summaryrefslogtreecommitdiff
path: root/Doc/Manual/Ruby.html
blob: 6ff98ca233e528c60adaf956d4c63d73f7c32212 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
  <title>SWIG and Ruby</title>
  <link rel="stylesheet" type="text/css" href="style.css">
</head>

<body bgcolor="#ffffff">

<H1><a name="Ruby"></a>36 SWIG and Ruby</H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#Ruby_nn2">Preliminaries</a>
<ul>
<li><a href="#Ruby_nn3">Running SWIG</a>
<li><a href="#Ruby_nn4">Getting the right header files</a>
<li><a href="#Ruby_nn5">Compiling a dynamic module</a>
<li><a href="#Ruby_nn6">Using your module</a>
<li><a href="#Ruby_nn7">Static linking</a>
<li><a href="#Ruby_nn8">Compilation of C++ extensions</a>
</ul>
<li><a href="#Ruby_nn9">Building Ruby Extensions under Windows 95/NT</a>
<ul>
<li><a href="#Ruby_nn10">Running SWIG from Developer Studio</a>
</ul>
<li><a href="#Ruby_nn11">The Ruby-to-C/C++ Mapping</a>
<ul>
<li><a href="#Ruby_nn12">Modules</a>
<li><a href="#Ruby_nn13">Functions</a>
<li><a href="#Ruby_nn14">Variable Linking</a>
<li><a href="#Ruby_nn15">Constants</a>
<li><a href="#Ruby_nn16">Pointers</a>
<li><a href="#Ruby_nn17">Structures</a>
<li><a href="#Ruby_nn18">C++ classes</a>
<li><a href="#Ruby_nn19">C++ Inheritance</a>
<li><a href="#Ruby_nn20">C++ Overloaded Functions</a>
<li><a href="#Ruby_nn21">C++ Operators</a>
<li><a href="#Ruby_nn22">C++ namespaces</a>
<li><a href="#Ruby_nn23">C++ templates</a>
<li><a href="#Ruby_nn23_1">C++ Standard Template Library (STL)</a>
<li><a href="#Ruby_C_STL_Functors">C++ STL Functors</a>
<li><a href="#Ruby_C_Iterators">C++ STL Iterators</a>
<li><a href="#Ruby_nn24">C++ Smart Pointers</a>
<li><a href="#Ruby_nn25">Cross-Language Polymorphism</a>
<ul>
<li><a href="#Ruby_nn26">Exception Unrolling</a>
</ul>
</ul>
<li><a href="#Ruby_nn27">Naming</a>
<ul>
<li><a href="#Ruby_nn28">Defining Aliases</a>
<li><a href="#Ruby_nn29">Predicate Methods</a>
<li><a href="#Ruby_nn30">Bang Methods</a>
<li><a href="#Ruby_nn31">Getters and Setters</a>
</ul>
<li><a href="#Ruby_nn32">Input and output parameters</a>
<li><a href="#Ruby_nn33">Exception handling </a>
<ul>
<li><a href="#Ruby_nn34">Using the %exception directive </a>
<li><a href="#Ruby_nn34_2">Handling Ruby Blocks </a>
<li><a href="#Ruby_nn35">Raising exceptions </a>
<li><a href="#Ruby_nn36">Exception classes </a>
</ul>
<li><a href="#Ruby_nn37">Typemaps</a>
<ul>
<li><a href="#Ruby_nn38">What is a typemap?</a>
<li><a href="#Ruby_Typemap_scope">Typemap scope</a>
<li><a href="#Ruby_Copying_a_typemap">Copying a typemap</a>
<li><a href="#Ruby_Deleting_a_typemap">Deleting a typemap</a>
<li><a href="#Ruby_Placement_of_typemaps">Placement of typemaps</a>
<li><a href="#Ruby_nn39">Ruby typemaps</a>
<ul>
<li><a href="#Ruby_in_typemap">"in" typemap</a>
<li><a href="#Ruby_typecheck_typemap">"typecheck" typemap</a>
<li><a href="#Ruby_out_typemap">"out" typemap</a>
<li><a href="#Ruby_arginit_typemap">"arginit" typemap</a>
<li><a href="#Ruby_default_typemap">"default" typemap</a>
<li><a href="#Ruby_check_typemap">"check" typemap</a>
<li><a href="#Ruby_argout_typemap_">"argout" typemap</a>
<li><a href="#Ruby_freearg_typemap_">"freearg" typemap</a>
<li><a href="#Ruby_newfree_typemap">"newfree" typemap</a>
<li><a href="#Ruby_memberin_typemap">"memberin" typemap</a>
<li><a href="#Ruby_varin_typemap">"varin" typemap</a>
<li><a href="#Ruby_varout_typemap_">"varout" typemap</a>
<li><a href="#Ruby_throws_typemap">"throws" typemap</a>
<li><a href="#Ruby_directorin_typemap">directorin typemap</a>
<li><a href="#Ruby_directorout_typemap">directorout typemap</a>
<li><a href="#Ruby_directorargout_typemap">directorargout typemap</a>
<li><a href="#Ruby_ret_typemap">ret typemap</a>
<li><a href="#Ruby_globalin_typemap">globalin typemap</a>
</ul>
<li><a href="#Ruby_nn40">Typemap variables</a>
<li><a href="#Ruby_nn41">Useful Functions</a>
<ul>
<li><a href="#Ruby_nn42">C Datatypes to Ruby Objects</a>
<li><a href="#Ruby_nn43">Ruby Objects to C Datatypes</a>
<li><a href="#Ruby_nn44">Macros for VALUE</a>
<li><a href="#Ruby_nn45">Exceptions</a>
<li><a href="#Ruby_nn46">Iterators</a>
</ul>
<li><a href="#Ruby_nn47">Typemap Examples</a>
<li><a href="#Ruby_nn48">Converting a Ruby array to a char **</a>
<li><a href="#Ruby_nn49">Collecting arguments in a hash</a>
<li><a href="#Ruby_nn50">Pointer handling</a>
<ul>
<li><a href="#Ruby_nn51">Ruby Datatype Wrapping</a>
</ul>
<li><a href="#Ruby_nn52">Example: STL Vector to Ruby Array</a>
</ul>
<li><a href="#Ruby_nn65">Docstring Features</a>
<ul>
<li><a href="#Ruby_nn66">Module docstring</a>
<li><a href="#Ruby_nn67">%feature("autodoc")</a>
<ul>
<li><a href="#Ruby_nn68">%feature("autodoc", "0")</a>
<li><a href="#Ruby_autodoc1">%feature("autodoc", "1")</a>
<li><a href="#Ruby_autodoc2">%feature("autodoc", "2")</a>
<li><a href="#Ruby_feature_autodoc3">%feature("autodoc", "3")</a>
<li><a href="#Ruby_nn70">%feature("autodoc", "docstring")</a>
</ul>
<li><a href="#Ruby_nn71">%feature("docstring")</a>
</ul>
<li><a href="#Ruby_nn53">Advanced Topics</a>
<ul>
<li><a href="#Ruby_operator_overloading">Operator overloading</a>
<li><a href="#Ruby_nn55">Creating Multi-Module Packages</a>
<li><a href="#Ruby_nn56">Specifying Mixin Modules</a>
</ul>
<li><a href="#Ruby_nn57">Memory Management</a>
<ul>
<li><a href="#Ruby_nn58">Mark and Sweep Garbage Collector </a>
<li><a href="#Ruby_nn59">Object Ownership</a>
<li><a href="#Ruby_nn60">Object Tracking</a>
<li><a href="#Ruby_nn61">Mark Functions</a>
<li><a href="#Ruby_nn62">Free Functions</a>
<li><a href="#Ruby_nn63">Embedded Ruby and the C++ Stack</a>
</ul>
</ul>
</div>
<!-- INDEX -->



<p>This chapter describes SWIG's support of Ruby.</p>

<H2><a name="Ruby_nn2"></a>36.1 Preliminaries</H2>


<p> SWIG 1.3 is known to work with Ruby versions 1.6 and later.
Given the choice, you should use the latest stable version of Ruby. You
should also determine if your system supports shared libraries and
dynamic loading. SWIG will work with or without dynamic loading, but
the compilation process will vary. </p>

<p>This chapter covers most SWIG features, but in less depth than
is found in earlier chapters. At the very least, make sure you also
read the "<a href="SWIG.html#SWIG">SWIG Basics</a>"
chapter. It is also assumed that the reader has a basic understanding
of Ruby. </p>

<H3><a name="Ruby_nn3"></a>36.1.1 Running SWIG</H3>


<p> To build a Ruby module, run SWIG using the <tt>-ruby</tt>
option:</p>

<div class="code shell">
<pre>$ swig -ruby example.i
</pre>
</div>

<p> If building a C++ extension, add the <tt>-c++</tt>
option: </p>

<div class="code shell">
<pre>$ swig -c++ -ruby example.i
</pre>
</div>

<p> This creates a file <tt>example_wrap.c</tt> (<tt>example_wrap.cxx</tt>
if compiling a C++ extension) that contains all of the code needed to
build a Ruby extension module. To finish building the module, you need
to compile this file and link it with the rest of your program. </p>

<H3><a name="Ruby_nn4"></a>36.1.2 Getting the right header files</H3>


<p> In order to compile the wrapper code, the compiler needs the <tt>ruby.h</tt>
header file. This file is usually contained in a directory such as </p>

<div class="code shell diagram">
<pre>/usr/lib/ruby/1.8/x86_64-linux-gnu/ruby.h
/usr/local/lib/ruby/1.6/i686-linux/ruby.h
</pre>
</div>

