit);
    INIT_LIST_HEAD(&sdom->active_sdom_elem);
    sdom->dom = dom;
    sdom->weight = CSCHED_DEFAULT_WEIGHT;

    return sdom;
}

static void cf_check
csched_free_domdata(const struct scheduler *ops, void *data)
{
    xfree(data);
}

/*
 * This is a O(n) optimized sort of the runq.
 *
 * Time-share UNITs can only be one of two priorities, UNDER or OVER. We walk
 * through the runq and move up any UNDERs that are preceded by OVERS. We
 * remember the last UNDER to make the move up operation O(1).
 */
static void
csched_runq_sort(struct csched_private *prv, unsigned int cpu)
{
    struct csched_pcpu * const spc = CSCHED_PCPU(cpu);
    struct list_head *runq, *elem, *next, *last_under;
    struct csched_unit *svc_elem;
    spinlock_t *lock;
    unsigned long flags;
    int sort_epoch;

    sort_epoch = prv->runq_sort;
    if ( sort_epoch == spc->runq_sort_last )
        return;

    spc->runq_sort_last = sort_epoch;

    lock = pcpu_schedule_lock_irqsave(cpu, &flags);

    runq = &spc->runq;
    elem = runq->next;
    last_under = runq;

    while ( elem != runq )
    {
        next = elem->next;
        svc_elem = __runq_elem(elem);

        if ( svc_elem->pri >= CSCHED_PRI_TS_UNDER )
        {
            /* does elem need to move up the runq? */
            if ( elem->prev != last_under )
            {
                list_del(elem);
                list_add(elem, last_under);
            }
            last_under = elem;
        }

        elem = next;
    }

    pcpu_schedule_unlock_irqrestore(lock, flags, cpu);
}

static void cf_check csched_acct(void* dummy)
{
    struct csched_private *prv = dummy;
    unsigned long flags;
    struct list_head *iter_unit, *next_unit;
    struct list_head *iter_sdom, *next_sdom;
    struct csched_unit *svc;
    struct csched_dom *sdom;
    uint32_t credit_total;
    uint32_t weight_total;
    uint32_t weight_left;
    uint32_t credit_fair;
    uint32_t credit_peak;
    uint32_t credit_cap;
    int credit_balance;
    int credit_xtra;
    int credit;


    spin_lock_irqsave(&prv->lock, flags);

    weight_total = prv->weight;
    credit_total = prv->credit;

    /* Converge balance towards 0 when it drops negative */
    if ( prv->credit_balance < 0 )
    {
        credit_total -= prv->credit_balance;
        SCHED_STAT_CRANK(acct_balance);
    }

    if ( unlikely(weight_total == 0) )
    {
        prv->credit_balance = 0;
        spin_unlock_irqrestore(&prv->lock, flags);
        SCHED_STAT_CRANK(acct_no_work);
        goto out;
    }

    SCHED_STAT_CRANK(acct_run);

    weight_left = weight_total;
    credit_balance = 0;
    credit_xtra = 0;
    credit_cap = 0U;

    list_for_each_safe( iter_sdom, next_sdom, &prv->active_sdom )
    {
        sdom = list_entry(iter_sdom, struct csched_dom, active_sdom_elem);

        BUG_ON( is_idle_domain(sdom->dom) );
        BUG_ON( sdom->active_unit_count == 0 );
        BUG_ON( sdom->weight == 0 );
        BUG_ON( (sdom->weight * sdom->active_unit_count) > weight_left );

        weight_left -= ( sdom->weight * sdom->active_unit_count );

        /*
         * A domain's fair share is computed using its weight in competition
         * with that of all other active domains.
         *
         * At most, a domain can use credits to run all its active UNITs
         * for one full accounting period. We allow a domain to earn more
         * only when the system-wide credit balance is negative.
         */
        credit_peak = sdom->active_unit_count * prv->credits_per_tslice;
        if ( prv->credit_balance < 0 )
        {
            credit_peak += ( ( -prv->credit_balance
                               * sdom->weight
                               * sdom->active_unit_count) +
                             (weight_total - 1)
                           ) / weight_total;
        }

        if ( sdom->cap != 0U )
        {
            credit_cap = ((sdom->cap * prv->credits_per_tslice) + 99) / 100;
            if ( credit_cap < credit_peak )
                credit_peak = credit_cap;

