summaryrefslogtreecommitdiff
path: root/tests/color-icc-output-test.c
blob: 0eac2dd4b43c3bec3791fee7ef4a52541d4ec9ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/*
 * Copyright 2021 Advanced Micro Devices, Inc.
 * Copyright 2020, 2022 Collabora, Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial
 * portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "config.h"

#include <math.h>
#include <string.h>
#include <stdio.h>
#include <linux/limits.h>

#include <lcms2.h>

#include "weston-test-client-helper.h"
#include "weston-test-fixture-compositor.h"
#include "color_util.h"
#include "image-iter.h"
#include "lcms_util.h"

struct lcms_pipeline {
	/**
	 * Color space name
	 */
	const char *color_space;
	/**
	 * Chromaticities for output profile
	 */
	cmsCIExyYTRIPLE prim_output;
	/**
	 * tone curve enum
	 */
	enum transfer_fn pre_fn;
	/**
	 * Transform matrix from sRGB to target chromaticities in prim_output
	 */
	struct lcmsMAT3 mat;
	/**
	 * matrix from prim_output to XYZ, for example matrix conversion
	 * sRGB->XYZ, adobeRGB->XYZ, bt2020->XYZ
	 */
	struct lcmsMAT3 mat2XYZ;
	/**
	 * tone curve enum
	 */
	enum transfer_fn post_fn;
};

static const int WINDOW_WIDTH  = 256;
static const int WINDOW_HEIGHT = 24;

static cmsCIExyY wp_d65 = { 0.31271, 0.32902, 1.0 };

enum profile_type {
	PTYPE_MATRIX_SHAPER,
	PTYPE_CLUT,
};

/*
 * Using currently destination gamut bigger than source.
 * Using https://www.colour-science.org/ we can extract conversion matrix:
 * import colour
 * colour.matrix_RGB_to_RGB(colour.RGB_COLOURSPACES['sRGB'], colour.RGB_COLOURSPACES['Adobe RGB (1998)'], None)
 * colour.matrix_RGB_to_RGB(colour.RGB_COLOURSPACES['sRGB'], colour.RGB_COLOURSPACES['ITU-R BT.2020'], None)
 */

const struct lcms_pipeline pipeline_sRGB = {
	.color_space = "sRGB",
	.prim_output = {
		.Red =   { 0.640, 0.330, 1.0 },
		.Green = { 0.300, 0.600, 1.0 },
		.Blue =  { 0.150, 0.060, 1.0 }
	},
	.pre_fn = TRANSFER_FN_SRGB_EOTF,
	.mat = LCMSMAT3(1.0, 0.0, 0.0,
			0.0, 1.0, 0.0,
			0.0, 0.0, 1.0),
	.mat2XYZ = LCMSMAT3(0.436037, 0.385124, 0.143039,
			    0.222482, 0.716913, 0.060605,
			    0.013922, 0.097078, 0.713899),
	.post_fn = TRANSFER_FN_SRGB_EOTF_INVERSE
};

const struct lcms_pipeline pipeline_adobeRGB = {
	.color_space = "adobeRGB",
	.prim_output = {
		.Red =   { 0.640, 0.330, 1.0 },
		.Green = { 0.210, 0.710, 1.0 },
		.Blue =  { 0.150, 0.060, 1.0 }
	},
	.pre_fn = TRANSFER_FN_SRGB_EOTF,
	.mat = LCMSMAT3( 0.715127, 0.284868, 0.000005,
			 0.000001, 0.999995, 0.000004,
			-0.000003, 0.041155, 0.958848),
	.mat2XYZ = LCMSMAT3(0.609740, 0.205279, 0.149181,
			    0.311111, 0.625681, 0.063208,
			    0.019469, 0.060879, 0.744552),
	.post_fn = TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE
};

const struct lcms_pipeline pipeline_BT2020 = {
	.color_space = "bt2020",
	.prim_output = {
		.Red =   { 0.708, 0.292, 1.0 },
		.Green = { 0.170, 0.797, 1.0 },
		.Blue =  { 0.131, 0.046, 1.0 }
	},
	.pre_fn = TRANSFER_FN_SRGB_EOTF,
	.mat = LCMSMAT3(0.627402, 0.329292, 0.043306,
			0.069095, 0.919544, 0.011360,
			0.016394, 0.088028, 0.895578),
	/* this is equivalent to BT.1886 with zero black level */
	.post_fn = TRANSFER_FN_POWER2_4_EOTF_INVERSE,
};

struct setup_args {
	struct fixture_metadata meta;
	int ref_image_index;
	const struct lcms_pipeline *pipeline;

