summaryrefslogtreecommitdiff
path: root/xen/common/rcupdate.c
blob: 212a99acd8c8d4c2649b3bcc56bb163f87ba7b8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; If not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (C) IBM Corporation, 2001
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *          Manfred Spraul <manfred@colorfullife.com>
 * 
 * Modifications for Xen: Jose Renato Santos
 * Copyright (C) Hewlett-Packard, 2006
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
 * http://lse.sourceforge.net/locking/rcupdate.html
 */
#include <xen/types.h>
#include <xen/kernel.h>
#include <xen/init.h>
#include <xen/param.h>
#include <xen/spinlock.h>
#include <xen/smp.h>
#include <xen/rcupdate.h>
#include <xen/sched.h>
#include <asm/atomic.h>
#include <xen/bitops.h>
#include <xen/percpu.h>
#include <xen/softirq.h>
#include <xen/cpu.h>
#include <xen/stop_machine.h>

DEFINE_PER_CPU(unsigned int, rcu_lock_cnt);

/* Global control variables for rcupdate callback mechanism. */
static struct rcu_ctrlblk {
    long cur;           /* Current batch number.                      */
    long completed;     /* Number of the last completed batch         */
    int  next_pending;  /* Is the next batch already waiting?         */

    spinlock_t  lock __cacheline_aligned;
    cpumask_t   cpumask; /* CPUs that need to switch in order ... */
    cpumask_t   idle_cpumask; /* ... unless they are already idle */
    /* for current batch to proceed.        */
} __cacheline_aligned rcu_ctrlblk = {
    .cur = -300,
    .completed = -300,
    .lock = SPIN_LOCK_UNLOCKED,
};

/*
 * Per-CPU data for Read-Copy Update.
 * nxtlist - new callbacks are added here
 * curlist - current batch for which quiescent cycle started if any
 */
struct rcu_data {
    /* 1) quiescent state handling : */
    long quiescbatch;    /* Batch # for grace period */
    int  qs_pending;     /* core waits for quiesc state */

    /* 2) batch handling */
    long            batch;            /* Batch # for current RCU batch */
    struct rcu_head *nxtlist;
    struct rcu_head **nxttail;
    long            qlen;             /* # of queued callbacks */
    struct rcu_head *curlist;
    struct rcu_head **curtail;
    struct rcu_head *donelist;
    struct rcu_head **donetail;
    long            blimit;           /* Upper limit on a processed batch */
    int cpu;
    long            last_rs_qlen;     /* qlen during the last resched */

    /* 3) idle CPUs handling */
    struct timer idle_timer;
    bool idle_timer_active;

    bool            process_callbacks;
    bool            barrier_active;
};

/*
 * If a CPU with RCU callbacks queued goes idle, when the grace period is
 * not finished yet, how can we make sure that the callbacks will eventually
 * be executed? In Linux (2.6.21, the first "tickless idle" Linux kernel),
 * the periodic timer tick would not be stopped for such CPU. Here in Xen,
 * we (may) don't even have a periodic timer tick, so we need to use a
 * special purpose timer.
 *
 * Such timer:
 * 1) is armed only when a CPU with an RCU callback(s) queued goes idle
 *    before the end of the current grace period (_not_ for any CPUs that
 *    go idle!);
 * 2) when it fires, it is only re-armed if the grace period is still
 *    running;
 * 3) it is stopped immediately, if the CPU wakes up from idle and
 *    resumes 'normal' execution.
 *
 * About how far in the future the timer should be programmed each time,
 * it's hard to tell (guess!!). Since this mimics Linux's periodic timer
 * tick, take values used there as an indication. In Linux 2.6.21, tick
 * period can be 10ms, 4ms, 3.33ms or 1ms.
 *
 * By default, we use 10ms, to enable at least some power saving on the
 * CPU that is going idle. The user can change this, via a boot time
 * parameter, but only up to 100ms.
 */
#define IDLE_TIMER_PERIOD_MAX     MILLISECS(100)
#define IDLE_TIMER_PERIOD_DEFAULT MILLISECS(10)
#define IDLE_TIMER_PERIOD_MIN     MICROSECS(100)

static s_time_t __read_mostly idle_timer_period;

/*
 * Increment and decrement values for the idle timer handler. The algorithm
 * works as follows:
 * - if the timer actually fires, and it finds out that the grace period isn't
 *   over yet, we add IDLE_TIMER_PERIOD_INCR to the timer's period;
 * - if the timer actually fires and it finds the grace period over, we
 *   subtract IDLE_TIMER_PERIOD_DECR from the timer's period.
 */
#define IDLE_TIMER_PERIOD_INCR    MILLISECS(10)
#define IDLE_TIMER_PERIOD_DECR    MICROSECS(100)

static DEFINE_PER_CPU(struct rcu_data, rcu_data);

static int blimit = 10;
static int qhimark = 10000;
static int qlowmark = 100;
static int rsinterval = 1000;