            /* FIXME -- set cap per-unit as well...? */
            credit_cap = ( credit_cap + ( sdom->active_unit_count - 1 )
                         ) / sdom->active_unit_count;
        }

        credit_fair = ( ( credit_total
                          * sdom->weight
                          * sdom->active_unit_count )
                        + (weight_total - 1)
                      ) / weight_total;

        if ( credit_fair < credit_peak )
        {
            credit_xtra = 1;
        }
        else
        {
            if ( weight_left != 0U )
            {
                /* Give other domains a chance at unused credits */
                credit_total += ( ( ( credit_fair - credit_peak
                                    ) * weight_total
                                  ) + ( weight_left - 1 )
                                ) / weight_left;
            }

            if ( credit_xtra )
            {
                /*
                 * Lazily keep domains with extra credits at the head of
                 * the queue to give others a chance at them in future
                 * accounting periods.
                 */
                SCHED_STAT_CRANK(acct_reorder);
                list_del(&sdom->active_sdom_elem);
                list_add(&sdom->active_sdom_elem, &prv->active_sdom);
            }

            credit_fair = credit_peak;
        }

        /* Compute fair share per UNIT */
        credit_fair = ( credit_fair + ( sdom->active_unit_count - 1 )
                      ) / sdom->active_unit_count;


        list_for_each_safe( iter_unit, next_unit, &sdom->active_unit )
        {
            svc = list_entry(iter_unit, struct csched_unit, active_unit_elem);
            BUG_ON( sdom != svc->sdom );

            /* Increment credit */
            atomic_add(credit_fair, &svc->credit);
            credit = atomic_read(&svc->credit);

            /*
             * Recompute priority or, if UNIT is idling, remove it from
             * the active list.
             */
            if ( credit < 0 )
            {
                svc->pri = CSCHED_PRI_TS_OVER;

                /* Park running UNITs of capped-out domains */
                if ( sdom->cap != 0U &&
                     credit < -credit_cap &&
                     !test_and_set_bit(CSCHED_FLAG_UNIT_PARKED, &svc->flags) )
                {
                    SCHED_STAT_CRANK(unit_park);
                    sched_unit_pause_nosync(svc->unit);
                }

                /* Lower bound on credits */
                if ( credit < -prv->credits_per_tslice )
                {
                    SCHED_STAT_CRANK(acct_min_credit);
                    credit = -prv->credits_per_tslice;
                    atomic_set(&svc->credit, credit);
                }
            }
            else
            {
                svc->pri = CSCHED_PRI_TS_UNDER;

                /* Unpark any capped domains whose credits go positive */
                if ( test_bit(CSCHED_FLAG_UNIT_PARKED, &svc->flags) )
                {
                    /*
                     * It's important to unset the flag AFTER the unpause()
                     * call to make sure the UNIT's priority is not boosted
                     * if it is woken up here.
                     */
                    SCHED_STAT_CRANK(unit_unpark);
                    sched_unit_unpause(svc->unit);
                    clear_bit(CSCHED_FLAG_UNIT_PARKED, &svc->flags);
                }

                /* Upper bound on credits means UNIT stops earning */
                if ( credit > prv->credits_per_tslice )
                {
                    __csched_unit_acct_stop_locked(prv, svc);
                    /* Divide credits in half, so that when it starts
                     * accounting again, it starts a little bit "ahead" */
                    credit /= 2;
                    atomic_set(&svc->credit, credit);
                }
            }

            SCHED_UNIT_STAT_SET(svc, credit_last, credit);
            SCHED_UNIT_STAT_SET(svc, credit_incr, credit_fair);
            credit_balance += credit;
        }
    }

    prv->credit_balance = credit_balance;

    spin_unlock_irqrestore(&prv->lock, flags);

    /* Inform each CPU that its runq needs to be sorted */
    prv->runq_sort++;

out:
    set_timer( &prv->master_ticker, NOW() + prv->tslice);
}

static void cf_check csched_tick(void *_cpu)
{
    unsigned int cpu = (unsigned long)_cpu;
    const struct sched_resource *sr = get_sched_res(cpu);
    struct csched_pcpu *spc = CSCHED_PCPU(cpu);
    struct csched_private *prv = CSCHED_PRIV(sr->scheduler);

    spc->tick++;