	/**
	 * Two-norm color error tolerance in units of 1.0/255, computed in
	 * output electrical space.
	 *
	 * Tolerance depends more on the 1D LUT used for the
	 * inv EOTF than the tested 3D LUT size:
	 * 9x9x9, 17x17x17, 33x33x33, 127x127x127
	 *
	 * TODO: when we add power-law in the curve enumeration
	 * in GL-renderer, then we should fix the tolerance
	 * as the error should reduce a lot.
	 */
	float tolerance;

	/**
	 * 3DLUT dimension size
	 */
	int dim_size;
	enum profile_type type;

	/** Two-norm error limit for cLUT DToB->BToD roundtrip */
	float clut_roundtrip_tolerance;
};

static const struct setup_args my_setup_args[] = {
	/* name,               ref img, pipeline,     tolerance, dim, profile type, clut tolerance */
	{ { "sRGB->sRGB MAT" },      0, &pipeline_sRGB,     0.0,  0, PTYPE_MATRIX_SHAPER },
	{ { "sRGB->adobeRGB MAT" },  1, &pipeline_adobeRGB, 1.4,  0, PTYPE_MATRIX_SHAPER },
	{ { "sRGB->BT2020 MAT" },    2, &pipeline_BT2020,   4.5,  0, PTYPE_MATRIX_SHAPER },
	{ { "sRGB->sRGB CLUT" },     0, &pipeline_sRGB,     0.0, 17, PTYPE_CLUT,         0.0005 },
	{ { "sRGB->adobeRGB CLUT" }, 1, &pipeline_adobeRGB, 1.8, 17, PTYPE_CLUT,         0.0065 },
};

static void
test_roundtrip(uint8_t r, uint8_t g, uint8_t b, cmsPipeline *pip,
	       struct rgb_diff_stat *stat)
{
	struct color_float in = { .rgb = { r / 255.0, g / 255.0, b / 255.0 } };
	struct color_float out = {};

	cmsPipelineEvalFloat(in.rgb, out.rgb, pip);
	rgb_diff_stat_update(stat, &in, &out, &in);
}

/*
 * Roundtrip verification tests that converting device -> PCS -> device
 * results in the original color values close enough.
 *
 * This ensures that the two pipelines are probably built correctly, and we
 * do not have problems with unexpected value clamping or with representing
 * (inverse) EOTF curves.
 */
static void
roundtrip_verification(cmsPipeline *DToB, cmsPipeline *BToD, float tolerance)
{
	unsigned r, g, b;
	struct rgb_diff_stat stat = {};
	cmsPipeline *pip;

	pip = cmsPipelineDup(DToB);
	cmsPipelineCat(pip, BToD);

	/*
	 * Inverse-EOTF is known to have precision problems near zero, so
	 * sample near zero densely, the rest can be more sparse to run faster.
	 */
	for (r = 0; r < 256; r += (r < 15) ? 1 : 8) {
		for (g = 0; g < 256; g += (g < 15) ? 1 : 8) {
			for (b = 0; b < 256; b += (b < 15) ? 1 : 8)
				test_roundtrip(r, g, b, pip, &stat);
		}
	}

	cmsPipelineFree(pip);

	rgb_diff_stat_print(&stat, "DToB->BToD roundtrip", 8);
	assert(stat.two_norm.max < tolerance);
}

static cmsInt32Number
sampler_matrix(const float src[], float dst[], void *cargo)
{
	const struct lcmsMAT3 *mat = cargo;
	struct color_float in = { .r = src[0], .g = src[1], .b = src[2] };
	struct color_float cf;
	unsigned i;