/*
 * rcu_barrier() handling:
 * Two counters are used to synchronize rcu_barrier() work:
 * - cpu_count holds the number of cpus required to finish barrier handling.
 *   It is decremented by each cpu when it has performed all pending rcu calls.
 * - pending_count shows whether any rcu_barrier() activity is running and
 *   it is used to synchronize leaving rcu_barrier() only after all cpus
 *   have finished their processing. pending_count is initialized to nr_cpus + 1
 *   and it is decremented by each cpu when it has seen that cpu_count has
 *   reached 0. The cpu where rcu_barrier() has been called will wait until
 *   pending_count has been decremented to 1 (so all cpus have seen cpu_count
 *   reaching 0) and will then set pending_count to 0 indicating there is no
 *   rcu_barrier() running.
 * Cpus are synchronized via softirq mechanism. rcu_barrier() is regarded to
 * be active if pending_count is not zero. In case rcu_barrier() is called on
 * multiple cpus it is enough to check for pending_count being not zero on entry
 * and to call process_pending_softirqs() in a loop until pending_count drops to
 * zero, before starting the new rcu_barrier() processing.
 */
static atomic_t cpu_count = ATOMIC_INIT(0);
static atomic_t pending_count = ATOMIC_INIT(0);

static void cf_check rcu_barrier_callback(struct rcu_head *head)
{
    /*
     * We need a barrier making all previous writes visible to other cpus
     * before doing the atomic_dec(). This would be something like
     * smp_mb__before_atomic() limited to writes, which isn't existing.
     * So we choose the best alternative available which is smp_wmb()
     * (correct on Arm and only a minor impact on x86, while
     * smp_mb__before_atomic() would be correct on x86, but with a larger
     * impact on Arm).
     */
    smp_wmb();
    atomic_dec(&cpu_count);
}

static void rcu_barrier_action(void)
{
    struct rcu_head head;

    /*
     * When callback is executed, all previously-queued RCU work on this CPU
     * is completed. When all CPUs have executed their callback, cpu_count
     * will have been decremented to 0.
     */
    call_rcu(&head, rcu_barrier_callback);

    while ( atomic_read(&cpu_count) )
    {
        process_pending_softirqs();
        cpu_relax();
    }

    smp_mb__before_atomic();
    atomic_dec(&pending_count);
}

void rcu_barrier(void)
{
    unsigned int n_cpus;

    ASSERT(!in_irq() && local_irq_is_enabled());

    for ( ; ; )
    {
        if ( !atomic_read(&pending_count) && get_cpu_maps() )
        {
            n_cpus = num_online_cpus();

            if ( atomic_cmpxchg(&pending_count, 0, n_cpus + 1) == 0 )
                break;

            put_cpu_maps();
        }

        process_pending_softirqs();
        cpu_relax();
    }

    atomic_set(&cpu_count, n_cpus);
    cpumask_raise_softirq(&cpu_online_map, RCU_SOFTIRQ);

    while ( atomic_read(&pending_count) != 1 )
    {
        process_pending_softirqs();
        cpu_relax();
    }

    atomic_set(&pending_count, 0);

    put_cpu_maps();
}

/* Is batch a before batch b ? */
static inline int rcu_batch_before(long a, long b)
{
    return (a - b) < 0;
}

static void force_quiescent_state(struct rcu_data *rdp,
                                  struct rcu_ctrlblk *rcp)
{
    cpumask_t cpumask;
    raise_softirq(RCU_SOFTIRQ);
    if (unlikely(rdp->qlen - rdp->last_rs_qlen > rsinterval)) {
        rdp->last_rs_qlen = rdp->qlen;
        /*
         * Don't send IPI to itself. With irqs disabled,
         * rdp->cpu is the current cpu.
         */
        cpumask_andnot(&cpumask, &rcp->cpumask, cpumask_of(rdp->cpu));
        cpumask_raise_softirq(&cpumask, RCU_SOFTIRQ);
    }
}