<p> The exact location may vary on your machine, but the above
location is typical. If you are not entirely sure where Ruby is
installed, you can run Ruby to find out. For example: </p>

<div class="code shell">
<pre>$ ruby -e 'puts $:.join("\n")'
/usr/local/lib/ruby/site_ruby/1.6 /usr/local/lib/ruby/site_ruby/1.6/i686-linux
/usr/local/lib/ruby/site_ruby /usr/local/lib/ruby/1.6 /usr/local/lib/ruby/1.6/i686-linux .
</pre>
</div>

<H3><a name="Ruby_nn5"></a>36.1.3 Compiling a dynamic module</H3>


<p> Ruby extension modules are typically compiled into shared
libraries that the interpreter loads dynamically at runtime. Since the
exact commands for doing this vary from platform to platform, your best
bet is to follow the steps described in the <tt>README.EXT</tt>
file from the Ruby distribution: </p>

<ol>
  <li>
    <p>Create a file called <tt>extconf.rb</tt> that
looks like the following:</p>
    <div class="code targetlang">
    <pre>require 'mkmf'
create_makefile('example')</pre>
    </div>
  </li>
  <li>
    <p>Type the following to build the extension:</p>
    <div class="code shell">
    <pre>
$ ruby extconf.rb
$ make
$ make install
    </pre>
    </div>
  </li>
</ol>

<p> Of course, there is the problem that mkmf does not work
correctly on all platforms, e.g, HPUX. If you need to add your own make
rules to the file that <tt>extconf.rb</tt> produces, you
can add this: </p>

<div class="code targetlang">
<pre>open("Makefile", "a") { |mf|
 puts &lt;&lt;EOM
 # Your make rules go here
 EOM
}
</pre>
</div>

<p> to the end of the <tt>extconf.rb</tt> file. If
for some reason you don't want to use the standard approach, you'll
need to determine the correct compiler and linker flags for your build
platform. For example, assuming you have code you need to link to in a file
called <tt>example.c</tt>, a typical sequence of commands for the Linux
operating system would look something like this: </p>

<div class="code shell">
<pre>$ swig -ruby example.i
$ gcc -O2 -fPIC -c example.c
$ gcc -O2 -fPIC -c example_wrap.c -I/usr/local/lib/ruby/1.6/i686-linux
$ gcc -shared example.o example_wrap.o -o example.so
</pre>
</div>

<p>
The -fPIC option tells GCC to generate position-independent code (PIC)
which is required for most architectures (it's not vital on x86, but
still a good idea as it allows code pages from the library to be shared between
processes).  Other compilers may need a different option specified instead of
-fPIC.
</p>

<p>
If in doubt, consult the
manual pages for your compiler and linker to determine the correct set
of options. You might also check the <a href="http://www.dabeaz.com/cgi-bin/wiki.pl">SWIG Wiki</a>
for additional information. </p>

<H3><a name="Ruby_nn6"></a>36.1.4 Using your module</H3>


<p> Ruby <i>module</i> names must be capitalized,
but the convention for Ruby <i>feature</i> names is to use
lowercase names. So, for example, the <b>Etc</b> extension
module is imported by requiring the <b>etc</b> feature: </p>

<div class="code targetlang">
<pre># The feature name begins with a lowercase letter...
require 'etc'

# ... but the module name begins with an uppercase letter
puts "Your login name: #{Etc.getlogin}"
</pre>
</div>

<p> To stay consistent with this practice, you should always
specify a <b>lowercase</b> module name with SWIG's <tt>%module</tt>
directive. SWIG will automatically correct the resulting Ruby module
name for your extension. So for example, a SWIG interface file that
begins with: </p>

<div class="code">
<pre>%module example</pre>
</div>

<p> will result in an extension module using the feature name
"example" and Ruby module name "Example". </p>

<H3><a name="Ruby_nn7"></a>36.1.5 Static linking</H3>


<p> An alternative approach to dynamic linking is to rebuild the
Ruby interpreter with your extension module added to it. In the past,
this approach was sometimes necessary due to limitations in dynamic
loading support on certain machines. However, the situation has
improved greatly over the last few years and you should not consider
this approach unless there is really no other option. </p>

<p>The usual procedure for adding a new module to Ruby involves
finding the Ruby source, adding an entry to the <tt>ext/Setup</tt>
file, adding your directory to the list of extensions in the file, and
finally rebuilding Ruby. </p>

<H3><a name="Ruby_nn8"></a>36.1.6 Compilation of C++ extensions</H3>


<p> On most machines, C++ extension modules should be linked
using the C++ compiler. For example: </p>

<div class="code shell">
<pre>
$ swig -c++ -ruby example.i
$ g++ -fPIC -c example.cxx
$ g++ -fPIC -c example_wrap.cxx -I/usr/local/lib/ruby/1.6/i686-linux
$ g++ -shared example.o example_wrap.o -o example.so
</pre>
</div>

<p> If you've written an <tt>extconf.rb</tt> script
to automatically generate a <tt>Makefile</tt> for your C++
extension module, keep in mind that (as of this writing) Ruby still
uses <tt>gcc</tt> and not <tt>g++</tt> as its
linker. As a result, the required C++ runtime library support will not
be automatically linked into your extension module and it may fail to
load on some platforms. A workaround for this problem is use the <tt>mkmf</tt>
module's <tt>append_library()</tt> method to add one of
the C++ runtime libraries to the list of libraries linked into your
extension, e.g. </p>

<div class="code targetlang">
<pre>require 'mkmf'
$libs = append_library($libs, "supc++")
create_makefile('example')</pre>
</div>

<H2><a name="Ruby_nn9"></a>36.2 Building Ruby Extensions under Windows 95/NT</H2>


<p> Building a SWIG extension to Ruby under Windows 95/NT is
roughly similar to the process used with Unix. Normally, you will want
to produce a DLL that can be loaded into the Ruby interpreter. For all
recent versions of Ruby, the procedure described above (i.e. using an <tt>extconf.rb</tt>
script) will work with Windows as well; you should be able to build
your code into a DLL by typing: </p>

<div class="code shell">
<pre>
C:\swigtest&gt; ruby extconf.rb
C:\swigtest&gt; nmake
C:\swigtest&gt; nmake install
</pre>
</div>

<p> The remainder of this section covers the process of compiling
SWIG-generated Ruby extensions with Microsoft Visual C++ 6 (i.e. within
the Developer Studio IDE, instead of using the command line tools). In
order to build extensions, you may need to download the source
distribution to the Ruby package, as you will need the Ruby header
files. </p>

<H3><a name="Ruby_nn10"></a>36.2.1 Running SWIG from Developer Studio</H3>


<p> If you are developing your application within Microsoft
developer studio, SWIG can be invoked as a custom build option. The
process roughly follows these steps : </p>
<ul>
  <li> Open up a new workspace and use the AppWizard to select a
DLL project. </li>
  <li> Add both the SWIG interface file (the .i file), any
supporting C files, and the name of the wrapper file that will be
created by SWIG (i.e. <tt>example_wrap.c</tt>). Note : If
using C++, choose a different suffix for the wrapper file such as <tt>example_wrap.cxx</tt>.
Don't worry if the wrapper file doesn't exist yet--Developer Studio
will keep a reference to it around. </li>
  <li> Select the SWIG interface file and go to the settings
menu. Under settings, select the "Custom Build" option. </li>
  <li> Enter "SWIG" in the description field. </li>
  <li> Enter "<tt>swig -ruby -o
$(ProjDir)\$(InputName)_wrap.c $(InputPath)</tt>" in the "Build
command(s) field". You may have to include the path to swig.exe. </li>
  <li> Enter "<tt>$(ProjDir)\$(InputName)_wrap.c</tt>"
in the "Output files(s) field". </li>
  <li> Next, select the settings for the entire project and go to
the C/C++ tab and select the Preprocessor category. Add NT=1 to the
Preprocessor definitions. This must be set else you will get
compilation errors. Also add IMPORT to the preprocessor definitions,
else you may get runtime errors. Also add the include directories for
your Ruby installation under "Additional include directories". </li>
  <li> Next, select the settings for the entire project and go to
the Link tab and select the General category. Set the name of the
output file to match the name of your Ruby module (i.e.. example.dll).
Next add the Ruby library file to your link libraries under
Object/Library modules. For example "mswin32-ruby16.lib. You also need
to add the path to the library under the Input tab - Additional library
path. </li>
  <li> Build your project. </li>
</ul>

<p> Now, assuming all went well, SWIG will be automatically
invoked when you build your project. Any changes made to the interface
file will result in SWIG being automatically invoked to produce a new
version of the wrapper file. To run your new Ruby extension, simply run
Ruby and use the <tt>require</tt> command as normal. For
example if you have this ruby file run.rb:</p>

<div class="code targetlang">
<pre># file: run.rb
require 'Example'

# Call a c function
print "Foo = ", Example.Foo, "\n"</pre>
</div>

<p> Ensure the dll just built is in your path or current
directory, then run the Ruby script from the DOS/Command prompt: </p>

<div class="code shell">
<pre>
C:\swigtest&gt; ruby run.rb
Foo = 3.0
</pre>
</div>

<H2><a name="Ruby_nn11"></a>36.3 The Ruby-to-C/C++ Mapping</H2>


<p> This section describes the basics of how SWIG maps C or C++
declarations in your SWIG interface files to Ruby constructs. </p>

<H3><a name="Ruby_nn12"></a>36.3.1 Modules</H3>


<p> The SWIG <tt>%module</tt> directive specifies
the name of the Ruby module. If you specify: </p>