	cf = color_float_apply_matrix(mat, in);

	for (i = 0; i < COLOR_CHAN_NUM; i++)
		dst[i] = cf.rgb[i];

	return 1;
}

static cmsStage *
create_cLUT_from_matrix(cmsContext context_id, const struct lcmsMAT3 *mat, int dim_size)
{
	cmsStage *cLUT_stage;

	cLUT_stage = cmsStageAllocCLutFloat(context_id, dim_size, 3, 3, NULL);
	cmsStageSampleCLutFloat(cLUT_stage, sampler_matrix, (void *)mat, 0);

	return cLUT_stage;
}

/*
 * Originally the cLUT profile test attempted to use the AToB/BToA tags. Those
 * come with serious limitations though: at most uint16 representation for
 * values in a LUT which means LUT entry precision is limited and range is
 * [0.0, 1.0]. This poses difficulties such as:
 * - for AToB, the resulting PCS XYZ values may need to be > 1.0
 * - for BToA, it is easy to fall outside of device color volume meaning that
 *   out-of-range values are needed in the 3D LUT
 * Working around these could require offsetting and scaling of values
 * before and after the 3D LUT, and even that may not always be possible.
 *
 * DToB/BToD tags do not have most of these problems, because there pipelines
 * use float32 representation throughout. We have much more precision, and
 * we can mostly use negative and greater than 1.0 values. LUT elements
 * still clamp their input to [0.0, 1.0] before applying the LUT. This type of
 * pipeline is called multiProcessElement (MPE).
 *
 * MPE also allows us to represent curves in a few analytical forms. These are
 * just enough to represent the EOTF curves we have and their inverses, but
 * they do not allow encoding extended EOTF curves or their inverses
 * (defined for all real numbers by extrapolation, and mirroring for negative
 * inputs). Using MPE curves we avoid the precision problems that arise from
 * attempting to represent an inverse-EOTF as a LUT. For the precision issue,
 * see: https://gitlab.freedesktop.org/pq/color-and-hdr/-/merge_requests/9
 *
 * MPE is not a complete remedy, because 3D LUT inputs are still always clamped
 * to [0.0, 1.0]. Therefore a 3D LUT cannot represent the inverse of a matrix
 * that can produce negative or greater than 1.0 values without further tricks
 * (scaling and offsetting) in the pipeline. Rather than implementing that
 * complication, we decided to just not test with such matrices. Therefore
 * BT.2020 color space is not used in the cLUT test. AdobeRGB is enough.
 */
static cmsHPROFILE
build_lcms_clut_profile_output(cmsContext context_id,
			       const struct setup_args *arg)
{
	enum transfer_fn inv_eotf_fn = arg->pipeline->post_fn;
	enum transfer_fn eotf_fn = transfer_fn_invert(inv_eotf_fn);
	cmsHPROFILE hRGB;
	cmsPipeline *DToB0, *BToD0;
	cmsStage *stage;
	cmsStage *stage_inv_eotf;
	cmsStage *stage_eotf;
	struct lcmsMAT3 mat2XYZ_inv;

	lcmsMAT3_invert(&mat2XYZ_inv, &arg->pipeline->mat2XYZ);

	hRGB = cmsCreateProfilePlaceholder(context_id);
	cmsSetProfileVersion(hRGB, 4.3);
	cmsSetDeviceClass(hRGB, cmsSigDisplayClass);
	cmsSetColorSpace(hRGB, cmsSigRgbData);
	cmsSetPCS(hRGB, cmsSigXYZData);
	SetTextTags(hRGB, L"cLut profile");

	stage_eotf = build_MPE_curve_stage(context_id, eotf_fn);
	stage_inv_eotf = build_MPE_curve_stage(context_id, inv_eotf_fn);

