1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* mtrr.c: MTRR/PAT virtualization
*
* Copyright (c) 2007, Intel Corporation.
*/
#include <xen/domain_page.h>
#include <asm/e820.h>
#include <asm/iocap.h>
#include <asm/paging.h>
#include <asm/p2m.h>
#include <asm/mtrr.h>
#include <asm/hvm/support.h>
#include <asm/hvm/cacheattr.h>
#include <public/hvm/e820.h>
/* Get page attribute fields (PAn) from PAT MSR. */
#define pat_cr_2_paf(pat_cr,n) ((((uint64_t)pat_cr) >> ((n)<<3)) & 0xff)
/* Effective mm type lookup table, according to MTRR and PAT. */
static const uint8_t mm_type_tbl[MTRR_NUM_TYPES][X86_NUM_MT] = {
#define RS MEMORY_NUM_TYPES
#define UC X86_MT_UC
#define WB X86_MT_WB
#define WC X86_MT_WC
#define WP X86_MT_WP
#define WT X86_MT_WT
/* PAT(UC, WC, RS, RS, WT, WP, WB, UC-) */
/* MTRR(UC) */ {UC, WC, RS, RS, UC, UC, UC, UC},
/* MTRR(WC) */ {UC, WC, RS, RS, UC, UC, WC, WC},
/* MTRR(RS) */ {RS, RS, RS, RS, RS, RS, RS, RS},
/* MTRR(RS) */ {RS, RS, RS, RS, RS, RS, RS, RS},
/* MTRR(WT) */ {UC, WC, RS, RS, WT, WP, WT, UC},
/* MTRR(WP) */ {UC, WC, RS, RS, WT, WP, WP, WC},
/* MTRR(WB) */ {UC, WC, RS, RS, WT, WP, WB, UC}
#undef UC
#undef WC
#undef WT
#undef WP
#undef WB
#undef RS
};
/*
* Reverse lookup table, to find a pat type according to MTRR and effective
* memory type. This table is dynamically generated.
*/
static uint8_t __read_mostly mtrr_epat_tbl[MTRR_NUM_TYPES][MEMORY_NUM_TYPES] =
{ [0 ... MTRR_NUM_TYPES-1] =
{ [0 ... MEMORY_NUM_TYPES-1] = INVALID_MEM_TYPE }
};
/* Lookup table for PAT entry of a given PAT value in host PAT. */
static uint8_t __read_mostly pat_entry_tbl[X86_NUM_MT] =
{ [0 ... X86_NUM_MT - 1] = INVALID_MEM_TYPE };
static int __init cf_check hvm_mtrr_pat_init(void)
{
unsigned int i, j;
for ( i = 0; i < MTRR_NUM_TYPES; i++ )
{
for ( j = 0; j < X86_NUM_MT; j++ )
{
unsigned int tmp = mm_type_tbl[i][j];
if ( tmp < MEMORY_NUM_TYPES )
mtrr_epat_tbl[i][tmp] = j;
}
}
for ( i = 0; i < X86_NUM_MT; i++ )
{
for ( j = 0; j < X86_NUM_MT; j++ )
{
if ( pat_cr_2_paf(XEN_MSR_PAT, j) == i )
{
pat_entry_tbl[i] = j;
break;
}
}
}
return 0;
}
__initcall(hvm_mtrr_pat_init);
uint8_t pat_type_2_pte_flags(uint8_t pat_type)
{
unsigned int pat_entry = pat_entry_tbl[pat_type];
/*
* INVALID_MEM_TYPE, means doesn't find the pat_entry in host PAT for a
* given pat_type. If host PAT covers all the PAT types, it can't happen.