<div class="code">
<pre>%module example</pre>
</div>

<p> then everything is wrapped into a Ruby module named <tt>Example</tt>
that is nested directly under the global module. You can specify a more
deeply nested module by specifying the fully-qualified module name in
quotes, e.g. </p>

<div class="code">
<pre>%module "foo::bar::spam"</pre>
</div>

<p> An alternate method of specifying a nested module name is to
use the <tt>-prefix</tt>
option on the SWIG command line. The prefix that you specify with this
option will be prepended to the module name specified with the <tt>%module</tt>
directive in your SWIG interface file. So for example, this declaration
at the top of your SWIG interface file:
</p>

<div class="code">
<pre>%module "foo::bar::spam"</pre>
</div>

<p> will result in a nested module name of <tt>Foo::Bar::Spam</tt>,
but you can achieve the <span style="font-style: italic;">same</span>
effect by specifying:
</p>

<div class="code">
<pre>%module spam</pre>
</div>

<p> and then running SWIG with the <tt>-prefix</tt> command
line option:
</p>

<div class="code shell">
<pre>
$ swig -ruby -prefix "foo::bar::" example.i
</pre>
</div>

<p> Starting with SWIG 1.3.20, you can also choose to wrap
everything into the global module by specifying the <tt>-globalmodule</tt>
option on the SWIG command line, i.e. </p>

<div class="code shell">
<pre>
$ swig -ruby -globalmodule example.i
</pre>
</div>

<p> Note that this does not relieve you of the requirement of
specifying the SWIG module name with the <tt>%module</tt>
directive (or the <tt>-module</tt> command-line option) as
described earlier. </p>

<p>When choosing a module name, do not use the same name as a
built-in Ruby command or standard module name, as the results may be
unpredictable. Similarly, if you're using the <tt>-globalmodule</tt>
option to wrap everything into the global module, take care that the
names of your constants, classes and methods don't conflict with any of
Ruby's built-in names. </p>

<H3><a name="Ruby_nn13"></a>36.3.2 Functions</H3>


<p> Global functions are wrapped as Ruby module methods. For
example, given the SWIG interface file <tt>example.i</tt>:
</p>

<div class="code">
<pre>%module example

int fact(int n);</pre>
</div>

<p> and C source file <tt>example.c</tt>: </p>

<div class="code">
<pre>int fact(int n) {
  if (n == 0)
  return 1;
  return (n * fact(n-1));
}</pre>
</div>

<p> SWIG will generate a method <i>fact</i> in the <i>Example</i>
module that can be used like so: </p>

<div class="code targetlang">
<pre>$ <b>irb</b>
irb(main):001:0&gt; <b>require 'example'</b>
true
irb(main):002:0&gt; <b>Example.fact(4)</b>
24</pre>
</div>

<H3><a name="Ruby_nn14"></a>36.3.3 Variable Linking</H3>


<p> C/C++ global variables are wrapped as a pair of singleton
methods for the module: one to get the value of the global variable and
one to set it. For example, the following SWIG interface file declares
two global variables: </p>

<div class="code">
<pre>// SWIG interface file with global variables
%module example
...
%inline %{
  extern int variable1;
  extern double Variable2;
%}
...</pre>
</div>

<p> Now look at the Ruby interface:</p>

<div class="code targetlang">
<pre>$ <b>irb</b>
irb(main):001:0&gt; <b>require 'Example'</b>
true
irb(main):002:0&gt; <b>Example.variable1 = 2</b>
2
irb(main):003:0&gt; <b>Example.Variable2 = 4 * 10.3</b>
41.2
irb(main):004:0&gt; <b>Example.Variable2</b>
41.2</pre>
</div>

<p> If you make an error in variable assignment, you will receive
an error message. For example: </p>

<div class="code targetlang">
<pre>irb(main):005:0&gt; <b>Example.Variable2 = "hello"</b>
TypeError: no implicit conversion to float from string
from (irb):5:in `Variable2='
from (irb):5</pre>
</div>

<p> If a variable is declared as <tt>const</tt>, it
is wrapped as a read-only variable. Attempts to modify its value will
result in an error. </p>

<p>To make ordinary variables read-only, you can also use the <tt>%immutable</tt>
directive. For example: </p>

<div class="code">
<pre>%immutable;
%inline %{
  extern char *path;
%}
%mutable;</pre>
</div>

<p> The <tt>%immutable</tt> directive stays in
effect until it is explicitly disabled using <tt>%mutable</tt>.
</p>

<H3><a name="Ruby_nn15"></a>36.3.4 Constants</H3>


<p> C/C++ constants are wrapped as module constants initialized
to the appropriate value. To create a constant, use <tt>#define</tt>
or the <tt>%constant</tt> directive. For example: </p>

<div class="code">
<pre>#define PI 3.14159
#define VERSION "1.0"

%constant int FOO = 42;
%constant const char *path = "/usr/local";

const int BAR = 32;</pre>
</div>

<p> Remember to use the :: operator in Ruby to get at these
constant values, e.g. </p>

<div class="code targetlang">
<pre>$ <b>irb</b>
irb(main):001:0&gt; <b>require 'Example'</b>
true
irb(main):002:0&gt; <b>Example::PI</b>
3.14159</pre>
</div>

<H3><a name="Ruby_nn16"></a>36.3.5 Pointers</H3>


<p> "Opaque" pointers to arbitrary C/C++ types (i.e. types that
aren't explicitly declared in your SWIG interface file) are wrapped as
data objects. So, for example, consider a SWIG interface file
containing only the declarations: </p>

<div class="code">
<pre>Foo *get_foo();
void set_foo(Foo *foo);</pre>
</div>

<p> For this case, the <i>get_foo()</i> method
returns an instance of an internally generated Ruby class: </p>

<div class="code targetlang">
<pre>irb(main):001:0&gt; <b>foo = Example::get_foo()</b>
#&lt;SWIG::TYPE_p_Foo:0x402b1654&gt;</pre>
</div>

<p> A <tt>NULL</tt> pointer is always represented by
the Ruby <tt>nil</tt> object. </p>

<H3><a name="Ruby_nn17"></a>36.3.6 Structures</H3>


<p> C/C++ structs are wrapped as Ruby classes, with accessor
methods (i.e. "getters" and "setters") for all of the struct members.
For example, this struct declaration: </p>

<div class="code">
<pre>struct Vector {
  double x, y;
};</pre>
</div>

<p> gets wrapped as a <tt>Vector</tt> class, with
Ruby instance methods <tt>x</tt>, <tt> x=</tt>,
<tt>y</tt> and <tt>y=</tt>. These methods can
be used to access structure data from Ruby as follows: </p>

<div class="code targetlang">
<pre>$ <b>irb</b>
irb(main):001:0&gt; <b>require 'Example'</b>
true
irb(main):002:0&gt; <b>f = Example::Vector.new</b>
#&lt;Example::Vector:0x4020b268&gt;
irb(main):003:0&gt; <b>f.x = 10</b>
nil
irb(main):004:0&gt; <b>f.x</b>
10.0</pre>
</div>

<p> Similar access is provided for unions and the public data
members of C++ classes.</p>

<p><tt>const</tt> members of a structure are
read-only. Data members can also be forced to be read-only using the <tt>%immutable</tt>
directive (in C++, <tt>private</tt> may also be used). For
example: </p>

<div class="code">
<pre>struct Foo {
  ...
  %immutable;
  int x; /* Read-only members */
  char *name;
  %mutable;
  ...
};</pre>
</div>

<p> When <tt>char *</tt> members of a structure are
wrapped, the contents are assumed to be dynamically allocated using <tt>malloc</tt>
or <tt>new</tt> (depending on whether or not SWIG is run
with the <tt>-c++</tt> option). When the structure member
is set, the old contents will be released and a new value created. If
this is not the behavior you want, you will have to use a typemap
(described shortly). </p>

<p>Array members are normally wrapped as read-only. For example,
this code: </p>

<div class="code">
<pre>struct Foo {
  int x[50];
};</pre>
</div>

<p> produces a single accessor function like this: </p>

<div class="code">
<pre>int *Foo_x_get(Foo *self) {
  return self-&gt;x;
};</pre>
</div>

<p> If you want to set an array member, you will need to supply a
"memberin" typemap described in the <a href="#Ruby_memberin_typemap">section on typemaps</a>.
As a special case, SWIG does generate code to set array members of type
<tt>char</tt> (allowing you to store a Ruby string in the
structure). </p>

<p>When structure members are wrapped, they are handled as
pointers. For example, </p>

<div class="code">
<pre>struct Foo {
  ...
};

struct Bar {
  Foo f;
};</pre>
</div>

<p> generates accessor functions such as this: </p>

<div class="code">
<pre>Foo *Bar_f_get(Bar *b) {
  return &amp;b-&gt;f;
}

void Bar_f_set(Bar *b, Foo *val) {
  b-&gt;f = *val;
}</pre>
</div>

<H3><a name="Ruby_nn18"></a>36.3.7 C++ classes</H3>


<p> Like structs, C++ classes are wrapped by creating a new Ruby
class of the same name with accessor methods for the public class
member data. Additionally, public member functions for the class are
wrapped as Ruby instance methods, and public static member functions
are wrapped as Ruby singleton methods. So, given the C++ class
declaration: </p>

<div class="code">
<pre>class List {
public:
  List();
  ~List();
  int search(char *item);
  void insert(char *item);
  void remove(char *item);
  char *get(int n);
  int length;
  static void print(List *l);
};</pre>
</div>

