1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/*
* cpuidle_menu - menu governor for cpu idle, main idea come from Linux.
* drivers/cpuidle/governors/menu.c
*
* Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
* Copyright (C) 2007, 2008 Intel Corporation
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; If not, see <http://www.gnu.org/licenses/>.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <xen/config.h>
#include <xen/errno.h>
#include <xen/lib.h>
#include <xen/types.h>
#include <xen/acpi.h>
#include <xen/timer.h>
#include <xen/cpuidle.h>
#include <asm/irq.h>
#define BUCKETS 6
#define RESOLUTION 1024
#define DECAY 4
#define MAX_INTERESTING 50000
#define LATENCY_MULTIPLIER 10
/*
* Concepts and ideas behind the menu governor
*
* For the menu governor, there are 3 decision factors for picking a C
* state:
* 1) Energy break even point
* 2) Performance impact
* 3) Latency tolerance (TBD: from guest virtual C state)
* These these three factors are treated independently.
*
* Energy break even point
* -----------------------
* C state entry and exit have an energy cost, and a certain amount of time in
* the C state is required to actually break even on this cost. CPUIDLE
* provides us this duration in the "target_residency" field. So all that we
* need is a good prediction of how long we'll be idle. Like the traditional
* menu governor, we start with the actual known "next timer event" time.
*
* Since there are other source of wakeups (interrupts for example) than
* the next timer event, this estimation is rather optimistic. To get a
* more realistic estimate, a correction factor is applied to the estimate,
* that is based on historic behavior. For example, if in the past the actual
* duration always was 50% of the next timer tick, the correction factor will
* be 0.5.
*
* menu uses a running average for this correction factor, however it uses a
* set of factors, not just a single factor. This stems from the realization
* that the ratio is dependent on the order of magnitude of the expected
* duration; if we expect 500 milliseconds of idle time the likelihood of
* getting an interrupt very early is much higher than if we expect 50 micro
* seconds of idle time.
* For this reason we keep an array of 6 independent factors, that gets
* indexed based on the magnitude of the expected duration
*
* Limiting Performance Impact
* ---------------------------
* C states, especially those with large exit latencies, can have a real
* noticable impact on workloads, which is not acceptable for most sysadmins,
* and in addition, less performance has a power price of its own.
*
* As a general rule of thumb, menu assumes that the following heuristic
* holds:
* The busier the system, the less impact of C states is acceptable
*
* This rule-of-thumb is implemented using average interrupt interval:
* If the exit latency times multiplier is longer than the average
* interrupt interval, the C state is not considered a candidate
* for selection due to a too high performance impact. So the smaller
* the average interrupt interval is, the smaller C state latency should be
* and thus the less likely a busy CPU will hit such a deep C state.
*
* As an additional rule to reduce the performance impact, menu tries to
* limit the exit latency duration to be no more than 10% of the decaying
* measured idle time.
*/
struct perf_factor{
s_time_t time_stamp;
s_time_t duration;
unsigned int irq_count_stamp;
unsigned int irq_sum;
};
struct menu_device
{
int last_state_idx;
unsigned int expected_us;
u64 predicted_us;
u64 latency_factor;
unsigned int measured_us;
unsigned int exit_us;
unsigned int bucket;
u64 correction_factor[BUCKETS];
struct perf_factor pf;
};
static DEFINE_PER_CPU(struct menu_device, menu_devices);
static inline int which_bucket(unsigned int duration)
{
int bucket = 0;
if (duration < 10)
return bucket;
if (duration < 100)
return bucket + 1;
if (duration < 1000)
return bucket + 2;
if (duration < 10000)
return bucket + 3;
if (duration < 100000)
return bucket + 4;
return bucket + 5;
}
/*
* Return the average interrupt interval to take I/O performance
* requirements into account. The smaller the average interrupt
* interval to be, the more busy I/O activity, and thus the higher
* the barrier to go to an expensive C state.