*/
if ( unlikely(pat_entry == INVALID_MEM_TYPE) )
pat_entry = pat_entry_tbl[X86_MT_UC];
return cacheattr_to_pte_flags(pat_entry);
}
int hvm_vcpu_cacheattr_init(struct vcpu *v)
{
struct mtrr_state *m = &v->arch.hvm.mtrr;
unsigned int num_var_ranges =
is_hardware_domain(v->domain) ? MASK_EXTR(mtrr_state.mtrr_cap,
MTRRcap_VCNT)
: MTRR_VCNT;
if ( num_var_ranges > MTRR_VCNT_MAX )
{
ASSERT(is_hardware_domain(v->domain));
printk("WARNING: limited Dom%u variable range MTRRs from %u to %u\n",
v->domain->domain_id, num_var_ranges, MTRR_VCNT_MAX);
num_var_ranges = MTRR_VCNT_MAX;
}
memset(m, 0, sizeof(*m));
m->var_ranges = xzalloc_array(struct mtrr_var_range, num_var_ranges);
if ( m->var_ranges == NULL )
return -ENOMEM;
m->mtrr_cap = (1u << 10) | (1u << 8) | num_var_ranges;
v->arch.hvm.pat_cr =
((uint64_t)X86_MT_WB) | /* PAT0: WB */
((uint64_t)X86_MT_WT << 8) | /* PAT1: WT */
((uint64_t)X86_MT_UCM << 16) | /* PAT2: UC- */
((uint64_t)X86_MT_UC << 24) | /* PAT3: UC */
((uint64_t)X86_MT_WB << 32) | /* PAT4: WB */
((uint64_t)X86_MT_WT << 40) | /* PAT5: WT */
((uint64_t)X86_MT_UCM << 48) | /* PAT6: UC- */
((uint64_t)X86_MT_UC << 56); /* PAT7: UC */
if ( is_hardware_domain(v->domain) )
{
/* Copy values from the host. */
struct domain *d = v->domain;
unsigned int i;
if ( mtrr_state.have_fixed )
for ( i = 0; i < NUM_FIXED_MSR; i++ )
mtrr_fix_range_msr_set(d, m, i,
((uint64_t *)mtrr_state.fixed_ranges)[i]);
for ( i = 0; i < num_var_ranges; i++ )
{
mtrr_var_range_msr_set(d, m, MSR_IA32_MTRR_PHYSBASE(i),
mtrr_state.var_ranges[i].base);
mtrr_var_range_msr_set(d, m, MSR_IA32_MTRR_PHYSMASK(i),
mtrr_state.var_ranges[i].mask);
}
mtrr_def_type_msr_set(d, m,
mtrr_state.def_type |
MASK_INSR(mtrr_state.fixed_enabled,
MTRRdefType_FE) |
MASK_INSR(mtrr_state.enabled, MTRRdefType_E));
}
return 0;
}
void hvm_vcpu_cacheattr_destroy(struct vcpu *v)
{
xfree(v->arch.hvm.mtrr.var_ranges);
}
/*
* Get MTRR memory type for physical address pa.
*
* May return a negative value when order > 0, indicating to the caller
* that the respective mapping needs splitting.
*/
int mtrr_get_type(const struct mtrr_state *m, paddr_t pa, unsigned int order)
{
uint8_t overlap_mtrr = 0;
uint8_t overlap_mtrr_pos = 0;
uint64_t mask = -(uint64_t)PAGE_SIZE << order;
unsigned int seg, num_var_ranges = MASK_EXTR(m->mtrr_cap, MTRRcap_VCNT);
if ( unlikely(!m->enabled) )
return X86_MT_UC;
pa &= mask;
if ( (pa < 0x100000) && m->fixed_enabled )
{
/* Fixed range MTRR takes effect. */
uint32_t addr = (uint32_t)pa, index;
if ( addr < 0x80000 )
{
/* 0x00000 ... 0x7FFFF in 64k steps */
if ( order > 4 )
return -1;
seg = (addr >> 16);
return m->fixed_ranges[seg];
}
else if ( addr < 0xc0000 )
{
/* 0x80000 ... 0xBFFFF in 16k steps */
if ( order > 2 )
return -1;
seg = (addr - 0x80000) >> 14;
index = (seg >> 3) + 1;
seg &= 7; /* select 0-7 segments */
return m->fixed_ranges[index*8 + seg];
}
else
{
/* 0xC0000 ... 0xFFFFF in 4k steps */
if ( order )
return -1;
seg = (addr - 0xc0000) >> 12;
index = (seg >> 3) + 3;
seg &= 7; /* select 0-7 segments */
return m->fixed_ranges[index*8 + seg];
}
}
/* Match with variable MTRRs. */
for ( seg = 0; seg < num_var_ranges; seg++ )
{
uint64_t phys_base = m->var_ranges[seg].base;
uint64_t phys_mask = m->var_ranges[seg].mask;
if ( phys_mask & MTRR_PHYSMASK_VALID )
{
phys_mask &= mask;
if ( (pa & phys_mask) == (phys_base & phys_mask) )
{
if ( unlikely(m->overlapped) || order )
{
overlap_mtrr |= 1 << (phys_base & MTRR_PHYSBASE_TYPE_MASK);
overlap_mtrr_pos = phys_base & MTRR_PHYSBASE_TYPE_MASK;
}
else
{
/* If no overlap, return the found one */
return (phys_base & MTRR_PHYSBASE_TYPE_MASK);
}
}
}
}
/* Not found? */
if ( unlikely(overlap_mtrr == 0) )
return m->def_type;
/* One match, or multiple identical ones? */
if ( likely(overlap_mtrr == (1 << overlap_mtrr_pos)) )
return overlap_mtrr_pos;
if ( order )
return -1;
/* Two or more matches, one being UC? */
if ( overlap_mtrr & (1 << X86_MT_UC) )
return X86_MT_UC;
/* Two or more matches, all of them WT and WB? */
if ( overlap_mtrr ==
((1 << X86_MT_WT) | (1 << X86_MT_WB)) )
return X86_MT_WT;
/* Behaviour is undefined, but return the last overlapped type. */
return overlap_mtrr_pos;
}
/*
* return the memory type from PAT.