<p> SWIG would create a <tt>List</tt> class with: </p>

<ul>
  <li> instance methods <i>search</i>, <i>insert</i>,
    <i>remove</i>, and <i>get</i>; </li>
  <li> instance methods <i>length</i> and <i>length=</i>
(to get and set the value of the <i>length</i> data
member); and, </li>
  <li> a <i>print</i> singleton method for the
class. </li>
</ul>

<p> In Ruby, these functions are used as follows: </p>

<div class="code targetlang">
<pre>require 'Example'

l = Example::List.new

l.insert("Ale")
l.insert("Stout")
l.insert("Lager")
Example.print(l)
l.length()
----- produces the following output 
Lager
Stout
Ale
3</pre>
</div>

<H3><a name="Ruby_nn19"></a>36.3.8 C++ Inheritance</H3>


<p> The SWIG type-checker is fully aware of C++ inheritance.
Therefore, if you have classes like this: </p>

<div class="code">
<pre>class Parent {
  ...
};

class Child : public Parent {
  ...
};</pre>
</div>

<p> those classes are wrapped into a hierarchy of Ruby classes
that reflect the same inheritance structure. All of the usual Ruby
utility methods work normally: </p>

<div class="code">
<pre>irb(main):001:0&gt; <b>c = Child.new</b>
#&lt;Bar:0x4016efd4&gt;
irb(main):002:0&gt; <b>c.instance_of? Child</b>
true
irb(main):003:0&gt; <b>b.instance_of? Parent</b>
false
irb(main):004:0&gt; <b>b.is_a? Child</b>
true
irb(main):005:0&gt; <b>b.is_a? Parent</b>
true
irb(main):006:0&gt; <b>Child &lt; Parent</b>
true
irb(main):007:0&gt; <b>Child &gt; Parent</b>
false</pre>
</div>

<p> Furthermore, if you have a function like this: </p>

<div class="code">
<pre>void spam(Parent *f);</pre>
</div>

<p> then the function <tt>spam()</tt> accepts <tt>Parent</tt>*
or a pointer to any class derived from <tt>Parent</tt>. </p>

<p>Until recently, the Ruby module for SWIG didn't support
multiple inheritance, and this is still the default behavior. This
doesn't mean that you can't wrap C++ classes which inherit from
multiple base classes; it simply means that only the <b>first</b>
base class listed in the class declaration is considered, and any
additional base classes are ignored. As an example, consider a SWIG
interface file with a declaration like this: </p>

<div class="code">
<pre>class Derived : public Base1, public Base2
{
  ...
};</pre>
</div>

<p> For this case, the resulting Ruby class (<tt>Derived</tt>)
will only consider <tt>Base1</tt> as its superclass. It
won't inherit any of <tt>Base2</tt>'s member functions or
data and it won't recognize <tt>Base2</tt> as an
"ancestor" of <tt>Derived</tt> (i.e. the <em>is_a?</em>
relationship would fail). When SWIG processes this interface file,
you'll see a warning message like: </p>

<div class="code shell">
<pre>example.i:5: Warning 802: Warning for Derived: Base Base2 ignored.
Multiple inheritance is not supported in Ruby.</pre>
</div>

<p> Starting with SWIG 1.3.20, the Ruby module for SWIG provides
limited support for multiple inheritance. Because the approach for
dealing with multiple inheritance introduces some limitations, this is
an optional feature that you can activate with the <tt>-minherit</tt>
command-line option: </p>

<div class="code shell">
<pre>
$ swig -c++ -ruby -minherit example.i
</pre>
</div>

<p> Using our previous example, if your SWIG interface file
contains a declaration like this: </p>

<div class="code">
<pre>class Derived : public Base1, public Base2
{
  ...
};</pre>
</div>

<p> and you run SWIG with the <tt>-minherit</tt>
command-line option, then you will end up with a Ruby class <tt>Derived</tt>
that appears to "inherit" the member data and functions from both <tt>Base1</tt>
and <tt>Base2</tt>. What actually happens is that three
different top-level classes are created, with Ruby's <tt>Object</tt>
class as their superclass. Each of these classes defines a nested
module named <tt>Impl</tt>, and it's in these nested <tt>Impl</tt>
modules that the actual instance methods for the classes are defined,
i.e. </p>

<div class="code targetlang">
<pre>class Base1
  module Impl
  # Define Base1 methods here
  end
  include Impl
end

class Base2
  module Impl
  # Define Base2 methods here
  end
  include Impl
end

class Derived
  module Impl
  include Base1::Impl
  include Base2::Impl
  # Define Derived methods here
  end
  include Impl
end</pre>
</div>

<p> Observe that after the nested <tt>Impl</tt>
module for a class is defined, it is mixed-in to the class itself. Also
observe that the <tt>Derived::Impl</tt> module first
mixes-in its base classes' <tt>Impl</tt> modules, thus
"inheriting" all of their behavior. </p>

<p>The primary drawback is that, unlike the default mode of
operation, neither <tt>Base1</tt> nor <tt>Base2</tt>
is a true superclass of <tt>Derived</tt> anymore: </p>

<div class="code targetlang">
<pre>obj = Derived.new
obj.is_a? Base1 # this will return false...
obj.is_a? Base2 # ... and so will this</pre>
</div>

<p> In most cases, this is not a serious problem since objects of
type <tt>Derived</tt> will otherwise behave as though they
inherit from both <tt>Base1</tt> and <tt>Base2</tt>
(i.e. they exhibit <a href="http://c2.com/cgi/wiki?DuckTyping">"Duck
Typing"</a>). </p>

<H3><a name="Ruby_nn20"></a>36.3.9 C++ Overloaded Functions</H3>


<p> C++ overloaded functions, methods, and constructors are
mostly supported by SWIG. For example, if you have two functions like
this: </p>

<div class="code">
<pre>void foo(int);
void foo(char *c);</pre>
</div>

<p> You can use them in Ruby in a straightforward manner: </p>

<div class="code targetlang">
<pre>irb(main):001:0&gt; <b>foo(3)</b> # foo(int)
irb(main):002:0&gt; <b>foo("Hello")</b> # foo(char *c)</pre>
</div>

<p>Similarly, if you have a class like this,</p>

<div class="code">
<pre>class Foo {
public:
  Foo();
  Foo(const Foo &amp;);
  ...
};</pre>
</div>

<p>you can write Ruby code like this:</p>

<div class="code targetlang">
<pre>irb(main):001:0&gt; <b>f = Foo.new</b> # Create a Foo
irb(main):002:0&gt; <b>g = Foo.new(f)</b> # Copy f</pre>
</div>

<p> Overloading support is not quite as flexible as in C++.
Sometimes there are methods that SWIG can't disambiguate. For example: </p>

<div class="code">
<pre>void spam(int);
void spam(short);</pre>
</div>

<p>or</p>

<div class="code">
<pre>void foo(Bar *b);
void foo(Bar &amp;b);</pre>
</div>

<p> If declarations such as these appear, you will get a warning
message like this: </p>

<div class="code shell">
<pre>
example.i:12: Warning 509: Overloaded method spam(short) effectively ignored,
example.i:11: Warning 509: as it is shadowed by spam(int).
</pre>
</div>

<p> To fix this, you either need to ignore or rename one of the
methods. For example: </p>

<div class="code">
<pre>%rename(spam_short) spam(short);
...
void spam(int); 
void spam(short); // Accessed as spam_short</pre>
</div>

<p>or</p>

<div class="code">
<pre>%ignore spam(short);
...
void spam(int); 
void spam(short); // Ignored</pre>
</div>

<p> SWIG resolves overloaded functions and methods using a
disambiguation scheme that ranks and sorts declarations according to a
set of type-precedence rules. The order in which declarations appear in
the input does not matter except in situations where ambiguity
arises--in this case, the first declaration takes precedence. </p>

<p>Please refer to the <a href="SWIGPlus.html#SWIGPlus">"SWIG
and C++"</a> chapter for more information about overloading. </p>

<H3><a name="Ruby_nn21"></a>36.3.10 C++ Operators</H3>


<p> For the most part, overloaded operators are handled
automatically by SWIG and do not require any special treatment on your
part. So if your class declares an overloaded addition operator, e.g. </p>

<div class="code">
<pre>class Complex {
  ...
  Complex operator+(Complex &amp;);
  ...
};</pre>
</div>

<p> the resulting Ruby class will also support the addition (+)
method correctly. </p>

<p>For cases where SWIG's built-in support is not sufficient, C++
operators can be wrapped using the <tt>%rename</tt>
directive (available on SWIG 1.3.10 and later releases). All you need
to do is give the operator the name of a valid Ruby identifier. For
example: </p>

<div class="code">
<pre>%rename(add_complex) operator+(Complex &amp;, Complex &amp;);
...
Complex operator+(Complex &amp;, Complex &amp;);</pre>
</div>

<p>Now, in Ruby, you can do this:</p>

<div class="code targetlang">
<pre>a = Example::Complex.new(2, 3)
b = Example::Complex.new(4, -1)
c = Example.add_complex(a, b)</pre>
</div>

<p> More details about wrapping C++ operators into Ruby operators
is discussed in the <a href="#Ruby_operator_overloading">section
on operator overloading</a>. </p>

<H3><a name="Ruby_nn22"></a>36.3.11 C++ namespaces</H3>


<p> SWIG is aware of C++ namespaces, but namespace names do not
appear in the module nor do namespaces result in a module that is
broken up into submodules or packages. For example, if you have a file
like this, </p>