    /*
     * Accounting for running UNIT
     */
    if ( !is_idle_unit(current->sched_unit) )
        csched_unit_acct(prv, cpu);

    /*
     * Check if runq needs to be sorted
     *
     * Every physical CPU resorts the runq after the accounting master has
     * modified priorities. This is a special O(n) sort and runs at most
     * once per accounting period (currently 30 milliseconds).
     */
    csched_runq_sort(prv, cpu);

    set_timer(&spc->ticker, NOW() + MICROSECS(prv->tick_period_us) );
}

static struct csched_unit *
csched_runq_steal(int peer_cpu, int cpu, int pri, int balance_step)
{
    const struct sched_resource *sr = get_sched_res(cpu);
    const struct csched_private * const prv = CSCHED_PRIV(sr->scheduler);
    const struct csched_pcpu * const peer_pcpu = CSCHED_PCPU(peer_cpu);
    struct csched_unit *speer;
    struct list_head *iter;
    struct sched_unit *unit;

    ASSERT(peer_pcpu != NULL);

    /*
     * Don't steal from an idle CPU's runq because it's about to
     * pick up work from it itself.
     */
    if ( unlikely(is_idle_unit(curr_on_cpu(peer_cpu))) )
        goto out;

    list_for_each( iter, &peer_pcpu->runq )
    {
        speer = __runq_elem(iter);

        /*
         * If next available UNIT here is not of strictly higher
         * priority than ours, this PCPU is useless to us.
         */
        if ( speer->pri <= pri )
            break;

        /* Is this UNIT runnable on our PCPU? */
        unit = speer->unit;
        BUG_ON( is_idle_unit(unit) );

        /*
         * If the unit is still in peer_cpu's scheduling tail, or if it
         * has no useful soft affinity, skip it.
         *
         * In fact, what we want is to check if we have any "soft-affine
         * work" to steal, before starting to look at "hard-affine work".
         *
         * Notice that, if not even one unit on this runq has a useful
         * soft affinity, we could have avoid considering this runq for
         * a soft balancing step in the first place. This, for instance,
         * can be implemented by taking note of on what runq there are
         * units with useful soft affinities in some sort of bitmap
         * or counter.
         */
        if ( unit->is_running || (balance_step == BALANCE_SOFT_AFFINITY &&
                                  !has_soft_affinity(unit)) )
            continue;

        affinity_balance_cpumask(unit, balance_step, cpumask_scratch);
        if ( __csched_unit_is_migrateable(prv, unit, cpu, cpumask_scratch) )
        {
            /* We got a candidate. Grab it! */
            TRACE_3D(TRC_CSCHED_STOLEN_UNIT, peer_cpu,
                     unit->domain->domain_id, unit->unit_id);
            SCHED_UNIT_STAT_CRANK(speer, migrate_q);
            SCHED_STAT_CRANK(migrate_queued);
            runq_remove(speer);
            sched_set_res(unit, get_sched_res(cpu));
            /*
             * speer will start executing directly on cpu, without having to
             * go through runq_insert(). So we must update the runnable count
             * for cpu here.
             */
            inc_nr_runnable(cpu);
            return speer;
        }
    }
 out:
    SCHED_STAT_CRANK(steal_peer_idle);
    return NULL;
}

static struct csched_unit *
csched_load_balance(struct csched_private *prv, int cpu,
    struct csched_unit *snext, bool *stolen)
{
    const struct cpupool *c = get_sched_res(cpu)->cpupool;
    struct csched_unit *speer;
    cpumask_t workers;
    const cpumask_t *online = c->res_valid;
    int peer_cpu, first_cpu, peer_node, bstep;
    int node = cpu_to_node(cpu);

    BUG_ON(get_sched_res(cpu) != snext->unit->res);