	/*
	 * Pipeline from PCS (optical) to device (electrical)
	 */
	BToD0 = cmsPipelineAlloc(context_id, 3, 3);

	stage = create_cLUT_from_matrix(context_id, &mat2XYZ_inv, arg->dim_size);
	cmsPipelineInsertStage(BToD0, cmsAT_END, stage);
	cmsPipelineInsertStage(BToD0, cmsAT_END, cmsStageDup(stage_inv_eotf));

	cmsWriteTag(hRGB, cmsSigBToD0Tag, BToD0);
	cmsLinkTag(hRGB, cmsSigBToD1Tag, cmsSigBToD0Tag);
	cmsLinkTag(hRGB, cmsSigBToD2Tag, cmsSigBToD0Tag);
	cmsLinkTag(hRGB, cmsSigBToD3Tag, cmsSigBToD0Tag);

	/*
	 * Pipeline from device (electrical) to PCS (optical)
	 */
	DToB0 = cmsPipelineAlloc(context_id, 3, 3);

	cmsPipelineInsertStage(DToB0, cmsAT_END, cmsStageDup(stage_eotf));
	stage = create_cLUT_from_matrix(context_id, &arg->pipeline->mat2XYZ, arg->dim_size);
	cmsPipelineInsertStage(DToB0, cmsAT_END, stage);

	cmsWriteTag(hRGB, cmsSigDToB0Tag, DToB0);
	cmsLinkTag(hRGB, cmsSigDToB1Tag, cmsSigDToB0Tag);
	cmsLinkTag(hRGB, cmsSigDToB2Tag, cmsSigDToB0Tag);
	cmsLinkTag(hRGB, cmsSigDToB3Tag, cmsSigDToB0Tag);

	roundtrip_verification(DToB0, BToD0, arg->clut_roundtrip_tolerance);

	cmsPipelineFree(BToD0);
	cmsPipelineFree(DToB0);
	cmsStageFree(stage_eotf);
	cmsStageFree(stage_inv_eotf);

	return hRGB;
}

static cmsHPROFILE
build_lcms_matrix_shaper_profile_output(cmsContext context_id,
					const struct lcms_pipeline *pipeline)
{
	cmsToneCurve *arr_curves[3];
	cmsHPROFILE hRGB;
	int type_inverse_tone_curve;
	double inverse_tone_curve_param[5];

	assert(find_tone_curve_type(pipeline->post_fn, &type_inverse_tone_curve,
				    inverse_tone_curve_param));

	/*
	 * We are creating output profile and therefore we can use the following:
	 * calling semantics:
	 * cmsBuildParametricToneCurve(type_inverse_tone_curve, inverse_tone_curve_param)
	 * The function find_tone_curve_type sets the type of curve positive if it
	 * is tone curve and negative if it is inverse. When we create an ICC
	 * profile we should use a tone curve, the inversion is done by LCMS
	 * when the profile is used for output.
	 */

	arr_curves[0] = arr_curves[1] = arr_curves[2] =
		cmsBuildParametricToneCurve(context_id,
					    (-1) * type_inverse_tone_curve,
					    inverse_tone_curve_param);

	assert(arr_curves[0]);
	hRGB = cmsCreateRGBProfileTHR(context_id, &wp_d65,
				      &pipeline->prim_output, arr_curves);
	assert(hRGB);

	cmsFreeToneCurve(arr_curves[0]);
	return hRGB;
}

static cmsHPROFILE
build_lcms_profile_output(cmsContext context_id, const struct setup_args *arg)
{
	switch (arg->type) {
	case PTYPE_MATRIX_SHAPER:
		return build_lcms_matrix_shaper_profile_output(context_id,
							       arg->pipeline);
	case PTYPE_CLUT:
		return build_lcms_clut_profile_output(context_id, arg);
	}

	return NULL;
}

static char *
build_output_icc_profile(const struct setup_args *arg)
{
	char *profile_name = NULL;
	cmsHPROFILE profile = NULL;
	char *wd;
	int ret;
	bool saved;

	wd = realpath(".", NULL);
	assert(wd);
	if (arg->type == PTYPE_MATRIX_SHAPER)
		ret = asprintf(&profile_name, "%s/matrix-shaper-test-%s.icm", wd,
			       arg->pipeline->color_space);
	else
		ret = asprintf(&profile_name, "%s/cLUT-test-%s.icm", wd,
			       arg->pipeline->color_space);
	assert(ret > 0);