<div class="code">
<pre>%module example

namespace foo {
  int fact(int n);
  struct Vector {
    double x,y,z;
  };
};</pre>
</div>

<p>it works in Ruby as follows:</p>

<div class="code targetlang">
<pre>irb(main):001:0&gt; <b>require 'example'</b>
true
irb(main):002:0&gt; <b>Example.fact(3)</b>
6
irb(main):003:0&gt; <b>v = Example::Vector.new</b>
#&lt;Example::Vector:0x4016f4d4&gt;
irb(main):004:0&gt; <b>v.x = 3.4</b>
3.4
irb(main):004:0&gt; <b>v.y</b>
0.0</pre>
</div>

<p> If your program has more than one namespace, name conflicts
(if any) can be resolved using <tt>%rename</tt> For
example: </p>

<div class="code">
<pre>%rename(Bar_spam) Bar::spam;

namespace Foo {
  int spam();
}

namespace Bar {
  int spam();
}</pre>
</div>

<p> If you have more than one namespace and your want to keep
their symbols separate, consider wrapping them as separate SWIG
modules. For example, make the module name the same as the namespace
and create extension modules for each namespace separately. If your
program utilizes thousands of small deeply nested namespaces each with
identical symbol names, well, then you get what you deserve. </p>

<H3><a name="Ruby_nn23"></a>36.3.12 C++ templates</H3>


<p> C++ templates don't present a huge problem for SWIG. However,
in order to create wrappers, you have to tell SWIG to create wrappers
for a particular template instantiation. To do this, you use the <tt>%template</tt>
directive. For example: </p>

<div class="code">
<pre>%module example

%{
#include "pair.h"
%}

template&lt;class T1, class T2&gt;
struct pair {
  typedef T1 first_type;
  typedef T2 second_type;
  T1 first;
  T2 second;
  pair();
  pair(const T1&amp;, const T2&amp;);
  ~pair();
};

%template(Pairii) pair&lt;int,int&gt;;</pre>
</div>

<p>In Ruby:</p>

<div class="code targetlang">
<pre>irb(main):001:0&gt; <b>require 'example'</b>
true
irb(main):002:0&gt; <b>p = Example::Pairii.new(3, 4)</b>
#&lt;Example:Pairii:0x4016f4df&gt;
irb(main):003:0&gt; <b>p.first</b>
3
irb(main):004:0&gt; <b>p.second</b>
4</pre>
</div>

<H3><a name="Ruby_nn23_1"></a>36.3.13 C++ Standard Template Library (STL)</H3>


<p> On a related note, the standard SWIG library contains a
number of modules that provide typemaps for standard C++ library
classes (such as <tt>std::pair</tt>, <tt>std::string</tt>
and <tt>std::vector</tt>). These library modules don't
provide wrappers around the templates themselves, but they do make it
convenient for users of your extension module to pass Ruby objects
(such as arrays and strings) to wrapped C++ code that expects instances
of standard C++ templates. For example, suppose the C++ library you're
wrapping has a function that expects a vector of floats: </p>

<div class="code">
<pre>%module example

float sum(const std::vector&lt;float&gt;&amp; values);</pre>
</div>

<p> Rather than go through the hassle of writing an "in" typemap
to convert an array of Ruby numbers into a
std::vector&lt;float&gt;, you can just use the <tt>std_vector.i</tt>
module from the standard SWIG library: </p>

<div class="code">
<pre>%module example

%include std_vector.i
float sum(const std::vector&lt;float&gt;&amp; values);</pre>
</div>

<p>Ruby's STL wrappings provide additional methods to make them
behave more similarly to Ruby's native classes.</p>

<p>Thus, you can do, for example:</p>

<div class="targetlang">
<pre>v = IntVector.new
v &lt;&lt; 2
v &lt;&lt; 3
v &lt;&lt; 4
v.each { |x| puts x }

=&gt; 2
3
4
v.delete_if { |x| x == 3 }
=&gt; [2,4]</pre>
</div>

<p>The SWIG Ruby module provides also the ability for all the STL
containers to carry around Ruby native objects (Fixnum, Classes, etc)
making them act almost like Ruby's own Array, Hash, etc.  To
do
that, you need to define a container that contains a swig::GC_VALUE,
like:</p>

<div class="code"><pre>
%module nativevector

%{
std::vector&lt; swig::GC_VALUE &gt; NativeVector;
%}

%template(NativeVector) std::vector&lt; swig::GC_VALUE &gt;;
</pre>
</div>

<p>This vector can then contain any Ruby object, making them
almost identical to Ruby's own Array class.</p>

<div class="targetlang">
<pre>require 'nativevector'
include NativeVector

v = NativeVector.new
v &lt;&lt; 1
v &lt;&lt; [1,2]
v &lt;&lt; 'hello'

class A; end

v &lt;&lt; A.new

puts v
=&gt; [1, [1,2], 'hello', #&lt;A:0x245325&gt;]
</pre>
</div>

<p>Obviously, there is a lot more to template wrapping than
shown in these examples. More details can be found in the <a href="SWIGPlus.html#SWIGPlus">SWIG and C++</a>
chapter.</p>

<H3><a name="Ruby_C_STL_Functors"></a>36.3.14 C++ STL Functors</H3>


<p>Some containers in the STL allow you to modify their default
behavior by using so called functors or function objects.
Functors are often just a very simple struct with<tt> operator()</tt>
redefined or an actual C/C++ function. This allows you, for
example, to always keep the sort order of a STL container to your
liking.</p>

<p>The Ruby STL mappings allows you to modify those containers
that
support functors using Ruby procs or methods, instead.
Currently,
this includes <tt>std::set</tt>,
<tt>set::map</tt>,
<tt>std::multiset</tt>
and <tt>std::multimap</tt>.</p>

<p>The functors in swig are called<tt> swig::UnaryFunction</tt>
and <tt>swig::BinaryFunction</tt>.

For C++ predicates (ie. functors that must return bool as a result) <tt>swig::UnaryPredicate</tt>
and <tt>swig::BinaryPredicate</tt>
are provided.</p>

<p>As an example, if given this swig file:</p>

<div class="code"><pre>
%module intset;

%include &lt;std_set.i&gt;

%typemap(IntSet) std::set&lt; int, swig::BinaryPredicate &gt;;
</pre></div>

<p>You can then use the set from Ruby with or without a proc
object as a predicate:</p>

<div class="targetlang"><pre>
require 'intset'
include Intset

# Default sorting behavior defined in C++
a = IntSet.new
a &lt;&lt; 1
a &lt;&lt; 2
a &lt;&lt; 3
a
<b>=&gt; [1,2,3]</b>

# Custom sorting behavior defined by a Ruby proc
b = IntSet.new( proc { |a,b| a &gt; b } )
b &lt;&lt; 1
b &lt;&lt; 2
b &lt;&lt; 3
b
<b>=&gt;  [3,2,1]</b>
</pre>
</div>

<H3><a name="Ruby_C_Iterators"></a>36.3.15 C++ STL Iterators</H3>


<p>The STL is well known for the use of iterators. There
are a number of iterators possible with different properties, but in
general there are two main categories: const iterators and non-const
iterators. The const iterators can access and not modify the
values they point at, while the non-const iterators can both read and
modify the values.</p>

<p>The Ruby STL wrappings support both type of iterators by using
a proxy class in-between. This proxy class is <tt>swig::Iterator or
swig::ConstIterator. </tt> Derived from them are template
classes that need to be initialized with the actual iterator for the
container you are wrapping and often times with the beginning and
ending points of the iteration range.</p>

<p>The SWIG STL library already provides typemaps to all the
standard containers to do this wrapping automatically for you, but if
you have your own STL-like iterator, you will need to write your own
typemap for them. For out typemaps, the special functions <tt>make_const_iterator</tt> and <tt>make_nonconst_iterator</tt> are provided.</p>

<p>These can be used either like:</p>

<div class="code"><pre>
make_const_iterator( iterator, rubyclass );
make_const_iterator( iterator, iterator_begin, iterator_end, rubyclass );
</pre></div>

<p>The iterators support a <tt>next()</tt> and <tt>previous()</tt> member function to
just change the iterator without returning anything. <tt>previous()</tt>
should obviously only be used for bidirectional iterators. You
can also advance the iterator multiple steps by using standard math
operations like <tt>+=</tt>.</p>

<p>The
value the iterator points at can be accessed with <tt>value()</tt> -- this is equivalent to dereferencing it with <tt>*i</tt>.
  For non-const iterators, a <tt>value=()</tt> function
is also provided which allows you to change the value pointed by the
iterator.  This is equivalent to the C++ construct of dereferencing and assignment, like <tt>*i = something</tt>. </p>

<p>Thus, given say a vector class of doubles defined as:</p>

<div class="code">
<pre>
%module doublevector

%include std_vector.i

%template(DoubleVector) std::vector&lt;double&gt;;
</pre>
</div>

<p>Its iterator can then be used from Ruby like:</p>

<div class="targetlang">
<pre>
require 'doublevector'
include Doublevector

v = DoubleVector.new
v &lt;&lt; 1
v &lt;&lt; 2
v &lt;&lt; 3

#
# an elaborate and less efficient way of doing v.map! { |x| x+2 }
#
i = v.begin
e = v.end
while i != e
  val = i.value
  val += 2
  i.value = val
  i.next
end
i
<b>&gt;&gt; [3, 4, 5 ]</b>
</pre>
</div>

<p>If you'd rather have STL classes without any iterators, you should define<tt> -DSWIG_NO_EXPORT_ITERATOR_METHODS </tt>when running swig.</p>