* NOTE: valid only when paging is enabled.
* Only 4K page PTE is supported now.
*/
static uint8_t page_pat_type(uint64_t pat_cr, uint32_t pte_flags)
{
int32_t pat_entry;
/* PCD/PWT -> bit 1/0 of PAT entry */
pat_entry = ( pte_flags >> 3 ) & 0x3;
/* PAT bits as bit 2 of PAT entry */
if ( pte_flags & _PAGE_PAT )
pat_entry |= 4;
return (uint8_t)pat_cr_2_paf(pat_cr, pat_entry);
}
/*
* Effective memory type for leaf page.
*/
static uint8_t effective_mm_type(struct mtrr_state *m,
uint64_t pat,
paddr_t gpa,
uint32_t pte_flags,
uint8_t gmtrr_mtype)
{
uint8_t mtrr_mtype, pat_value;
/* if get_pat_flags() gives a dedicated MTRR type,
* just use it
*/
if ( gmtrr_mtype == NO_HARDCODE_MEM_TYPE )
mtrr_mtype = mtrr_get_type(m, gpa, 0);
else
mtrr_mtype = gmtrr_mtype;
pat_value = page_pat_type(pat, pte_flags);
return mm_type_tbl[mtrr_mtype][pat_value];
}
uint32_t get_pat_flags(struct vcpu *v,
uint32_t gl1e_flags,
paddr_t gpaddr,
paddr_t spaddr,
uint8_t gmtrr_mtype)
{
uint8_t guest_eff_mm_type;
uint8_t shadow_mtrr_type;
uint8_t pat_entry_value;
uint64_t pat = v->arch.hvm.pat_cr;
struct mtrr_state *g = &v->arch.hvm.mtrr;
/* 1. Get the effective memory type of guest physical address,
* with the pair of guest MTRR and PAT
*/
guest_eff_mm_type = effective_mm_type(g, pat, gpaddr,
gl1e_flags, gmtrr_mtype);
/* 2. Get the memory type of host physical address, with MTRR */
shadow_mtrr_type = mtrr_get_type(&mtrr_state, spaddr, 0);
/* 3. Find the memory type in PAT, with host MTRR memory type
* and guest effective memory type.
*/
pat_entry_value = mtrr_epat_tbl[shadow_mtrr_type][guest_eff_mm_type];
/* If conflit occurs(e.g host MTRR is UC, guest memory type is
* WB), set UC as effective memory. Here, returning X86_MT_UC will
* always set effective memory as UC.
