1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2019, Vaisala Oyj
*/
#include <common.h>
#include <command.h>
#include <dm.h>
#include <i2c.h>
#include <rtc.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
/*
* RTC register addresses
*/
#define RTC_SEC_REG_ADDR 0x00
#define RTC_MIN_REG_ADDR 0x01
#define RTC_HR_REG_ADDR 0x02
#define RTC_DAY_REG_ADDR 0x03
#define RTC_DATE_REG_ADDR 0x04
#define RTC_MON_REG_ADDR 0x05
#define RTC_YR_REG_ADDR 0x06
#define RTC_CTL_REG_ADDR 0x0e
#define RTC_STAT_REG_ADDR 0x0f
#define RTC_TEST_REG_ADDR 0x13
/*
* RTC control register bits
*/
#define RTC_CTL_BIT_A1IE BIT(0) /* Alarm 1 interrupt enable */
#define RTC_CTL_BIT_A2IE BIT(1) /* Alarm 2 interrupt enable */
#define RTC_CTL_BIT_INTCN BIT(2) /* Interrupt control */
#define RTC_CTL_BIT_DOSC BIT(7) /* Disable Oscillator */
/*
* RTC status register bits
*/
#define RTC_STAT_BIT_A1F BIT(0) /* Alarm 1 flag */
#define RTC_STAT_BIT_A2F BIT(1) /* Alarm 2 flag */
#define RTC_STAT_BIT_EN32KHZ BIT(3) /* Enable 32KHz Output */
#define RTC_STAT_BIT_BB32KHZ BIT(6) /* Battery backed 32KHz Output */
#define RTC_STAT_BIT_OSF BIT(7) /* Oscillator stop flag */
/*
* RTC test register bits
*/
#define RTC_TEST_BIT_SWRST BIT(7) /* Software reset */
#define RTC_DATE_TIME_REG_SIZE 7
#define RTC_SRAM_START 0x14
#define RTC_SRAM_END 0xFF
#define RTC_SRAM_SIZE 236
struct ds3232_priv_data {
u8 max_register;
u8 sram_start;
int sram_size;
};
static int ds3232_rtc_read8(struct udevice *dev, unsigned int reg)
{
int ret;
u8 buf;
struct ds3232_priv_data *priv_data;
priv_data = dev_get_priv(dev);
if (!priv_data)
return -EINVAL;
if (reg > priv_data->max_register)
return -EINVAL;
ret = dm_i2c_read(dev, reg, &buf, sizeof(buf));
if (ret < 0)
return ret;
return buf;
}
static int ds3232_rtc_write8(struct udevice *dev, unsigned int reg, int val)
{
u8 buf = (u8)val;
struct ds3232_priv_data *priv_data;
priv_data = dev_get_priv(dev);
if (!priv_data)
return -EINVAL;
if (reg > priv_data->max_register)
return -EINVAL;
return dm_i2c_write(dev, reg, &buf, sizeof(buf));
}
static int reset_sram(struct udevice *dev)
{
int ret, sram_end, reg;
struct ds3232_priv_data *priv_data;
priv_data = dev_get_priv(dev);
if (!priv_data)
return -EINVAL;
sram_end = priv_data->sram_start + priv_data->sram_size;
for (reg = priv_data->sram_start; reg < sram_end; reg++) {
ret = ds3232_rtc_write8(dev, reg, 0x00);
if (ret < 0)
return ret;
}
return 0;
}
static int verify_osc(struct udevice *dev)
{
int ret, rtc_status;
ret = ds3232_rtc_read8(dev, RTC_STAT_REG_ADDR);
if (ret < 0)
return ret;
rtc_status = ret;
if (rtc_status & RTC_STAT_BIT_OSF) {
dev_warn(dev,
"oscillator discontinuity flagged, time unreliable\n");
/*
* In case OSC was off we cannot trust the SRAM data anymore.
* Reset it to 0x00.