	profile = build_lcms_profile_output(NULL, arg);
	assert(profile);

	saved = cmsSaveProfileToFile(profile, profile_name);
	assert(saved);

	cmsCloseProfile(profile);
	free(wd);

	return profile_name;
}

static void
test_lcms_error_logger(cmsContext context_id,
		       cmsUInt32Number error_code,
		       const char *text)
{
	testlog("LittleCMS error: %s\n", text);
}

static enum test_result_code
fixture_setup(struct weston_test_harness *harness, const struct setup_args *arg)
{
	struct compositor_setup setup;
	char *file_name;

	cmsSetLogErrorHandler(test_lcms_error_logger);

	compositor_setup_defaults(&setup);
	setup.renderer = WESTON_RENDERER_GL;
	setup.backend = WESTON_BACKEND_HEADLESS;
	setup.width = WINDOW_WIDTH;
	setup.height = WINDOW_HEIGHT;
	setup.shell = SHELL_TEST_DESKTOP;
	setup.logging_scopes = "log,color-lcms-profiles,color-lcms-transformations,color-lcms-optimizer";

	file_name = build_output_icc_profile(arg);
	if (!file_name)
		return RESULT_HARD_ERROR;

	weston_ini_setup(&setup,
		cfgln("[core]"),
		cfgln("output-decorations=true"),
		cfgln("color-management=true"),
		cfgln("[output]"),
		cfgln("name=headless"),
		cfgln("icc_profile=%s", file_name));

	free(file_name);

	return weston_test_harness_execute_as_client(harness, &setup);
}
DECLARE_FIXTURE_SETUP_WITH_ARG(fixture_setup, my_setup_args, meta);

static void
gen_ramp_rgb(pixman_image_t *image, int bitwidth, int width_bar)
{
	static const int hue[][COLOR_CHAN_NUM] = {
		{ 1, 1, 1 },	/* White	*/
		{ 1, 1, 0 },	/* Yellow 	*/
		{ 0, 1, 1 },	/* Cyan 	*/
		{ 0, 1, 0 },	/* Green 	*/
		{ 1, 0, 1 },	/* Magenta 	*/
		{ 1, 0, 0 },	/* Red 		*/
		{ 0, 0, 1 },	/* Blue 	*/
	};
	const int num_hues = ARRAY_LENGTH(hue);

	struct image_header ih = image_header_from(image);
	float val_max;
	int x, y;
	int hue_index;
	int chan;
	float value;
	unsigned char r, g, b;
	uint32_t *pixel;

	float n_steps = width_bar - 1;

	val_max = (1 << bitwidth) - 1;

	for (y = 0; y < ih.height; y++) {
		hue_index = (y * num_hues) / (ih.height - 1);
		hue_index = MIN(hue_index, num_hues - 1);

		pixel = image_header_get_row_u32(&ih, y);
		for (x = 0; x < ih.width; x++, pixel++) {
			struct color_float rgb = { .rgb = { 0, 0, 0 } };

			value = (float)x / (float)(ih.width - 1);

			if (width_bar > 1)
				value = floor(value * n_steps) / n_steps;

			for (chan = 0; chan < COLOR_CHAN_NUM; chan++) {
				if (hue[hue_index][chan])
					rgb.rgb[chan] = value;
			}

			sRGB_delinearize(&rgb);

			r = round(rgb.r * val_max);
			g = round(rgb.g * val_max);
			b = round(rgb.b * val_max);

			*pixel = (255U << 24) | (r << 16) | (g << 8) | b;
		}
	}
}

static bool
process_pipeline_comparison(const struct buffer *src_buf,
			    const struct buffer *shot_buf,
			    const struct setup_args * arg)
{
	FILE *dump = NULL;
#if 0
	/*
	 * This file can be loaded in Octave for visualization. Find the script
	 * in tests/visualization/weston_plot_rgb_diff_stat.m and call it with
	 *
	 * weston_plot_rgb_diff_stat('opaque_pixel_conversion-f05-dump.txt')
	 */
	dump = fopen_dump_file(arg->meta.name);
#endif

	struct image_header ih_src = image_header_from(src_buf->image);
	struct image_header ih_shot = image_header_from(shot_buf->image);
	int y, x;
	struct color_float pix_src;
	struct color_float pix_src_pipeline;
	struct color_float pix_shot;
	struct rgb_diff_stat diffstat = { .dump = dump };
	bool ok;