*/
/* 5 milisec sampling period */
#define SAMPLING_PERIOD 5000000
/* for I/O interrupt, we give 8x multiplier compared to C state latency*/
#define IO_MULTIPLIER 8
static inline s_time_t avg_intr_interval_us(void)
{
struct menu_device *data = &__get_cpu_var(menu_devices);
s_time_t duration, now;
s_time_t avg_interval;
unsigned int irq_sum;
now = NOW();
duration = (data->pf.duration + (now - data->pf.time_stamp)
* (DECAY - 1)) / DECAY;
irq_sum = (data->pf.irq_sum + (this_cpu(irq_count) - data->pf.irq_count_stamp)
* (DECAY - 1)) / DECAY;
if (irq_sum == 0)
/* no irq recently, so return a big enough interval: 1 sec */
avg_interval = 1000000;
else
avg_interval = duration / irq_sum / 1000; /* in us */
if ( duration >= SAMPLING_PERIOD){
data->pf.time_stamp = now;
data->pf.duration = duration;
data->pf.irq_count_stamp= this_cpu(irq_count);
data->pf.irq_sum = irq_sum;
}
return avg_interval;
}
static unsigned int get_sleep_length_us(void)
{
s_time_t us = (this_cpu(timer_deadline) - NOW()) / 1000;
/*
* while us < 0 or us > (u32)-1, return a large u32,
* choose (unsigned int)-2000 to avoid wrapping while added with exit
* latency because the latency should not larger than 2ms
*/
return (us >> 32) ? (unsigned int)-2000 : (unsigned int)us;
}
static int menu_select(struct acpi_processor_power *power)
{
struct menu_device *data = &__get_cpu_var(menu_devices);
int i;
s_time_t io_interval;
/* TBD: Change to 0 if C0(polling mode) support is added later*/
data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
data->exit_us = 0;
/* determine the expected residency time, round up */
data->expected_us = get_sleep_length_us();
data->bucket = which_bucket(data->expected_us);
io_interval = avg_intr_interval_us();
data->latency_factor = DIV_ROUND(
data->latency_factor * (DECAY - 1) + data->measured_us,
DECAY);
/*
* if the correction factor is 0 (eg first time init or cpu hotplug
* etc), we actually want to start out with a unity factor.
*/
if (data->correction_factor[data->bucket] == 0)
data->correction_factor[data->bucket] = RESOLUTION * DECAY;
/* Make sure to round up for half microseconds */
data->predicted_us = DIV_ROUND(
data->expected_us * data->correction_factor[data->bucket],
RESOLUTION * DECAY);
/* find the deepest idle state that satisfies our constraints */
for ( i = CPUIDLE_DRIVER_STATE_START + 1; i < power->count; i++ )
{
struct acpi_processor_cx *s = &power->states[i];
if (s->target_residency > data->predicted_us)
break;
if (s->latency * IO_MULTIPLIER > io_interval)
break;
if (s->latency * LATENCY_MULTIPLIER > data->latency_factor)
break;
/* TBD: we need to check the QoS requirment in future */
data->exit_us = s->latency;
data->last_state_idx = i;
}
return data->last_state_idx;
}
static void menu_reflect(struct acpi_processor_power *power)
{
struct menu_device *data = &__get_cpu_var(menu_devices);
u64 new_factor;
data->measured_us = power->last_residency;
/*
* We correct for the exit latency; we are assuming here that the
* exit latency happens after the event that we're interested in.
*/
if (data->measured_us > data->exit_us)
data->measured_us -= data->exit_us;
/* update our correction ratio */
new_factor = data->correction_factor[data->bucket]
* (DECAY - 1) / DECAY;
if (data->expected_us > 0 && data->measured_us < MAX_INTERESTING)
new_factor += RESOLUTION * data->measured_us / data->expected_us;
else
/*
* we were idle so long that we count it as a perfect
* prediction
*/
new_factor += RESOLUTION;
/*
* We don't want 0 as factor; we always want at least
* a tiny bit of estimated time.
*/
if (new_factor == 0)
new_factor = 1;
data->correction_factor[data->bucket] = new_factor;
}
static int menu_enable_device(struct acpi_processor_power *power)
{
if (!cpu_online(power->cpu))
return -1;
memset(&per_cpu(menu_devices, power->cpu), 0, sizeof(struct menu_device));
return 0;
}
static struct cpuidle_governor menu_governor =
{
.name = "menu",
.rating = 20,
.enable = menu_enable_device,
.select = menu_select,
.reflect = menu_reflect,
};
struct cpuidle_governor *cpuidle_current_governor = &menu_governor;
void menu_get_trace_data(u32 *expected, u32 *pred)
{
struct menu_device *data = &__get_cpu_var(menu_devices);
*expected = data->expected_us;
*pred = data->predicted_us;
}
|