1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
/*
Multimaps
*/
%include <std_multimap.i>
%fragment("StdUnorderedMultimapTraits","header",fragment="StdMapCommonTraits")
{
namespace swig {
template <class RubySeq, class K, class T, class Hash, class Compare, class Alloc>
inline void
assign(const RubySeq& rubyseq, std::unordered_multimap<K,T,Hash,Compare,Alloc> *multimap) {
typedef typename std::unordered_multimap<K,T,Hash,Compare,Alloc>::value_type value_type;
typename RubySeq::const_iterator it = rubyseq.begin();
for (;it != rubyseq.end(); ++it) {
multimap->insert(value_type(it->first, it->second));
}
}
template <class K, class T, class Hash, class Compare, class Alloc>
struct traits_asptr<std::unordered_multimap<K,T,Hash,Compare,Alloc> > {
typedef std::unordered_multimap<K,T,Hash,Compare,Alloc> multimap_type;
static int asptr(VALUE obj, std::unordered_multimap<K,T,Hash,Compare,Alloc> **val) {
int res = SWIG_ERROR;
if ( TYPE(obj) == T_HASH ) {
static ID id_to_a = rb_intern("to_a");
VALUE items = rb_funcall2(obj, id_to_a, 0, 0);
return traits_asptr_stdseq<std::unordered_multimap<K,T,Hash,Compare,Alloc>, std::pair<K, T> >::asptr(items, val);
} else {
multimap_type *p;
res = SWIG_ConvertPtr(obj,(void**)&p,swig::type_info<multimap_type>(),0);
if (SWIG_IsOK(res) && val) *val = p;
}
return res;
}
};
template <class K, class T, class Hash, class Compare, class Alloc>
struct traits_from<std::unordered_multimap<K,T,Hash,Compare,Alloc> > {
typedef std::unordered_multimap<K,T,Hash,Compare,Alloc> multimap_type;
typedef typename multimap_type::const_iterator const_iterator;
typedef typename multimap_type::size_type size_type;
static VALUE from(const multimap_type& multimap) {
swig_type_info *desc = swig::type_info<multimap_type>();
if (desc && desc->clientdata) {
return SWIG_NewPointerObj(new multimap_type(multimap), desc, SWIG_POINTER_OWN);
} else {
size_type size = multimap.size();
int rubysize = (size <= (size_type) INT_MAX) ? (int) size : -1;
if (rubysize < 0) {
SWIG_RUBY_THREAD_BEGIN_BLOCK;
rb_raise(rb_eRuntimeError,
"multimap_ size not valid in Ruby");
SWIG_RUBY_THREAD_END_BLOCK;
return Qnil;
}
VALUE obj = rb_hash_new();
for (const_iterator i= multimap.begin(); i!= multimap.end(); ++i) {
VALUE key = swig::from(i->first);
VALUE val = swig::from(i->second);
VALUE oldval = rb_hash_aref(obj, key);
if (oldval == Qnil) {
rb_hash_aset(obj, key, val);
} else {
// Multiple values for this key, create array if needed
// and add a new element to it.
VALUE ary;
if (TYPE(oldval) == T_ARRAY) {
ary = oldval;
} else {
ary = rb_ary_new2(2);
rb_ary_push(ary, oldval);
rb_hash_aset(obj, key, ary);
}
rb_ary_push(ary, val);
}
}
return obj;
}
}
};
}
}
#define %swig_unordered_multimap_methods(MultiMap...) %swig_multimap_methods(MultiMap)
%mixin std::unordered_multimap "Enumerable";
%rename("delete") std::unordered_multimap::__delete__;
%rename("reject!") std::unordered_multimap::reject_bang;
%rename("map!") std::unordered_multimap::map_bang;
%rename("empty?") std::unordered_multimap::empty;
%rename("include?" ) std::unordered_multimap::__contains__ const;
%rename("has_key?" ) std::unordered_multimap::has_key const;
%alias std::unordered_multimap::push "<<";
%include <std/std_unordered_multimap.i>
|