*/
ret = reset_sram(dev);
if (ret < 0)
return ret;
}
return 0;
}
static int ds3232_rtc_set(struct udevice *dev, const struct rtc_time *tm)
{
u8 buf[RTC_DATE_TIME_REG_SIZE];
u8 is_century;
if (tm->tm_year < 1900 || tm->tm_year > 2099)
dev_warn(dev, "WARNING: year should be between 1900 and 2099!\n");
is_century = (tm->tm_year >= 2000) ? 0x80 : 0;
buf[RTC_SEC_REG_ADDR] = bin2bcd(tm->tm_sec);
buf[RTC_MIN_REG_ADDR] = bin2bcd(tm->tm_min);
buf[RTC_HR_REG_ADDR] = bin2bcd(tm->tm_hour);
buf[RTC_DAY_REG_ADDR] = bin2bcd(tm->tm_wday + 1);
buf[RTC_DATE_REG_ADDR] = bin2bcd(tm->tm_mday);
buf[RTC_MON_REG_ADDR] = bin2bcd(tm->tm_mon) | is_century;
buf[RTC_YR_REG_ADDR] = bin2bcd(tm->tm_year % 100);
return dm_i2c_write(dev, 0, buf, sizeof(buf));
}
static int ds3232_rtc_get(struct udevice *dev, struct rtc_time *tm)
{
int ret;
u8 buf[RTC_DATE_TIME_REG_SIZE];
u8 is_twelve_hr;
u8 is_pm;
u8 is_century;
ret = verify_osc(dev);
if (ret < 0)
return ret;
ret = dm_i2c_read(dev, 0, buf, sizeof(buf));
if (ret < 0)
return ret;
/* Extract additional information for AM/PM and century */
is_twelve_hr = buf[RTC_HR_REG_ADDR] & 0x40;
is_pm = buf[RTC_HR_REG_ADDR] & 0x20;
is_century = buf[RTC_MON_REG_ADDR] & 0x80;
tm->tm_sec = bcd2bin(buf[RTC_SEC_REG_ADDR] & 0x7F);
tm->tm_min = bcd2bin(buf[RTC_MIN_REG_ADDR] & 0x7F);
if (is_twelve_hr)
tm->tm_hour = bcd2bin(buf[RTC_HR_REG_ADDR] & 0x1F)
+ (is_pm ? 12 : 0);
else
tm->tm_hour = bcd2bin(buf[RTC_HR_REG_ADDR]);
tm->tm_wday = bcd2bin((buf[RTC_DAY_REG_ADDR] & 0x07) - 1);
tm->tm_mday = bcd2bin(buf[RTC_DATE_REG_ADDR] & 0x3F);
tm->tm_mon = bcd2bin((buf[RTC_MON_REG_ADDR] & 0x7F));
tm->tm_year = bcd2bin(buf[RTC_YR_REG_ADDR])
+ (is_century ? 2000 : 1900);
tm->tm_yday = 0;
tm->tm_isdst = 0;
return 0;
}
static int ds3232_rtc_reset(struct udevice *dev)
{
int ret;
ret = reset_sram(dev);
if (ret < 0)
return ret;
/*
* From datasheet
* (https://datasheets.maximintegrated.com/en/ds/DS3232M.pdf):
*
* The device reset occurs during the normal acknowledge time slot
* following the receipt of the data byte carrying that
* SWRST instruction a NACK occurs due to the resetting action.
*
* Therefore we don't verify the result of I2C write operation since it
* will fail due the NACK.
*/
ds3232_rtc_write8(dev, RTC_TEST_REG_ADDR, RTC_TEST_BIT_SWRST);
return 0;
}
static int ds3232_probe(struct udevice *dev)
{
int rtc_status;
int ret;
struct ds3232_priv_data *priv_data;
priv_data = dev_get_priv(dev);
if (!priv_data)
return -EINVAL;
priv_data->sram_start = RTC_SRAM_START;
priv_data->max_register = RTC_SRAM_END;
priv_data->sram_size = RTC_SRAM_SIZE;
ret = ds3232_rtc_read8(dev, RTC_STAT_REG_ADDR);
if (ret < 0)
return ret;
rtc_status = ret;
ret = verify_osc(dev);
if (ret < 0)
return ret;
rtc_status &= ~(RTC_STAT_BIT_OSF | RTC_STAT_BIT_A1F | RTC_STAT_BIT_A2F);
return ds3232_rtc_write8(dev, RTC_STAT_REG_ADDR, rtc_status);
}
static const struct rtc_ops ds3232_rtc_ops = {
.get = ds3232_rtc_get,
.set = ds3232_rtc_set,
.reset = ds3232_rtc_reset,
.read8 = ds3232_rtc_read8,
.write8 = ds3232_rtc_write8
};
static const struct udevice_id ds3232_rtc_ids[] = {
{ .compatible = "dallas,ds3232" },
{ }
};
U_BOOT_DRIVER(rtc_ds3232) = {
.name = "rtc-ds3232",
.id = UCLASS_RTC,
.probe = ds3232_probe,
.of_match = ds3232_rtc_ids,
.ops = &ds3232_rtc_ops,
.priv_auto = sizeof(struct ds3232_priv_data),
};
|