<H3><a name="Ruby_nn24"></a>36.3.16 C++ Smart Pointers</H3>


<p> In certain C++ programs, it is common to use classes that
have been wrapped by so-called "smart pointers." Generally, this
involves the use of a template class that implements <tt>operator-&gt;()</tt>
like this: </p>

<div class="code">
<pre>template&lt;class T&gt; class SmartPtr {
  ...
  T *operator-&gt;();
  ...
}</pre>
</div>

<p>Then, if you have a class like this,</p>

<div class="code">
<pre>class Foo {
public:
  int x;
  int bar();
};</pre>
</div>

<p>A smart pointer would be used in C++ as follows:</p>

<div class="code">
<pre>SmartPtr&lt;Foo&gt; p = CreateFoo(); // Created somehow (not shown)
...
p-&gt;x = 3; // Foo::x
int y = p-&gt;bar(); // Foo::bar</pre>
</div>

<p> To wrap this in Ruby, simply tell SWIG about the <tt>SmartPtr</tt>
class and the low-level <tt>Foo</tt> object. Make sure you
instantiate <tt>SmartPtr</tt> using <tt>%template</tt>
if necessary. For example: </p>

<div class="code">
<pre>%module example
...
%template(SmartPtrFoo) SmartPtr&lt;Foo&gt;;
...</pre>
</div>

<p>Now, in Ruby, everything should just "work":</p>

<div class="code targetlang">
<pre>irb(main):001:0&gt; <b>p = Example::CreateFoo()</b> # Create a smart-pointer somehow
#&lt;Example::SmartPtrFoo:0x4016f4df&gt;
irb(main):002:0&gt; <b>p.x = 3</b> # Foo::x
3
irb(main):003:0&gt; <b>p.bar()</b> # Foo::bar</pre>
</div>

<p> If you ever need to access the underlying pointer returned by
<tt>operator-&gt;()</tt> itself, simply use the <tt>__deref__()</tt>
method. For example: </p>

<div class="code targetlang">
<pre>irb(main):004:0&gt; <b>f = p.__deref__()</b> # Returns underlying Foo *</pre>
</div>

<H3><a name="Ruby_nn25"></a>36.3.17 Cross-Language Polymorphism</H3>


<p> SWIG's Ruby module supports cross-language polymorphism
(a.k.a. the "directors" feature) similar to that for SWIG's Python
module. Rather than duplicate the information presented in the <a href="Python.html#Python">Python</a> chapter, this
section just notes the differences that you need to be aware of when
using this feature with Ruby. </p>

<H4><a name="Ruby_nn26"></a>36.3.17.1 Exception Unrolling</H4>


<p> Whenever a C++ director class routes one of its virtual
member function calls to a Ruby instance method, there's always the
possibility that an exception will be raised in the Ruby code. By
default, those exceptions are ignored, which simply means that the
exception will be exposed to the Ruby interpreter. If you would like to
change this behavior, you can use the <tt>%feature("director:except")</tt>
directive to indicate what action should be taken when a Ruby exception
is raised. The following code should suffice in most cases: </p>

<div class="code">
<pre>%feature("director:except") {
  throw Swig::DirectorMethodException($error);
}</pre>
</div>

<p> When this feature is activated, the call to the Ruby instance
method is "wrapped" using the <tt>rb_rescue2()</tt>
function from Ruby's C API. If any Ruby exception is raised, it will be
caught here and a C++ exception is raised in its place. </p>

<H2><a name="Ruby_nn27"></a>36.4 Naming</H2>


<p>Ruby has several common naming conventions. Constants are
generally
in upper case, module and class names are in camel case and methods are
in lower case with underscores. For example: </p>

<div class="code">
<ul>
  <li><strong>MATH::PI</strong> is a constant name</li>
  <li><strong>MyClass</strong> is a class name</li>
  <li><strong>my_method</strong> is a method name</li>
</ul>
</div>

<p>Prior to version 1.3.28, SWIG did not support these Ruby
conventions. The only modifications it made to names was to capitalize
the first letter of constants (which includes module and class names).</p>

<p>SWIG 1.3.28 introduces the new -autorename command line
parameter.
When this parameter is specified, SWIG will automatically change
constant, class and method names to conform with the standard Ruby
naming conventions. For example: </p>

<div class="code shell">
<pre>$ swig -ruby -autorename example.i
</pre>
</div>

<p>To disable renaming use the -noautorename command line option.</p>

<p>Since this change significantly changes the wrapper code
generated
by SWIG, it is turned off by default in SWIG 1.3.28. However, it is
planned to become the default option in future releases.</p>

<H3><a name="Ruby_nn28"></a>36.4.1 Defining Aliases</H3>


<p> It's a fairly common practice in the Ruby built-ins and
standard library to provide aliases for method names. For example, <em>Array#size</em>
is an alias for <em>Array#length</em>. If you would like
to provide an alias for one of your class' instance methods, one
approach is to use SWIG's <tt>%extend</tt> directive to
add a new method of the aliased name that calls the original function.
For example: </p>

<div class="code">
<pre>class MyArray {
public:
  // Construct an empty array
  MyArray();

  // Return the size of this array
  size_t length() const;
};

%extend MyArray {
  // MyArray#size is an alias for MyArray#length
  size_t size() const {
    return $self-&gt;length();
  }
}
 </pre>
</div>

<p> A better solution is to use the <tt>%alias</tt>
directive (unique to SWIG's Ruby module). The previous example could
then be rewritten as: </p>

<div class="code">
<pre>// MyArray#size is an alias for MyArray#length
%alias MyArray::length "size";

class MyArray {
public:
  // Construct an empty array
  MyArray();
 
  // Return the size of this array
  size_t length() const;
};</pre>
</div>

<p> Multiple aliases can be associated with a method by providing
a comma-separated list of aliases to the <tt>%alias</tt>
directive, e.g. </p>

<div class="code">
<pre>%alias MyArray::length "amount,quantity,size";</pre>
</div>

<p> From an end-user's standpoint, there's no functional
difference between these two approaches; i.e. they should get the same
result from calling either <em>MyArray#size</em> or <em>MyArray#length</em>.
However, when the <tt>%alias</tt> directive is used, SWIG
doesn't need to generate all of the wrapper code that's usually
associated with added methods like our <em>MyArray::size()</em>
example. </p>

<p>Note that the <tt>%alias</tt> directive is
implemented using SWIG's "features" mechanism and so the same name
matching rules used for other kinds of features apply (see the chapter
on <a href="Customization.html#Customization">"Customization
Features"</a>) for more details).</p>

<H3><a name="Ruby_nn29"></a>36.4.2 Predicate Methods</H3>


<p> Ruby methods that return a boolean value and end in a
question mark
are known as predicate methods. Examples of predicate methods in
standard Ruby classes include <em>Array#empty?</em> (which
returns <tt>true</tt> for an array containing no elements)
and <em>Object#instance_of?</em> (which returns <tt>true</tt>
if the object is an instance of the specified class). For consistency
with Ruby conventions, methods that return boolean values should be
marked as predicate methods.</p>

<p>One cumbersome solution to this problem is to rename the
method (using SWIG's <tt>%rename</tt> directive) and
provide a custom typemap that converts the function's actual return
type to Ruby's <tt>true</tt> or <tt>false</tt>.
For example: </p>

<div class="code">
<pre>%rename("is_it_safe?") is_it_safe();

%typemap(out) int is_it_safe "$result = ($1 != 0) ? Qtrue : Qfalse;";

int is_it_safe();</pre>
</div>

<p> A better solution is to use the <tt>%predicate</tt>
directive (unique to SWIG's Ruby module) to designate a method as a
predicate method. For the previous example, this would look like: </p>

<div class="code">
<pre>%predicate is_it_safe();

int is_it_safe();</pre>
</div>

<p>This method would be invoked from Ruby code like this:</p>

<div class="code targetlang">
<pre>irb(main):001:0&gt; <b>Example::is_it_safe?</b>
true</pre>
</div>

<p> The <tt>%predicate</tt> directive is implemented
using SWIG's "features" mechanism and so the same name matching rules
used for other kinds of features apply (see the chapter on <a href="Customization.html#Customization">"Customization
Features"</a>) for more details). </p>

<H3><a name="Ruby_nn30"></a>36.4.3 Bang Methods</H3>


<p> Ruby methods that modify an object in-place and end in an
exclamation mark are known as bang methods. An example of a bang method
is <em>Array#sort!</em> which changes the ordering of
items in an array. Contrast this with <em>Array#sort</em>,
which returns a copy of the array with the items sorted instead of
modifying the original array. For consistency with Ruby conventions,
methods that modify objects in place should be marked as bang methods.</p>

<p>Bang methods can be marked using the <tt>%bang</tt>
directive which is unique to the Ruby module and was introduced in SWIG
1.3.28. For example:</p>

<div class="code">
<pre>%bang sort(int arr[]);

int sort(int arr[]); </pre>
</div>

<p>This method would be invoked from Ruby code like this:</p>

<div class="code">
<pre>irb(main):001:0&gt; <b>Example::sort!(arr)</b></pre>
</div>

<p> The <tt>%bang</tt> directive is implemented
using SWIG's "features" mechanism and so the same name matching rules
used for other kinds of features apply (see the chapter on <a href="Customization.html#Customization">"Customization
Features"</a>) for more details). </p>

<H3><a name="Ruby_nn31"></a>36.4.4 Getters and Setters</H3>


<p> Often times a C++ library will expose properties through
getter and setter methods. For example:</p>