/**
 * call_rcu - Queue an RCU callback for invocation after a grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual update function to be invoked after the grace period
 *
 * The update function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 * and may be nested.
 */
void call_rcu(struct rcu_head *head,
              void (*func)(struct rcu_head *rcu))
{
    unsigned long flags;
    struct rcu_data *rdp;

    head->func = func;
    head->next = NULL;
    local_irq_save(flags);
    rdp = &this_cpu(rcu_data);
    *rdp->nxttail = head;
    rdp->nxttail = &head->next;
    if (unlikely(++rdp->qlen > qhimark)) {
        rdp->blimit = INT_MAX;
        force_quiescent_state(rdp, &rcu_ctrlblk);
    }
    local_irq_restore(flags);
}

/*
 * Invoke the completed RCU callbacks. They are expected to be in
 * a per-cpu list.
 */
static void rcu_do_batch(struct rcu_data *rdp)
{
    struct rcu_head *next, *list;
    int count = 0;

    list = rdp->donelist;
    while (list) {
        next = rdp->donelist = list->next;
        list->func(list);
        list = next;
        rdp->qlen--;
        if (++count >= rdp->blimit)
            break;
    }
    if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark)
        rdp->blimit = blimit;
    if (!rdp->donelist)
        rdp->donetail = &rdp->donelist;
    else
    {
        rdp->process_callbacks = true;
        raise_softirq(RCU_SOFTIRQ);
    }
}

/*
 * Grace period handling:
 * The grace period handling consists out of two steps:
 * - A new grace period is started.
 *   This is done by rcu_start_batch. The start is not broadcasted to
 *   all cpus, they must pick this up by comparing rcp->cur with
 *   rdp->quiescbatch. All cpus are recorded  in the
 *   rcu_ctrlblk.cpumask bitmap.
 * - All cpus must go through a quiescent state.
 *   Since the start of the grace period is not broadcasted, at least two
 *   calls to rcu_check_quiescent_state are required:
 *   The first call just notices that a new grace period is running. The
 *   following calls check if there was a quiescent state since the beginning
 *   of the grace period. If so, it updates rcu_ctrlblk.cpumask. If
 *   the bitmap is empty, then the grace period is completed.
 *   rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
 *   period (if necessary).
 */
/*
 * Register a new batch of callbacks, and start it up if there is currently no
 * active batch and the batch to be registered has not already occurred.
 * Caller must hold rcu_ctrlblk.lock.
 */
static void rcu_start_batch(struct rcu_ctrlblk *rcp)
{
    if (rcp->next_pending &&
        rcp->completed == rcp->cur) {
        rcp->next_pending = 0;
        /*
         * next_pending == 0 must be visible in
         * __rcu_process_callbacks() before it can see new value of cur.
         */
        smp_wmb();
        rcp->cur++;

       /*
        * Make sure the increment of rcp->cur is visible so, even if a
        * CPU that is about to go idle, is captured inside rcp->cpumask,
        * rcu_pending() will return false, which then means cpu_quiet()
        * will be invoked, before the CPU would actually enter idle.
        *
        * This barrier is paired with the one in rcu_idle_enter().
        */
        smp_mb();
        cpumask_andnot(&rcp->cpumask, &cpu_online_map, &rcp->idle_cpumask);
    }
}

/*
 * cpu went through a quiescent state since the beginning of the grace period.
 * Clear it from the cpu mask and complete the grace period if it was the last
 * cpu. Start another grace period if someone has further entries pending
 */
static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp)
{
    cpumask_clear_cpu(cpu, &rcp->cpumask);
    if (cpumask_empty(&rcp->cpumask)) {
        /* batch completed ! */
        rcp->completed = rcp->cur;
        rcu_start_batch(rcp);
    }
}

/*
 * Check if the cpu has gone through a quiescent state (say context
 * switch). If so and if it already hasn't done so in this RCU
 * quiescent cycle, then indicate that it has done so.
 */
static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
                                      struct rcu_data *rdp)
{
    if (rdp->quiescbatch != rcp->cur) {
        /* start new grace period: */
        rdp->qs_pending = 1;
        rdp->quiescbatch = rcp->cur;
        return;
    }

    /* Grace period already completed for this cpu?
     * qs_pending is checked instead of the actual bitmap to avoid
     * cacheline trashing.
     */
    if (!rdp->qs_pending)
        return;

    rdp->qs_pending = 0;

    spin_lock(&rcp->lock);
    /*
     * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync
     * during cpu startup. Ignore the quiescent state.
     */
    if (likely(rdp->quiescbatch == rcp->cur))
        cpu_quiet(rdp->cpu, rcp);

    spin_unlock(&rcp->lock);
}


/*
 * This does the RCU processing work from softirq context. 
 */
static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
                                    struct rcu_data *rdp)
{
    if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch)) {
        *rdp->donetail = rdp->curlist;
        rdp->donetail = rdp->curtail;
        rdp->curlist = NULL;
        rdp->curtail = &rdp->curlist;
    }

    local_irq_disable();
    if (rdp->nxtlist && !rdp->curlist) {
        rdp->curlist = rdp->nxtlist;
        rdp->curtail = rdp->nxttail;
        rdp->nxtlist = NULL;
        rdp->nxttail = &rdp->nxtlist;
        local_irq_enable();