	/* no point to compare different images */
	assert(ih_src.width == ih_shot.width);
	assert(ih_src.height == ih_shot.height);

	for (y = 0; y < ih_src.height; y++) {
		uint32_t *row_ptr = image_header_get_row_u32(&ih_src, y);
		uint32_t *row_ptr_shot = image_header_get_row_u32(&ih_shot, y);

		for (x = 0; x < ih_src.width; x++) {
			pix_src = a8r8g8b8_to_float(row_ptr[x]);
			pix_shot = a8r8g8b8_to_float(row_ptr_shot[x]);

			process_pixel_using_pipeline(arg->pipeline->pre_fn,
						     &arg->pipeline->mat,
						     arg->pipeline->post_fn,
						     &pix_src, &pix_src_pipeline);

			rgb_diff_stat_update(&diffstat,
					     &pix_src_pipeline, &pix_shot,
					     &pix_src);
		}
	}

	ok = diffstat.two_norm.max <= arg->tolerance / 255.0f;

	testlog("%s %s %s tolerance %f %s\n", __func__,
		ok ? "SUCCESS" : "FAILURE",
		arg->meta.name, arg->tolerance,
		arg->type == PTYPE_MATRIX_SHAPER ? "matrix-shaper" : "cLUT");

	rgb_diff_stat_print(&diffstat, __func__, 8);

	if (dump)
		fclose(dump);

	return ok;
}

/*
 * Test that opaque client pixels produce the expected output when converted
 * from the implicit sRGB input to ICC profile described output.
 *
 * The groundtruth conversion comes from the struct lcms_pipeline definitions.
 * The first error source is converting those to ICC files. The second error
 * source is Weston.
 *
 * This tests particularly the chain of input-to-blend followed by
 * blend-to-output categories of color transformations.
 */
TEST(opaque_pixel_conversion)
{
	int seq_no = get_test_fixture_index();
	const struct setup_args *arg = &my_setup_args[seq_no];
	const int width = WINDOW_WIDTH;
	const int height = WINDOW_HEIGHT;
	const int bitwidth = 8;
	const int width_bar = 32;

	struct client *client;
	struct buffer *buf;
	struct buffer *shot;
	struct wl_surface *surface;
	bool match;

	client = create_client_and_test_surface(0, 0, width, height);
	assert(client);
	surface = client->surface->wl_surface;

	buf = create_shm_buffer_a8r8g8b8(client, width, height);
	gen_ramp_rgb(buf->image, bitwidth, width_bar);

	wl_surface_attach(surface, buf->proxy, 0, 0);
	wl_surface_damage(surface, 0, 0, width, height);
	wl_surface_commit(surface);

	shot = capture_screenshot_of_output(client, NULL);
	assert(shot);

	match = verify_image(shot->image, "shaper_matrix", arg->ref_image_index,
			     NULL, seq_no);
	assert(process_pipeline_comparison(buf, shot, arg));
	assert(match);
	buffer_destroy(shot);
	buffer_destroy(buf);
	client_destroy(client);
}

static struct color_float
convert_to_blending_space(const struct lcms_pipeline *pip,
			  struct color_float cf)
{
	/* Blending space is the linearized output space,
	 * or simply output space without the non-linear encoding
	 */
	cf = color_float_apply_curve(pip->pre_fn, cf);
	return color_float_apply_matrix(&pip->mat, cf);
}

static void
compare_blend(const struct lcms_pipeline *pip,
	      struct color_float bg,
	      struct color_float fg,
	      const struct color_float *shot,
	      struct rgb_diff_stat *diffstat)
{
	struct color_float ref;
	unsigned i;