<div class="code">
<pre>class Foo {
  Foo() {}
  int getValue() { return value_; }
  void setValue(int value) { value_ = value; }

private:
  int value_;
};</pre>
</div>

<p>By default, SWIG will expose these methods to Ruby as <tt>get_value</tt>
and <tt>set_value.</tt> However, it more natural for these
methods to be exposed in Ruby as <tt>value</tt> and <tt>value=.
</tt> That allows the methods to be used like this:</p>

<div class="code">
<pre>irb(main):001:0&gt; <b>foo = Foo.new()</b>
irb(main):002:0&gt; <b>foo.value = 5</b>
irb(main):003:0&gt; <b>puts foo.value</b></pre>
</div>

<p> This can be done by using the %rename directive:</p>

<div class="code">
<pre>%rename("value") Foo::getValue();
%rename("value=") Foo::setValue(int value);</pre>
</div>

<H2><a name="Ruby_nn32"></a>36.5 Input and output parameters</H2>


<p> A common problem in some C programs is handling parameters
passed as simple pointers. For example: </p>

<div class="code">
<pre>void add(int x, int y, int *result) {
  *result = x + y;
}</pre>
</div>

<p>
or
</p>

<div class="code">
<pre>
int sub(int *x, int *y) {
  return *x-*y;
}</pre>
</div>

<p> The easiest way to handle these situations is to use the <tt>typemaps.i</tt>
file. For example: </p>

<div class="code">
<pre>%module Example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);</pre>
</div>

<p>In Ruby, this allows you to pass simple values. For example:</p>

<div class="code targetlang">
<pre>a = Example.add(3,4)
puts a
7
b = Example.sub(7,4)
puts b
3</pre>
</div>

<p> Notice how the <tt>INPUT</tt> parameters allow
integer values to be passed instead of pointers and how the <tt>OUTPUT</tt>
parameter creates a return result. </p>

<p>If you don't want to use the names <tt>INPUT</tt>
or <tt>OUTPUT</tt>, use the <tt>%apply</tt>
directive. For example: </p>

<div class="code">
<pre>%module Example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT { int *x, int *y};

void add(int x, int y, int *result);
int sub(int *x, int *y);</pre>
</div>

<p> If a function mutates one of its parameters like this, </p>

<div class="code">
<pre>void negate(int *x) {
 *x = -(*x);
}</pre>
</div>

<p>you can use <tt>INOUT</tt> like this:</p>

<div class="code">
<pre>%include "typemaps.i"
...
void negate(int *INOUT);</pre>
</div>

<p>In Ruby, a mutated parameter shows up as a return value. For
example:</p>

<div class="code targetlang">
<pre>a = Example.negate(3)
print a
-3</pre>
</div>

<p> The most common use of these special typemap rules is to
handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code: </p>

<div class="code">
<pre>/* send message, return number of bytes sent, success code, and error_code */
int send_message(char *text, int *success, int *error_code);</pre>
</div>

<p> To wrap such a function, simply use the <tt>OUTPUT</tt>
rule above. For example: </p>

<div class="code">
<pre>%module example
%include "typemaps.i"
...
int send_message(char *, int *OUTPUT, int *OUTPUT);</pre>
</div>

<p> When used in Ruby, the function will return an array of
multiple values. </p>

<div class="code targetlang">
<pre>bytes, success, error_code = send_message("Hello World")
if not success
  print "error #{error_code} : in send_message"
else
  print "Sent", bytes
end</pre>
</div>

<p> Another way to access multiple return values is to use the <tt>%apply</tt>
rule. In the following example, the parameters rows and columns are
related to SWIG as <tt>OUTPUT</tt> values through the use
of <tt>%apply</tt> </p>

<div class="code">
<pre>%module Example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, int*columns);</pre>
</div>

<p>In Ruby:</p>

<div class="code targetlang">
<pre>r, c = Example.get_dimensions(m)</pre>
</div>

<H2><a name="Ruby_nn33"></a>36.6 Exception handling </H2>


<H3><a name="Ruby_nn34"></a>36.6.1 Using the %exception directive </H3>


<p>The SWIG <tt>%exception</tt> directive can be
used to define a user-definable exception handler that can convert
C/C++ errors into Ruby exceptions. The chapter on <a href="Customization.html#Customization">Customization
Features</a> contains more details, but suppose you have a C++
class like the following : </p>

<div class="code">
<pre>class DoubleArray {
private:
  int n;
  double *ptr;
public:
  // Create a new array of fixed size
  DoubleArray(int size) {
    ptr = new double[size];
    n = size;
  }
 
  // Destroy an array
  ~DoubleArray() {
    delete ptr;
  } 
 
  // Return the length of the array
  int length() {
    return n;
  }
 
  // Get an array item and perform bounds checking.
  double getitem(int i) {
    if ((i &gt;= 0) &amp;&amp; (i &lt; n))
      return ptr[i];
    else
      throw RangeError();
  }
 
  // Set an array item and perform bounds checking.
  void setitem(int i, double val) {
    if ((i &gt;= 0) &amp;&amp; (i &lt; n))
      ptr[i] = val;
    else {
      throw RangeError();
    }
  }
};</pre>
</div>

<p> Since several methods in this class can throw an exception
for an out-of-bounds access, you might want to catch this in the Ruby
extension by writing the following in an interface file: </p>

<div class="code">
<pre>%exception {
  try {
    $action
  }
  catch (const RangeError&amp;) {
    static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
    rb_raise(cpperror, "Range error.");
  }
}

class DoubleArray {
  ...
};</pre>
</div>

<p> The exception handling code is inserted directly into
generated wrapper functions. When an exception handler is defined,
errors can be caught and used to gracefully raise a Ruby exception
instead of forcing the entire program to terminate with an uncaught
error. </p>

<p>As shown, the exception handling code will be added to every
wrapper function. Because this is somewhat inefficient, you might
consider refining the exception handler to only apply to specific
methods like this: </p>

<div class="code">
<pre>%exception getitem {
  try {
    $action
  } catch (const RangeError&amp;) {
    static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
    rb_raise(cpperror, "Range error in getitem.");
  }
}
 
%exception setitem {
  try {
    $action
  } catch (const RangeError&amp;) {
    static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
    rb_raise(cpperror, "Range error in setitem.");
  }
}</pre>
</div>

<p> In this case, the exception handler is only attached to
methods and functions named <tt>getitem</tt> and <tt>setitem</tt>.
</p>

<p>Since SWIG's exception handling is user-definable, you are not
limited to C++ exception handling. See the chapter on <a href="Customization.html#Customization">Customization
Features</a> for more examples.</p>

<H3><a name="Ruby_nn34_2"></a>36.6.2 Handling Ruby Blocks </H3>


<p>One of the highlights of Ruby and most of its standard library
is
the use of blocks, which allow the easy creation of continuations and
other niceties.  Blocks in ruby are also often used to
simplify the passing of many arguments to a class.</p>

<p>In order to make your class constructor support blocks, you
can take advantage of the %exception directive, which will get run
after the C++ class' constructor was called. </p>

<p>For example, this yields the class over after its
construction:
</p>

<div class="code">
<pre>class Window
{
public:
  Window(int x, int y, int w, int h);
  // .... other methods here ....
};

// Add support for yielding self in the Class' constructor.
%exception Window::Window {
  $action
  if (rb_block_given_p()) {
    rb_yield(self);
  }
}</pre>
</div>

<p> Then, in ruby, it can be used like:</p>

<div class="targetlang"><pre>
Window.new(0,0,360,480) { |w|
  w.color = Fltk::RED
  w.border = false
}
</pre>
</div>

<p>For other methods, you can usually use a dummy parameter with
a special in typemap, like:</p>

<div class="code" ><pre>
//
// original function was:
//
// void func(int x);

%typemap(in,numinputs=0) int RUBY_YIELD_SELF {
  if ( !rb_block_given_p() )
    rb_raise("No block given");
  return rb_yield(self);
}

%extend {
  void func(int x, int RUBY_YIELD_SELF );
}
</pre>
</div>

<p>For more information on typemaps, see <a href="#Ruby_nn37">Typemaps</a>.</p>

<H3><a name="Ruby_nn35"></a>36.6.3 Raising exceptions </H3>


<p>There are three ways to raise exceptions from C++ code to
Ruby. </p>

<p>The first way is to use <tt>SWIG_exception(int code,
const char *msg)</tt>. The following table shows the mappings
from SWIG error codes to Ruby exceptions:</p>

<div class="diagram">
<table class="diagram" summary="Mapping between SWIG error codes and Ruby exceptions." border="1" width="80%">
  <tbody>
    <tr>
      <td class="diagram">
      <div>SWIG_MemoryError</div>
      </td>
      <td>
      <div>rb_eNoMemError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_IOError</div>
      </td>
      <td>
      <div>rb_eIOError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_RuntimeError</div>
      </td>
      <td>
      <div>rb_eRuntimeError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_IndexError</div>
      </td>
      <td>
      <div>rb_eIndexError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_TypeError</div>
      </td>
      <td>
      <div>rb_eTypeError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_DivisionByZero</div>
      </td>
      <td>
      <div>rb_eZeroDivError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_OverflowError</div>
      </td>
      <td>
      <div>rb_eRangeError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_SyntaxError</div>
      </td>
      <td>
      <div>rb_eSyntaxError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_ValueError</div>
      </td>
      <td>
      <div>rb_eArgError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_SystemError</div>
      </td>
      <td>
      <div>rb_eFatal</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_AttributeError</div>
      </td>
      <td>
      <div>rb_eRuntimeError</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_NullReferenceError</div>
      </td>
      <td>
      <div>rb_eNullReferenceError*</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_ObjectPreviouslyDeletedError</div>
      </td>
      <td>
      <div>rb_eObjectPreviouslyDeleted*</div>
      </td>
    </tr>
    <tr>
      <td class="diagram">
      <div>SWIG_UnknownError</div>
      </td>
      <td>
      <div>rb_eRuntimeError</div>
      </td>
    </tr>
    <tr class="diagram">
      <td colspan="2">
      <div>* These error classes are created by
SWIG and are not built-in Ruby exception classes </div>
      </td>
    </tr>
  </tbody>
</table>
</div>