*/
if ( pat_entry_value == INVALID_MEM_TYPE )
{
struct domain *d = v->domain;
p2m_type_t p2mt;
get_gfn_query_unlocked(d, paddr_to_pfn(gpaddr), &p2mt);
if (p2m_is_ram(p2mt))
gdprintk(XENLOG_WARNING,
"Conflict occurs for a given guest l1e flags:%x "
"at %"PRIx64" (the effective mm type:%d), "
"because the host mtrr type is:%d\n",
gl1e_flags, (uint64_t)gpaddr, guest_eff_mm_type,
shadow_mtrr_type);
pat_entry_value = X86_MT_UC;
}
/* 4. Get the pte flags */
return pat_type_2_pte_flags(pat_entry_value);
}
static inline bool_t valid_mtrr_type(uint8_t type)
{
switch ( type )
{
case X86_MT_UC:
case X86_MT_WB:
case X86_MT_WC:
case X86_MT_WP:
case X86_MT_WT:
return 1;
}
return 0;
}
bool_t mtrr_def_type_msr_set(struct domain *d, struct mtrr_state *m,
uint64_t msr_content)
{
uint8_t def_type = msr_content & 0xff;
bool fixed_enabled = MASK_EXTR(msr_content, MTRRdefType_FE);
bool enabled = MASK_EXTR(msr_content, MTRRdefType_E);
if ( unlikely(!valid_mtrr_type(def_type)) )
{
HVM_DBG_LOG(DBG_LEVEL_MSR, "invalid MTRR def type:%x\n", def_type);
return 0;
}
if ( unlikely(msr_content && (msr_content & ~0xcffUL)) )
{
HVM_DBG_LOG(DBG_LEVEL_MSR, "invalid msr content:%"PRIx64"\n",
msr_content);
return 0;
}
if ( m->enabled != enabled || m->fixed_enabled != fixed_enabled ||
m->def_type != def_type )
{
m->enabled = enabled;
m->def_type = def_type;
m->fixed_enabled = fixed_enabled;
memory_type_changed(d);
}
return 1;
}
bool_t mtrr_fix_range_msr_set(struct domain *d, struct mtrr_state *m,
uint32_t row, uint64_t msr_content)
{
uint64_t *fixed_range_base = (uint64_t *)m->fixed_ranges;
if ( fixed_range_base[row] != msr_content )
{
uint8_t *range = (uint8_t*)&msr_content;
unsigned int i;
for ( i = 0; i < 8; i++ )
if ( unlikely(!valid_mtrr_type(range[i])) )
return 0;
fixed_range_base[row] = msr_content;
if ( m->enabled && m->fixed_enabled )
memory_type_changed(d);
}
return 1;
}
bool_t mtrr_var_range_msr_set(
struct domain *d, struct mtrr_state *m, uint32_t msr, uint64_t msr_content)
{
uint32_t index, phys_addr;
uint64_t msr_mask;
uint64_t *var_range_base = (uint64_t*)m->var_ranges;
index = msr - MSR_IA32_MTRR_PHYSBASE(0);
if ( (index / 2) >= MASK_EXTR(m->mtrr_cap, MTRRcap_VCNT) )
{
ASSERT_UNREACHABLE();
return 0;
}
if ( var_range_base[index] == msr_content )
return 1;
if ( unlikely(!valid_mtrr_type((uint8_t)msr_content)) )
return 0;
if ( d == current->domain )
phys_addr = d->arch.cpuid->extd.maxphysaddr;
else
phys_addr = paddr_bits;
msr_mask = ~((((uint64_t)1) << phys_addr) - 1);
msr_mask |= (index & 1) ? 0x7ffUL : 0xf00UL;
if ( unlikely(msr_content & msr_mask) )
{
HVM_DBG_LOG(DBG_LEVEL_MSR, "invalid msr content:%"PRIx64"\n",
msr_content);
return 0;
}
var_range_base[index] = msr_content;
m->overlapped = is_var_mtrr_overlapped(m);
if ( m->enabled )
memory_type_changed(d);
return 1;
}
bool mtrr_pat_not_equal(const struct vcpu *vd, const struct vcpu *vs)
{
const struct mtrr_state *md = &vd->arch.hvm.mtrr;
const struct mtrr_state *ms = &vs->arch.hvm.mtrr;
if ( md->enabled != ms->enabled )
return true;
if ( md->enabled )
{
unsigned int num_var_ranges = MASK_EXTR(md->mtrr_cap, MTRRcap_VCNT);
/* Test default type MSR. */
if ( md->def_type != ms->def_type )
return true;
/* Test fixed ranges. */