    /* If this CPU is going offline, we shouldn't steal work.  */
    if ( unlikely(!cpumask_test_cpu(cpu, online)) )
        goto out;

    if ( snext->pri == CSCHED_PRI_IDLE )
        SCHED_STAT_CRANK(load_balance_idle);
    else if ( snext->pri == CSCHED_PRI_TS_OVER )
        SCHED_STAT_CRANK(load_balance_over);
    else
        SCHED_STAT_CRANK(load_balance_other);

    /*
     * Let's look around for work to steal, taking both hard affinity
     * and soft affinity into account. More specifically, we check all
     * the non-idle CPUs' runq, looking for:
     *  1. any "soft-affine work" to steal first,
     *  2. if not finding anything, any "hard-affine work" to steal.
     */
    for_each_affinity_balance_step( bstep )
    {
        /*
         * We peek at the non-idling CPUs in a node-wise fashion. In fact,
         * it is more likely that we find some affine work on our same
         * node, not to mention that migrating units within the same node
         * could well expected to be cheaper than across-nodes (memory
         * stays local, there might be some node-wide cache[s], etc.).
         */
        peer_node = node;
        do
        {
            /* Select the pCPUs in this node that have work we can steal. */
            cpumask_andnot(&workers, online, prv->idlers);
            cpumask_and(&workers, &workers, &node_to_cpumask(peer_node));
            __cpumask_clear_cpu(cpu, &workers);

            first_cpu = cpumask_cycle(prv->balance_bias[peer_node], &workers);
            if ( first_cpu >= nr_cpu_ids )
                goto next_node;
            peer_cpu = first_cpu;
            do
            {
                spinlock_t *lock;

                /*
                 * If there is only one runnable unit on peer_cpu, it means
                 * there's no one to be stolen in its runqueue, so skip it.
                 *
                 * Checking this without holding the lock is racy... But that's
                 * the whole point of this optimization!
                 *
                 * In more details:
                 * - if we race with dec_nr_runnable(), we may try to take the
                 *   lock and call csched_runq_steal() for no reason. This is
                 *   not a functional issue, and should be infrequent enough.
                 *   And we can avoid that by re-checking nr_runnable after
                 *   having grabbed the lock, if we want;
                 * - if we race with inc_nr_runnable(), we skip a pCPU that may
                 *   have runnable units in its runqueue, but that's not a
                 *   problem because:
                 *   + if racing with csched_unit_insert() or csched_unit_wake(),
                 *     __runq_tickle() will be called afterwords, so the unit
                 *     won't get stuck in the runqueue for too long;
                 *   + if racing with csched_runq_steal(), it may be that an
                 *     unit that we could have picked up, stays in a runqueue
                 *     until someone else tries to steal it again. But this is
                 *     no worse than what can happen already (without this
                 *     optimization), it the pCPU would schedule right after we
                 *     have taken the lock, and hence block on it.
                 */
                if ( CSCHED_PCPU(peer_cpu)->nr_runnable <= 1 )
                {
                    TRACE_2D(TRC_CSCHED_STEAL_CHECK, peer_cpu, /* skipp'n */ 0);
                    goto next_cpu;
                }

                /*
                 * Get ahold of the scheduler lock for this peer CPU.
                 *
                 * Note: We don't spin on this lock but simply try it. Spinning
                 * could cause a deadlock if the peer CPU is also load
                 * balancing and trying to lock this CPU.
                 */
                lock = pcpu_schedule_trylock(peer_cpu);
                SCHED_STAT_CRANK(steal_trylock);
                if ( !lock )
                {
                    SCHED_STAT_CRANK(steal_trylock_failed);
                    TRACE_2D(TRC_CSCHED_STEAL_CHECK, peer_cpu, /* skip */ 0);
                    goto next_cpu;
                }

                TRACE_2D(TRC_CSCHED_STEAL_CHECK, peer_cpu, /* checked */ 1);

                /* Any work over there to steal? */
                speer = cpumask_test_cpu(peer_cpu, online) ?
                    csched_runq_steal(peer_cpu, cpu, snext->pri, bstep) : NULL;
                pcpu_schedule_unlock(lock, peer_cpu);