        /*
         * start the next batch of callbacks
         */

        /* determine batch number */
        rdp->batch = rcp->cur + 1;
        /* see the comment and corresponding wmb() in
         * the rcu_start_batch()
         */
        smp_rmb();

        if (!rcp->next_pending) {
            /* and start it/schedule start if it's a new batch */
            spin_lock(&rcp->lock);
            rcp->next_pending = 1;
            rcu_start_batch(rcp);
            spin_unlock(&rcp->lock);
        }
    } else {
        local_irq_enable();
    }
    rcu_check_quiescent_state(rcp, rdp);
    if (rdp->donelist)
        rcu_do_batch(rdp);
}

static void cf_check rcu_process_callbacks(void)
{
    struct rcu_data *rdp = &this_cpu(rcu_data);

    if ( rdp->process_callbacks )
    {
        rdp->process_callbacks = false;
        __rcu_process_callbacks(&rcu_ctrlblk, rdp);
    }

    if ( atomic_read(&cpu_count) && !rdp->barrier_active )
    {
        rdp->barrier_active = true;
        rcu_barrier_action();
        rdp->barrier_active = false;
    }
}

static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
{
    /* This cpu has pending rcu entries and the grace period
     * for them has completed.
     */
    if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch))
        return 1;

    /* This cpu has no pending entries, but there are new entries */
    if (!rdp->curlist && rdp->nxtlist)
        return 1;

    /* This cpu has finished callbacks to invoke */
    if (rdp->donelist)
        return 1;

    /* The rcu core waits for a quiescent state from the cpu */
    if (rdp->quiescbatch != rcp->cur || rdp->qs_pending)
        return 1;

    /* nothing to do */
    return 0;
}

int rcu_pending(int cpu)
{
    return __rcu_pending(&rcu_ctrlblk, &per_cpu(rcu_data, cpu));
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 */
int rcu_needs_cpu(int cpu)
{
    struct rcu_data *rdp = &per_cpu(rcu_data, cpu);

    return (rdp->curlist && !rdp->idle_timer_active) || rcu_pending(cpu);
}

/*
 * Timer for making sure the CPU where a callback is queued does
 * periodically poke rcu_pedning(), so that it will invoke the callback
 * not too late after the end of the grace period.
 */
static void rcu_idle_timer_start(void)
{
    struct rcu_data *rdp = &this_cpu(rcu_data);

    /*
     * Note that we don't check rcu_pending() here. In fact, we don't want
     * the timer armed on CPUs that are in the process of quiescing while
     * going idle, unless they really are the ones with a queued callback.
     */
    if (likely(!rdp->curlist))
        return;

    set_timer(&rdp->idle_timer, NOW() + idle_timer_period);
    rdp->idle_timer_active = true;
}

static void rcu_idle_timer_stop(void)
{
    struct rcu_data *rdp = &this_cpu(rcu_data);

    if (likely(!rdp->idle_timer_active))
        return;

    rdp->idle_timer_active = false;

    /*
     * In general, as the CPU is becoming active again, we don't need the
     * idle timer, and so we want to stop it.
     *
     * However, in case we are here because idle_timer has (just) fired and
     * has woken up the CPU, we skip stop_timer() now. In fact, when a CPU
     * wakes up from idle, this code always runs before do_softirq() has the
     * chance to check and deal with TIMER_SOFTIRQ. And if we stop the timer
     * now, the TIMER_SOFTIRQ handler will see it as inactive, and will not
     * call rcu_idle_timer_handler().
     *
     * Therefore, if we see that the timer is expired already, we leave it
     * alone. The TIMER_SOFTIRQ handler will then run the timer routine, and
     * deactivate it.
     */
    if ( !timer_is_expired(&rdp->idle_timer) )
        stop_timer(&rdp->idle_timer);
}

static void cf_check rcu_idle_timer_handler(void* data)
{
    perfc_incr(rcu_idle_timer);

    if ( !cpumask_empty(&rcu_ctrlblk.cpumask) )
        idle_timer_period = min(idle_timer_period + IDLE_TIMER_PERIOD_INCR,
                                IDLE_TIMER_PERIOD_MAX);
    else
        idle_timer_period = max(idle_timer_period - IDLE_TIMER_PERIOD_DECR,
                                IDLE_TIMER_PERIOD_MIN);
}

void rcu_check_callbacks(int cpu)
{
    struct rcu_data *rdp = &this_cpu(rcu_data);

    rdp->process_callbacks = true;
    raise_softirq(RCU_SOFTIRQ);
}

static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list,
                           struct rcu_head **tail)
{
    local_irq_disable();
    *this_rdp->nxttail = list;
    if (list)
        this_rdp->nxttail = tail;
    local_irq_enable();
}

static void rcu_offline_cpu(struct rcu_data *this_rdp,
                            struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
{
    kill_timer(&rdp->idle_timer);