if ( md->fixed_enabled != ms->fixed_enabled )
return true;
if ( md->fixed_enabled &&
memcmp(md->fixed_ranges, ms->fixed_ranges,
sizeof(md->fixed_ranges)) )
return true;
/* Test variable ranges. */
if ( num_var_ranges != MASK_EXTR(ms->mtrr_cap, MTRRcap_VCNT) ||
memcmp(md->var_ranges, ms->var_ranges,
num_var_ranges * sizeof(*md->var_ranges)) )
return true;
}
/* Test PAT. */
return vd->arch.hvm.pat_cr != vs->arch.hvm.pat_cr;
}
struct hvm_mem_pinned_cacheattr_range {
struct list_head list;
uint64_t start, end;
uint32_t type;
struct rcu_head rcu;
};
static DEFINE_RCU_READ_LOCK(pinned_cacheattr_rcu_lock);
void hvm_init_cacheattr_region_list(struct domain *d)
{
INIT_LIST_HEAD(&d->arch.hvm.pinned_cacheattr_ranges);
}
void hvm_destroy_cacheattr_region_list(struct domain *d)
{
struct list_head *head = &d->arch.hvm.pinned_cacheattr_ranges;
struct hvm_mem_pinned_cacheattr_range *range;
while ( !list_empty(head) )
{
range = list_entry(head->next,
struct hvm_mem_pinned_cacheattr_range,
list);
list_del(&range->list);
xfree(range);
}
}
int hvm_get_mem_pinned_cacheattr(struct domain *d, gfn_t gfn,
unsigned int order)
{
struct hvm_mem_pinned_cacheattr_range *range;
uint64_t mask = ~(uint64_t)0 << order;
int rc = -ENXIO;
ASSERT(is_hvm_domain(d));
rcu_read_lock(&pinned_cacheattr_rcu_lock);
list_for_each_entry_rcu ( range,
&d->arch.hvm.pinned_cacheattr_ranges,
list )
{
if ( ((gfn_x(gfn) & mask) >= range->start) &&
((gfn_x(gfn) | ~mask) <= range->end) )
{
rc = range->type;
break;
}
if ( ((gfn_x(gfn) & mask) <= range->end) &&
((gfn_x(gfn) | ~mask) >= range->start) )
{
rc = -EADDRNOTAVAIL;
break;
}
}
rcu_read_unlock(&pinned_cacheattr_rcu_lock);
return rc;
}
static void cf_check free_pinned_cacheattr_entry(struct rcu_head *rcu)
{
xfree(container_of(rcu, struct hvm_mem_pinned_cacheattr_range, rcu));
}
int hvm_set_mem_pinned_cacheattr(struct domain *d, uint64_t gfn_start,
uint64_t gfn_end, uint32_t type)
{
struct hvm_mem_pinned_cacheattr_range *range, *newr;
unsigned int nr = 0;
int rc = 1;
if ( !is_hvm_domain(d) )
return -EOPNOTSUPP;
if ( gfn_end < gfn_start || (gfn_start | gfn_end) >> paddr_bits )
return -EINVAL;
switch ( type )
{
case XEN_DOMCTL_DELETE_MEM_CACHEATTR:
/* Remove the requested range. */
domain_lock(d);
list_for_each_entry ( range,
&d->arch.hvm.pinned_cacheattr_ranges,
list )
if ( range->start == gfn_start && range->end == gfn_end )
{
list_del_rcu(&range->list);
domain_unlock(d);
type = range->type;
call_rcu(&range->rcu, free_pinned_cacheattr_entry);
p2m_memory_type_changed(d);
switch ( type )
{
case X86_MT_UCM:
/*
* For EPT we can also avoid the flush in this case;
* see epte_get_entry_emt().
*/
if ( hap_enabled(d) && cpu_has_vmx )
case X86_MT_UC:
break;
/* fall through */
default:
flush_all(FLUSH_CACHE);
break;
}
return 0;
}
domain_unlock(d);
return -ENOENT;
case X86_MT_UCM:
case X86_MT_UC:
case X86_MT_WB:
case X86_MT_WC:
case X86_MT_WP:
case X86_MT_WT:
break;
default:
return -EINVAL;
}
newr = xzalloc(struct hvm_mem_pinned_cacheattr_range);
domain_lock(d);
list_for_each_entry_rcu ( range,
&d->arch.hvm.pinned_cacheattr_ranges,
list )
{
if ( range->start == gfn_start && range->end == gfn_end )
{
range->type = type;
rc = 0;
break;
}