                /* As soon as one unit is found, balancing ends */
                if ( speer != NULL )
                {
                    *stolen = true;
                    /*
                     * Next time we'll look for work to steal on this node, we
                     * will start from the next pCPU, with respect to this one,
                     * so we don't risk stealing always from the same ones.
                     */
                    prv->balance_bias[peer_node] = peer_cpu;
                    return speer;
                }

 next_cpu:
                peer_cpu = cpumask_cycle(peer_cpu, &workers);

            } while( peer_cpu != first_cpu );

 next_node:
            peer_node = cycle_node(peer_node, node_online_map);
        } while( peer_node != node );
    }

 out:
    /* Failed to find more important work elsewhere... */
    __runq_remove(snext);
    return snext;
}

/*
 * This function is in the critical path. It is designed to be simple and
 * fast for the common case.
 */
static void cf_check csched_schedule(
    const struct scheduler *ops, struct sched_unit *unit, s_time_t now,
    bool tasklet_work_scheduled)
{
    const unsigned int cur_cpu = smp_processor_id();
    const unsigned int sched_cpu = sched_get_resource_cpu(cur_cpu);
    struct csched_pcpu *spc = CSCHED_PCPU(cur_cpu);
    struct list_head * const runq = RUNQ(sched_cpu);
    struct csched_unit * const scurr = CSCHED_UNIT(unit);
    struct csched_private *prv = CSCHED_PRIV(ops);
    struct csched_unit *snext;
    s_time_t runtime, tslice;
    bool migrated = false;

    SCHED_STAT_CRANK(schedule);
    CSCHED_UNIT_CHECK(unit);

    /*
     * Here in Credit1 code, we usually just call TRACE_nD() helpers, and
     * don't care about packing. But scheduling happens very often, so it
     * actually is important that the record is as small as possible.
     */
    if ( unlikely(tb_init_done) )
    {
        struct {
            unsigned cpu:16, tasklet:8, idle:8;
        } d;
        d.cpu = cur_cpu;
        d.tasklet = tasklet_work_scheduled;
        d.idle = is_idle_unit(unit);
        __trace_var(TRC_CSCHED_SCHEDULE, 1, sizeof(d),
                    (unsigned char *)&d);
    }

    runtime = now - unit->state_entry_time;
    if ( runtime < 0 ) /* Does this ever happen? */
        runtime = 0;

    if ( !is_idle_unit(unit) )
    {
        /* Update credits of a non-idle UNIT. */
        burn_credits(scurr, now);
        scurr->start_time -= now;
        scurr->last_sched_time = now;
    }
    else
    {
        /* Re-instate a boosted idle UNIT as normal-idle. */
        scurr->pri = CSCHED_PRI_IDLE;
    }

    /* Choices, choices:
     * - If we have a tasklet, we need to run the idle unit no matter what.
     * - If sched rate limiting is in effect, and the current unit has
     *   run for less than that amount of time, continue the current one,
     *   but with a shorter timeslice and return it immediately
     * - Otherwise, chose the one with the highest priority (which may
     *   be the one currently running)
     * - If the currently running one is TS_OVER, see if there
     *   is a higher priority one waiting on the runqueue of another
     *   cpu and steal it.
     */

    /*
     * If we have schedule rate limiting enabled, check to see
     * how long we've run for.
     *
     * If scurr is yielding, however, we don't let rate limiting kick in.
     * In fact, it may be the case that scurr is about to spin, and there's
     * no point forcing it to do so until rate limiting expires.
     */
    if ( !test_bit(CSCHED_FLAG_UNIT_YIELD, &scurr->flags)
         && !tasklet_work_scheduled
         && prv->ratelimit
         && unit_runnable_state(unit)
         && !is_idle_unit(unit)
         && runtime < prv->ratelimit )
    {
        snext = scurr;
        snext->start_time += now;
        perfc_incr(delay_ms);
        /*
         * Next timeslice must last just until we'll have executed for
         * ratelimit. However, to avoid setting a really short timer, which
         * will most likely be inaccurate and counterproductive, we never go
         * below CSCHED_MIN_TIMER.
         */
        tslice = prv->ratelimit - runtime;
        if ( unlikely(runtime < CSCHED_MIN_TIMER) )
            tslice = CSCHED_MIN_TIMER;
        if ( unlikely(tb_init_done) )
        {
            struct {
                unsigned unit:16, dom:16;
                unsigned runtime;
            } d;
            d.dom = unit->domain->domain_id;
            d.unit = unit->unit_id;
            d.runtime = runtime;
            __trace_var(TRC_CSCHED_RATELIMIT, 1, sizeof(d),
                        (unsigned char *)&d);
        }

        goto out;
    }
    tslice = prv->tslice;