    /* If the cpu going offline owns the grace period we can block
     * indefinitely waiting for it, so flush it here.
     */
    spin_lock(&rcp->lock);
    if (rcp->cur != rcp->completed)
        cpu_quiet(rdp->cpu, rcp);
    spin_unlock(&rcp->lock);

    rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail);
    rcu_move_batch(this_rdp, rdp->curlist, rdp->curtail);
    rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail);

    local_irq_disable();
    this_rdp->qlen += rdp->qlen;
    local_irq_enable();
}

static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp,
                                 struct rcu_data *rdp)
{
    memset(rdp, 0, sizeof(*rdp));
    rdp->curtail = &rdp->curlist;
    rdp->nxttail = &rdp->nxtlist;
    rdp->donetail = &rdp->donelist;
    rdp->quiescbatch = rcp->completed;
    rdp->qs_pending = 0;
    rdp->cpu = cpu;
    rdp->blimit = blimit;
    init_timer(&rdp->idle_timer, rcu_idle_timer_handler, rdp, cpu);
}

static int cf_check cpu_callback(
    struct notifier_block *nfb, unsigned long action, void *hcpu)
{
    unsigned int cpu = (unsigned long)hcpu;
    struct rcu_data *rdp = &per_cpu(rcu_data, cpu);

    switch ( action )
    {
    case CPU_UP_PREPARE:
        rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp);
        break;
    case CPU_UP_CANCELED:
    case CPU_DEAD:
        rcu_offline_cpu(&this_cpu(rcu_data), &rcu_ctrlblk, rdp);
        break;
    default:
        break;
    }

    return NOTIFY_DONE;
}

static struct notifier_block cpu_nfb = {
    .notifier_call = cpu_callback
};

void __init rcu_init(void)
{
    void *cpu = (void *)(long)smp_processor_id();
    static unsigned int __initdata idle_timer_period_ms =
                                    IDLE_TIMER_PERIOD_DEFAULT / MILLISECS(1);
    integer_param("rcu-idle-timer-period-ms", idle_timer_period_ms);

    /* We don't allow 0, or anything higher than IDLE_TIMER_PERIOD_MAX */
    if ( idle_timer_period_ms == 0 ||
         idle_timer_period_ms > IDLE_TIMER_PERIOD_MAX / MILLISECS(1) )
    {
        idle_timer_period_ms = IDLE_TIMER_PERIOD_DEFAULT / MILLISECS(1);
        printk("WARNING: rcu-idle-timer-period-ms outside of "
               "(0,%"PRI_stime"]. Resetting it to %u.\n",
               IDLE_TIMER_PERIOD_MAX / MILLISECS(1), idle_timer_period_ms);
    }
    idle_timer_period = MILLISECS(idle_timer_period_ms);

    cpumask_clear(&rcu_ctrlblk.idle_cpumask);
    cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu);
    register_cpu_notifier(&cpu_nfb);
    open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
}

/*
 * The CPU is becoming idle, so no more read side critical
 * sections, and one more step toward grace period.
 */
void rcu_idle_enter(unsigned int cpu)
{
    ASSERT(!cpumask_test_cpu(cpu, &rcu_ctrlblk.idle_cpumask));
    cpumask_set_cpu(cpu, &rcu_ctrlblk.idle_cpumask);
    /*
     * If some other CPU is starting a new grace period, we'll notice that
     * by seeing a new value in rcp->cur (different than our quiescbatch).
     * That will force us all the way until cpu_quiet(), clearing our bit
     * in rcp->cpumask, even in case we managed to get in there.
     *
     * Se the comment before cpumask_andnot() in  rcu_start_batch().
     */
    smp_mb();

    rcu_idle_timer_start();
}

void rcu_idle_exit(unsigned int cpu)
{
    rcu_idle_timer_stop();
    ASSERT(cpumask_test_cpu(cpu, &rcu_ctrlblk.idle_cpumask));
    cpumask_clear_cpu(cpu, &rcu_ctrlblk.idle_cpumask);
}