	/* convert sources to straight alpha */
	assert(bg.a == 1.0f);
	fg = color_float_unpremult(fg);

	bg = convert_to_blending_space(pip, bg);
	fg = convert_to_blending_space(pip, fg);

	/* blend */
	for (i = 0; i < COLOR_CHAN_NUM; i++)
		ref.rgb[i] = (1.0f - fg.a) * bg.rgb[i] + fg.a * fg.rgb[i];

	/* non-linear encoding for output */
	ref = color_float_apply_curve(pip->post_fn, ref);

	rgb_diff_stat_update(diffstat, &ref, shot, &fg);
}

/* Alpha blending test pattern parameters */
static const int ALPHA_STEPS = 256;
static const int BLOCK_WIDTH = 1;

static void *
get_middle_row(struct buffer *buf)
{
	struct image_header ih = image_header_from(buf->image);

	assert(ih.width >= BLOCK_WIDTH * ALPHA_STEPS);
	assert(ih.height >= BLOCK_WIDTH);

	return image_header_get_row_u32(&ih, (BLOCK_WIDTH - 1) / 2);
}

static bool
check_blend_pattern(struct buffer *bg_buf,
		    struct buffer *fg_buf,
		    struct buffer *shot_buf,
		    const struct setup_args *arg)
{
	FILE *dump = NULL;
#if 0
	/*
	 * This file can be loaded in Octave for visualization. Find the script
	 * in tests/visualization/weston_plot_rgb_diff_stat.m and call it with
	 *
	 * weston_plot_rgb_diff_stat('output_icc_alpha_blend-f01-dump.txt', 255, 8)
	 */
	dump = fopen_dump_file(arg->meta.name);
#endif

	uint32_t *bg_row = get_middle_row(bg_buf);
	uint32_t *fg_row = get_middle_row(fg_buf);
	uint32_t *shot_row = get_middle_row(shot_buf);
	struct rgb_diff_stat diffstat = { .dump = dump };
	int x;

	for (x = 0; x < BLOCK_WIDTH * ALPHA_STEPS; x++) {
		struct color_float bg = a8r8g8b8_to_float(bg_row[x]);
		struct color_float fg = a8r8g8b8_to_float(fg_row[x]);
		struct color_float shot = a8r8g8b8_to_float(shot_row[x]);

		compare_blend(arg->pipeline, bg, fg, &shot, &diffstat);
	}

	rgb_diff_stat_print(&diffstat, "Blending", 8);

	if (dump)
		fclose(dump);

	/* Test success condition: */
	return diffstat.two_norm.max < 1.5f / 255.0f;
}

static uint32_t
premult_color(uint32_t a, uint32_t r, uint32_t g, uint32_t b)
{
	uint32_t c = 0;

	c |= a << 24;
	c |= (a * r / 255) << 16;
	c |= (a * g / 255) << 8;
	c |= a * b / 255;

	return c;
}

static void
fill_alpha_pattern(struct buffer *buf)
{
	struct image_header ih = image_header_from(buf->image);
	int y;

	assert(ih.pixman_format == PIXMAN_a8r8g8b8);
	assert(ih.width == BLOCK_WIDTH * ALPHA_STEPS);

	for (y = 0; y < ih.height; y++) {
		uint32_t *row = image_header_get_row_u32(&ih, y);
		uint32_t step;

		for (step = 0; step < (uint32_t)ALPHA_STEPS; step++) {
			uint32_t alpha = step * 255 / (ALPHA_STEPS - 1);
			uint32_t color;
			int i;

			color = premult_color(alpha, 0, 255 - alpha, 255);
			for (i = 0; i < BLOCK_WIDTH; i++)
				*row++ = color;
		}
	}
}