    /*
     * Select next runnable local UNIT (ie top of local runq)
     */
    if ( unit_runnable(unit) )
        __runq_insert(scurr);
    else
    {
        BUG_ON( is_idle_unit(unit) || list_empty(runq) );
        /* Current has blocked. Update the runnable counter for this cpu. */
        dec_nr_runnable(sched_cpu);
    }

    /*
     * Clear YIELD flag before scheduling out
     */
    clear_bit(CSCHED_FLAG_UNIT_YIELD, &scurr->flags);

    do {
        snext = __runq_elem(runq->next);

        /* Tasklet work (which runs in idle UNIT context) overrides all else. */
        if ( tasklet_work_scheduled )
        {
            TRACE_0D(TRC_CSCHED_SCHED_TASKLET);
            snext = CSCHED_UNIT(sched_idle_unit(sched_cpu));
            snext->pri = CSCHED_PRI_TS_BOOST;
        }

        /*
         * SMP Load balance:
         *
         * If the next highest priority local runnable UNIT has already eaten
         * through its credits, look on other PCPUs to see if we have more
         * urgent work... If not, csched_load_balance() will return snext, but
         * already removed from the runq.
         */
        if ( snext->pri > CSCHED_PRI_TS_OVER )
            __runq_remove(snext);
        else
            snext = csched_load_balance(prv, sched_cpu, snext, &migrated);

    } while ( !unit_runnable_state(snext->unit) );

    /*
     * Update idlers mask if necessary. When we're idling, other CPUs
     * will tickle us when they get extra work.
     */
    if ( !tasklet_work_scheduled && snext->pri == CSCHED_PRI_IDLE )
    {
        if ( !cpumask_test_cpu(sched_cpu, prv->idlers) )
            cpumask_set_cpu(sched_cpu, prv->idlers);
    }
    else if ( cpumask_test_cpu(sched_cpu, prv->idlers) )
    {
        cpumask_clear_cpu(sched_cpu, prv->idlers);
    }

    if ( !is_idle_unit(snext->unit) )
        snext->start_time += now;

out:
    /*
     * Return task to run next...
     */
    unit->next_time = (is_idle_unit(snext->unit) ?
                -1 : tslice);
    unit->next_task = snext->unit;
    snext->unit->migrated = migrated;

    /* Stop credit tick when going to idle, restart it when coming from idle. */
    if ( !is_idle_unit(unit) && is_idle_unit(unit->next_task) )
        stop_timer(&spc->ticker);
    if ( is_idle_unit(unit) && !is_idle_unit(unit->next_task) )
        set_timer(&spc->ticker, now + MICROSECS(prv->tick_period_us)
                                - now % MICROSECS(prv->tick_period_us) );

    CSCHED_UNIT_CHECK(unit->next_task);
}

static void
csched_dump_unit(const struct csched_unit *svc)
{
    struct csched_dom * const sdom = svc->sdom;

    printk("[%i.%i] pri=%i flags=%x cpu=%i",
            svc->unit->domain->domain_id,
            svc->unit->unit_id,
            svc->pri,
            svc->flags,
            sched_unit_master(svc->unit));

    if ( sdom )
    {
        printk(" credit=%i [w=%u,cap=%u]", atomic_read(&svc->credit),
                sdom->weight, sdom->cap);
#ifdef CSCHED_STATS
        printk(" (%d+%u) {a/i=%u/%u m=%u+%u (k=%u)}",
                svc->stats.credit_last,
                svc->stats.credit_incr,
                svc->stats.state_active,
                svc->stats.state_idle,
                svc->stats.migrate_q,
                svc->stats.migrate_r,
                svc->stats.kicked_away);
#endif
    }

    printk("\n");
}

static void cf_check
csched_dump_pcpu(const struct scheduler *ops, int cpu)
{
    const struct list_head *runq;
    struct list_head *iter;
    struct csched_private *prv = CSCHED_PRIV(ops);
    const struct csched_pcpu *spc;
    const struct csched_unit *svc;
    spinlock_t *lock;
    unsigned long flags;
    int loop;