if ( range->start <= gfn_end && gfn_start <= range->end )
{
rc = -EBUSY;
break;
}
++nr;
}
if ( rc <= 0 )
/* nothing */;
else if ( nr >= 64 /* The limit is arbitrary. */ )
rc = -ENOSPC;
else if ( !newr )
rc = -ENOMEM;
else
{
newr->start = gfn_start;
newr->end = gfn_end;
newr->type = type;
list_add_rcu(&newr->list, &d->arch.hvm.pinned_cacheattr_ranges);
newr = NULL;
rc = 0;
}
domain_unlock(d);
xfree(newr);
p2m_memory_type_changed(d);
if ( type != X86_MT_WB )
flush_all(FLUSH_CACHE);
return rc;
}
static int cf_check hvm_save_mtrr_msr(struct vcpu *v, hvm_domain_context_t *h)
{
const struct mtrr_state *mtrr_state = &v->arch.hvm.mtrr;
struct hvm_hw_mtrr hw_mtrr = {
.msr_mtrr_def_type = mtrr_state->def_type |
MASK_INSR(mtrr_state->fixed_enabled,
MTRRdefType_FE) |
MASK_INSR(mtrr_state->enabled, MTRRdefType_E),
.msr_mtrr_cap = mtrr_state->mtrr_cap,
};
unsigned int i;
if ( MASK_EXTR(hw_mtrr.msr_mtrr_cap, MTRRcap_VCNT) >
(ARRAY_SIZE(hw_mtrr.msr_mtrr_var) / 2) )
{
dprintk(XENLOG_G_ERR,
"HVM save: %pv: too many (%lu) variable range MTRRs\n",
v, MASK_EXTR(hw_mtrr.msr_mtrr_cap, MTRRcap_VCNT));
return -EINVAL;
}
hvm_get_guest_pat(v, &hw_mtrr.msr_pat_cr);
for ( i = 0; i < MASK_EXTR(hw_mtrr.msr_mtrr_cap, MTRRcap_VCNT); i++ )
{
hw_mtrr.msr_mtrr_var[i * 2] = mtrr_state->var_ranges->base;
hw_mtrr.msr_mtrr_var[i * 2 + 1] = mtrr_state->var_ranges->mask;
}
BUILD_BUG_ON(sizeof(hw_mtrr.msr_mtrr_fixed) !=
sizeof(mtrr_state->fixed_ranges));
memcpy(hw_mtrr.msr_mtrr_fixed, mtrr_state->fixed_ranges,
sizeof(hw_mtrr.msr_mtrr_fixed));
return hvm_save_entry(MTRR, v->vcpu_id, h, &hw_mtrr);
}
static int cf_check hvm_load_mtrr_msr(struct domain *d, hvm_domain_context_t *h)
{
unsigned int vcpuid, i;
struct vcpu *v;
struct mtrr_state *mtrr_state;
struct hvm_hw_mtrr hw_mtrr;
vcpuid = hvm_load_instance(h);
if ( vcpuid >= d->max_vcpus || (v = d->vcpu[vcpuid]) == NULL )
{
dprintk(XENLOG_G_ERR, "HVM restore: dom%d has no vcpu%u\n",
d->domain_id, vcpuid);
return -EINVAL;
}
if ( hvm_load_entry(MTRR, h, &hw_mtrr) != 0 )
return -EINVAL;
if ( MASK_EXTR(hw_mtrr.msr_mtrr_cap, MTRRcap_VCNT) > MTRR_VCNT )
{
dprintk(XENLOG_G_ERR,
"HVM restore: %pv: too many (%lu) variable range MTRRs\n",
v, MASK_EXTR(hw_mtrr.msr_mtrr_cap, MTRRcap_VCNT));
return -EINVAL;
}
mtrr_state = &v->arch.hvm.mtrr;
hvm_set_guest_pat(v, hw_mtrr.msr_pat_cr);
mtrr_state->mtrr_cap = hw_mtrr.msr_mtrr_cap;
for ( i = 0; i < NUM_FIXED_MSR; i++ )
mtrr_fix_range_msr_set(d, mtrr_state, i, hw_mtrr.msr_mtrr_fixed[i]);
for ( i = 0; i < MASK_EXTR(hw_mtrr.msr_mtrr_cap, MTRRcap_VCNT); i++ )
{
mtrr_var_range_msr_set(d, mtrr_state,
MSR_IA32_MTRR_PHYSBASE(i),
hw_mtrr.msr_mtrr_var[i * 2]);
mtrr_var_range_msr_set(d, mtrr_state,
MSR_IA32_MTRR_PHYSMASK(i),
hw_mtrr.msr_mtrr_var[i * 2 + 1]);
}
mtrr_def_type_msr_set(d, mtrr_state, hw_mtrr.msr_mtrr_def_type);
return 0;
}
HVM_REGISTER_SAVE_RESTORE(MTRR, hvm_save_mtrr_msr, hvm_load_mtrr_msr, 1,
HVMSR_PER_VCPU);
void memory_type_changed(struct domain *d)
{
if ( (is_iommu_enabled(d) || cache_flush_permitted(d)) &&
d->vcpu && d->vcpu[0] )
{
p2m_memory_type_changed(d);
flush_all(FLUSH_CACHE);
}
}
/*
* Local variables:
* mode: C
* c-file-style: "BSD"
* c-basic-offset: 4
* tab-width: 4
* indent-tabs-mode: nil
* End:
*/
|