/*
 * Test that alpha blending is correct when an output ICC profile is installed.
 *
 * The background is a constant color. On top of that, there is an
 * alpha-blended gradient with ramps in both alpha and color. Sub-surface
 * ensures the correct positioning and stacking.
 *
 * The gradient consists of ALPHA_STEPS number of blocks. Block size is
 * BLOCK_WIDTH x BLOCK_WIDTH and a block has a uniform color.
 *
 * In the blending result over x axis:
 * - red goes from 1.0 to 0.0, monotonic
 * - green is not monotonic
 * - blue goes from 0.0 to 1.0, monotonic
 *
 * The test has sRGB encoded input pixels (non-linear). These are converted to
 * linear light (optical) values in output color space, blended, and converted
 * to non-linear (electrical) values according to the output ICC profile.
 *
 * Specifically, this test exercises the linearization of output ICC profiles,
 * retrieve_eotf_and_output_inv_eotf().
 */
TEST(output_icc_alpha_blend)
{
	const int width = BLOCK_WIDTH * ALPHA_STEPS;
	const int height = BLOCK_WIDTH;
	const pixman_color_t background_color = {
		.red   = 0xffff,
		.green = 0x8080,
		.blue  = 0x0000,
		.alpha = 0xffff
	};
	int seq_no = get_test_fixture_index();
	const struct setup_args *arg = &my_setup_args[seq_no];
	struct client *client;
	struct buffer *bg;
	struct buffer *fg;
	struct wl_subcompositor *subco;
	struct wl_surface *surf;
	struct wl_subsurface *sub;
	struct buffer *shot;
	bool match;

	client = create_client();
	subco = bind_to_singleton_global(client, &wl_subcompositor_interface, 1);

	/* background window content */
	bg = create_shm_buffer_a8r8g8b8(client, width, height);
	fill_image_with_color(bg->image, &background_color);

	/* background window, main surface */
	client->surface = create_test_surface(client);
	client->surface->width = width;
	client->surface->height = height;
	client->surface->buffer = bg; /* pass ownership */
	surface_set_opaque_rect(client->surface,
				&(struct rectangle){ 0, 0, width, height });

	/* foreground blended content */
	fg = create_shm_buffer_a8r8g8b8(client, width, height);
	fill_alpha_pattern(fg);

	/* foreground window, sub-surface */
	surf = wl_compositor_create_surface(client->wl_compositor);
	sub = wl_subcompositor_get_subsurface(subco, surf, client->surface->wl_surface);
	/* sub-surface defaults to position 0, 0, top-most, synchronized */
	wl_surface_attach(surf, fg->proxy, 0, 0);
	wl_surface_damage(surf, 0, 0, width, height);
	wl_surface_commit(surf);

	/* attach, damage, commit background window */
	move_client(client, 0, 0);

	shot = capture_screenshot_of_output(client, NULL);
	assert(shot);
	match = verify_image(shot->image, "output_icc_alpha_blend", arg->ref_image_index,
			     NULL, seq_no);
	assert(check_blend_pattern(bg, fg, shot, arg));
	assert(match);

	buffer_destroy(shot);

	wl_subsurface_destroy(sub);
	wl_surface_destroy(surf);
	buffer_destroy(fg);
	wl_subcompositor_destroy(subco);
	client_destroy(client); /* destroys bg */
}

/*
 * Test that output decorations have the expected colors.
 *
 * This is the only way to test input-to-output category of color
 * transformations. They are used only for output decorations and some other
 * debug-like features. The input color space is hardcoded to sRGB in the
 * compositor.
 *
 * Because the output decorations are drawn with Cairo, we do not have an
 * easy access to the ground-truth image and so do not check the results
 * against a reference formula.
 */
TEST(output_icc_decorations)
{
	int seq_no = get_test_fixture_index();
	const struct setup_args *arg = &my_setup_args[seq_no];
	struct client *client;
	struct buffer *shot;
	pixman_image_t *img;
	bool match;

	client = create_client();

	shot = client_capture_output(client, client->output,
				     WESTON_CAPTURE_V1_SOURCE_FULL_FRAMEBUFFER);
	img = image_convert_to_a8r8g8b8(shot->image);

	match = verify_image(img, "output-icc-decorations",
			     arg->ref_image_index, NULL, seq_no);
	assert(match);

	pixman_image_unref(img);
	buffer_destroy(shot);
	client_destroy(client);
}