    /*
     * We need both locks:
     * - csched_dump_unit() wants to access domains' scheduling
     *   parameters, which are protected by the private scheduler lock;
     * - we scan through the runqueue, so we need the proper runqueue
     *   lock (the one of the runqueue of this cpu).
     */
    spin_lock_irqsave(&prv->lock, flags);
    lock = pcpu_schedule_lock(cpu);

    spc = CSCHED_PCPU(cpu);
    runq = &spc->runq;

    printk("CPU[%02d] nr_run=%d, sort=%d, sibling={%*pbl}, core={%*pbl}\n",
           cpu, spc->nr_runnable, spc->runq_sort_last,
           CPUMASK_PR(per_cpu(cpu_sibling_mask, cpu)),
           CPUMASK_PR(per_cpu(cpu_core_mask, cpu)));

    /* current UNIT (nothing to say if that's the idle unit). */
    svc = CSCHED_UNIT(curr_on_cpu(cpu));
    if ( svc && !is_idle_unit(svc->unit) )
    {
        printk("\trun: ");
        csched_dump_unit(svc);
    }

    loop = 0;
    list_for_each( iter, runq )
    {
        svc = __runq_elem(iter);
        if ( svc )
        {
            printk("\t%3d: ", ++loop);
            csched_dump_unit(svc);
        }
    }

    pcpu_schedule_unlock(lock, cpu);
    spin_unlock_irqrestore(&prv->lock, flags);
}

static void cf_check
csched_dump(const struct scheduler *ops)
{
    struct list_head *iter_sdom, *iter_svc;
    struct csched_private *prv = CSCHED_PRIV(ops);
    int loop;
    unsigned long flags;

    spin_lock_irqsave(&prv->lock, flags);

    printk("info:\n"
           "\tncpus              = %u\n"
           "\tmaster             = %u\n"
           "\tcredit             = %u\n"
           "\tcredit balance     = %d\n"
           "\tweight             = %u\n"
           "\trunq_sort          = %u\n"
           "\tdefault-weight     = %d\n"
           "\ttslice             = %"PRI_stime"ms\n"
           "\tratelimit          = %"PRI_stime"us\n"
           "\tcredits per msec   = %d\n"
           "\tticks per tslice   = %d\n"
           "\tmigration delay    = %"PRI_stime"us\n",
           prv->ncpus,
           prv->master,
           prv->credit,
           prv->credit_balance,
           prv->weight,
           prv->runq_sort,
           CSCHED_DEFAULT_WEIGHT,
           prv->tslice / MILLISECS(1),
           prv->ratelimit / MICROSECS(1),
           CSCHED_CREDITS_PER_MSEC,
           prv->ticks_per_tslice,
           prv->unit_migr_delay/ MICROSECS(1));

    printk("idlers: %*pb\n", CPUMASK_PR(prv->idlers));

    printk("active units:\n");
    loop = 0;
    list_for_each( iter_sdom, &prv->active_sdom )
    {
        const struct csched_dom *sdom;

        sdom = list_entry(iter_sdom, struct csched_dom, active_sdom_elem);

        list_for_each( iter_svc, &sdom->active_unit )
        {
            const struct csched_unit *svc;
            spinlock_t *lock;

            svc = list_entry(iter_svc, struct csched_unit, active_unit_elem);
            lock = unit_schedule_lock(svc->unit);

            printk("\t%3d: ", ++loop);
            csched_dump_unit(svc);

            unit_schedule_unlock(lock, svc->unit);
        }
    }

    spin_unlock_irqrestore(&prv->lock, flags);
}

static int __init cf_check
csched_global_init(void)
{
    if ( sched_credit_tslice_ms > XEN_SYSCTL_CSCHED_TSLICE_MAX ||
         sched_credit_tslice_ms < XEN_SYSCTL_CSCHED_TSLICE_MIN )
    {
        printk("WARNING: sched_credit_tslice_ms outside of valid range [%d,%d].\n"
               " Resetting to default %u\n",
               XEN_SYSCTL_CSCHED_TSLICE_MIN,
               XEN_SYSCTL_CSCHED_TSLICE_MAX,
               CSCHED_DEFAULT_TSLICE_MS);
        sched_credit_tslice_ms = CSCHED_DEFAULT_TSLICE_MS;
    }

    if ( MICROSECS(sched_ratelimit_us) > MILLISECS(sched_credit_tslice_ms) )
        printk("WARNING: sched_ratelimit_us >"
               "sched_credit_tslice_ms is undefined\n"
               "Setting ratelimit to tslice\n");

    if ( vcpu_migration_delay_us > XEN_SYSCTL_CSCHED_MGR_DLY_MAX_US )
    {
        vcpu_migration_delay_us = 0;
        printk("WARNING: vcpu_migration_delay outside of valid range [0,%d]us.\n"
               "Resetting to default: %u\n",
               XEN_SYSCTL_CSCHED_MGR_DLY_MAX_US, vcpu_migration_delay_us);
    }

    return 0;
}

static int cf_check
csched_init(struct scheduler *ops)
{
    struct csched_private *prv;

    prv = xzalloc(struct csched_private);
    if ( prv == NULL )
        return -ENOMEM;

    prv->balance_bias = xzalloc_array(uint32_t, MAX_NUMNODES);
    if ( prv->balance_bias == NULL )
    {
        xfree(prv);
        return -ENOMEM;
    }

    if ( !zalloc_cpumask_var(&prv->cpus) ||
         !zalloc_cpumask_var(&prv->idlers) )
    {
        free_cpumask_var(prv->cpus);
        xfree(prv->balance_bias);
        xfree(prv);
        return -ENOMEM;
    }

    ops->sched_data = prv;
    spin_lock_init(&prv->lock);
    INIT_LIST_HEAD(&prv->active_sdom);
    prv->master = UINT_MAX;

    __csched_set_tslice(prv, sched_credit_tslice_ms);

    if ( MICROSECS(sched_ratelimit_us) > MILLISECS(sched_credit_tslice_ms) )
        prv->ratelimit = prv->tslice;
    else
        prv->ratelimit = MICROSECS(sched_ratelimit_us);

    prv->unit_migr_delay = MICROSECS(vcpu_migration_delay_us);

    return 0;
}

static void cf_check
csched_deinit(struct scheduler *ops)
{
    struct csched_private *prv;

    prv = CSCHED_PRIV(ops);
    if ( prv != NULL )
    {
        ops->sched_data = NULL;
        free_cpumask_var(prv->cpus);
        free_cpumask_var(prv->idlers);
        xfree(prv->balance_bias);
        xfree(prv);
    }
}

static const struct scheduler sched_credit_def = {
    .name           = "SMP Credit Scheduler",
    .opt_name       = "credit",
    .sched_id       = XEN_SCHEDULER_CREDIT,
    .sched_data     = NULL,

    .global_init    = csched_global_init,

    .insert_unit    = csched_unit_insert,
    .remove_unit    = csched_unit_remove,

    .sleep          = csched_unit_sleep,
    .wake           = csched_unit_wake,
    .yield          = csched_unit_yield,

    .adjust         = csched_dom_cntl,
    .adjust_affinity= csched_aff_cntl,
    .adjust_global  = csched_sys_cntl,

    .pick_resource  = csched_res_pick,
    .do_schedule    = csched_schedule,

    .dump_cpu_state = csched_dump_pcpu,
    .dump_settings  = csched_dump,
    .init           = csched_init,
    .deinit         = csched_deinit,
    .alloc_udata    = csched_alloc_udata,
    .free_udata     = csched_free_udata,
    .alloc_pdata    = csched_alloc_pdata,
    .deinit_pdata   = csched_deinit_pdata,
    .free_pdata     = csched_free_pdata,
    .switch_sched   = csched_switch_sched,
    .alloc_domdata  = csched_alloc_domdata,
    .free_domdata   = csched_free_domdata,
    .move_timers    = csched_move_timers,
};

REGISTER_SCHEDULER(sched_credit_def);