<p>The second way to raise errors is to use <tt>SWIG_Raise(obj,
type, desc)</tt>.
Obj is a C++ instance of an exception class, type is a string
specifying the type of exception (for example, "MyError") and desc is
the SWIG description of the exception class. For example: </p>

<div class="code"><pre>
%raise(SWIG_NewPointerObj(e, SWIGTYPE_p_AssertionFailedException, 0), ":AssertionFailedException", SWIGTYPE_p_AssertionFailedException);
</pre></div>

<p>This is useful when you want to pass the current exception
object
directly to Ruby, particularly when the object is an instance of class
marked as an <tt>%exceptionclass</tt> (see the next
section for more information).</p>

<p>Last, you can raise an exception by directly calling Ruby's C
api. This is done by invoking the <tt>rb_raise()</tt>
function. The first argument passed to <tt>rb_raise()</tt>
is the exception type. You can raise a custom exception type or one of
the built-in Ruby exception types.</p>

<H3><a name="Ruby_nn36"></a>36.6.4 Exception classes </H3>


<p>Starting with SWIG 1.3.28, the Ruby module supports the <tt>%exceptionclass</tt>
directive, which is used to identify C++ classes that are used as
exceptions. Classes that are marked with the <tt>%exceptionclass</tt>
directive are exposed in Ruby as child classes of <tt>rb_eRuntimeError</tt>.
This allows C++ exceptions to be directly mapped to Ruby exceptions,
providing for a more natural integration between C++ code and Ruby code.</p>

<div class="code">
<pre>%exceptionclass CustomError;

%inline %{
  class CustomError { };

  class Foo { 
  public:
    void test() { throw CustomError; }
  };
%}</pre>
</div>

<p>From Ruby you can now call this method like this: </p>

<div class="code targetlang">
<pre>foo = Foo.new
begin
  foo.test()
rescue CustomError =&gt; e
  puts "Caught custom error"
end </pre>
</div>

<p>For another example look at swig/Examples/ruby/exception_class.
</p>

<H2><a name="Ruby_nn37"></a>36.7 Typemaps</H2>


<p> This section describes how you can modify SWIG's default
wrapping behavior for various C/C++ datatypes using the <tt>%typemap</tt>
directive. This is an advanced topic that assumes familiarity with the
Ruby C API as well as the material in the "<a href="Typemaps.html#Typemaps">Typemaps</a>"
chapter.
</p>

<p>Before proceeding, it should be stressed that typemaps are not
a required part of using SWIG---the default wrapping behavior is enough
in most cases. Typemaps are only used if you want to change some aspect
of the primitive C-Ruby interface.</p>

<H3><a name="Ruby_nn38"></a>36.7.1 What is a typemap?</H3>


<p> A typemap is nothing more than a code generation rule that is
attached to a specific C datatype. The general form of this declaration
is as follows ( parts enclosed in [...] are optional
): </p>

<div class="code">
<pre>
%typemap( method [, modifiers...] ) typelist code;
</pre>
</div>

<p><em> method</em> is a simply a name that specifies
what kind of typemap is being defined. It is usually a name like <tt>"in"</tt>,
<tt>"out"</tt>, or <tt>"argout"</tt> (or its
director variations). The purpose of these methods is described later.</p>

<p><em> modifiers</em> is an optional comma separated
list of <tt>
name="value"</tt> values. These are sometimes to attach extra
information to a typemap and is often target-language dependent.</p>

<p><em> typelist</em> is a list of the C++ type
patterns that the typemap will match. The general form of this list is
as follows:</p>

<div class="diagram">
<pre>typelist : typepattern [, typepattern, typepattern, ... ] ;

typepattern : type [ (parms) ]
  | type name [ (parms) ]
  | ( typelist ) [ (parms) ]</pre>
</div>

<p> Each type pattern is either a simple type, a simple type and
argument name, or a list of types in the case of multi-argument
typemaps. In addition, each type pattern can be parameterized with a
list of temporary variables (parms). The purpose of these variables
will be explained shortly.</p>

<p><em>code</em> specifies the C code used in the
typemap. It can take any one of the following forms:</p>

<div class="diagram">
<pre>code : { ... }
  | " ... "
  | %{ ... %}</pre>
</div>

<p>For example, to convert integers
from Ruby to C, you might define a typemap like this: </p>

<div class="code">
<pre>%module example

%typemap(in) int {
  $1 = (int) NUM2INT($input);
  printf("Received an integer : %d\n",$1);
}

%inline %{
  extern int fact(int n);
%}</pre>
</div>

<p> Typemaps are always associated with some specific aspect of
code generation. In this case, the "in" method refers to the conversion
of input arguments to C/C++. The datatype <tt>int</tt> is
the datatype to which the typemap will be applied. The supplied C code
is used to convert values. In this code a number of special variables
prefaced by a <tt>$</tt> are used. The <tt>$1</tt>
variable is placeholder for a local variable of type <tt>int</tt>.
The <tt>$input</tt> variable is the input Ruby object. </p>

<p>When this example is compiled into a Ruby module, the
following sample code: </p>

<div class="code targetlang">
<pre>require 'example'

puts Example.fact(6)</pre>
</div>

<p>prints the result:</p>

<div class="code shell">
<pre>
Received an integer : 6
720
</pre>
</div>

<p> In this example, the typemap is applied to all occurrences of
the <tt>int</tt> datatype. You can refine this by
supplying an optional parameter name. For example: </p>

<div class="code">
<pre>%module example

%typemap(in) int n {
  $1 = (int) NUM2INT($input);
  printf("n = %d\n",$1);
}

%inline %{
  extern int fact(int n);
%}</pre>
</div>

<p> In this case, the typemap code is only attached to arguments
that exactly match "<tt>int n</tt>". </p>

<p>The application of a typemap to specific datatypes and
argument names involves more than simple text-matching--typemaps are
fully integrated into the SWIG type-system. When you define a typemap
for <tt>int</tt>, that typemap applies to <tt>int</tt>
and qualified variations such as <tt>const int</tt>. In
addition, the typemap system follows <tt>typedef</tt>
declarations. For example: </p>

<div class="code">
<pre>%typemap(in) int n {
  $1 = (int) NUM2INT($input);
  printf("n = %d\n",$1);
}

typedef int Integer;
extern int fact(Integer n); // Above typemap is applied</pre>
</div>

<p> However, the matching of <tt>typedef</tt> only
occurs in one direction. If you defined a typemap for <tt>Integer</tt>,
it is not applied to arguments of type <tt>int</tt>. </p>

<p>Typemaps can also be defined for groups of consecutive
arguments. For example: </p>

<div class="code">
<pre>%typemap(in) (char *str, int len) {
  $1 = StringValuePtr($input);
  $2 = (int) RSTRING($input)-&gt;len;
};

int count(char c, char *str, int len);</pre>
</div>

<p> When a multi-argument typemap is defined, the arguments are
always handled as a single Ruby object. This allows the function <tt>count</tt>
to be used as follows (notice how the length parameter is omitted): </p>

<div class="code targetlang">
<pre>puts Example.count('o','Hello World')
2</pre>
</div>

<H3><a name="Ruby_Typemap_scope"></a>36.7.2 Typemap scope</H3>


<p> Once defined, a typemap remains in effect for all of the
declarations that follow. A typemap may be redefined for different
sections of an input file. For example:</p>

<div class="code">
<pre>// typemap1
%typemap(in) int {
  ...
}

int fact(int); // typemap1
int gcd(int x, int y); // typemap1

// typemap2
%typemap(in) int {
  ...
}

int isprime(int); // typemap2</pre>
</div>

<p> One exception to the typemap scoping rules pertains to the <tt>
%extend</tt> declaration. <tt>%extend</tt> is used
to attach new declarations to a class or structure definition. Because
of this, all of the declarations in an <tt>%extend</tt>
block are subject to the typemap rules that are in effect at the point
where the class itself is defined. For example:</p>

<div class="code">
<pre>class Foo {
  ...
};

%typemap(in) int {
  ...
}

%extend Foo {
  int blah(int x); // typemap has no effect. Declaration is attached to Foo which 
  // appears before the %typemap declaration.
};</pre>
</div>

<H3><a name="Ruby_Copying_a_typemap"></a>36.7.3 Copying a typemap</H3>


<p> A typemap is copied by using assignment. For example:</p>

<div class="code">
<pre>%typemap(in) Integer = int;</pre>
</div>

<p> or this:</p>

<div class="code">
<pre>%typemap(in) Integer, Number, int32_t = int;</pre>
</div>

<p> Types are often managed by a collection of different
typemaps. For example:</p>

<div class="code">
<pre>%typemap(in) int { ... }
%typemap(out) int { ... }
%typemap(varin) int { ... }
%typemap(varout) int { ... }</pre>
</div>

<p> To copy all of these typemaps to a new type, use <tt>%apply</tt>.
For example:</p>

<div class="code">
<pre>%apply int { Integer }; // Copy all int typemaps to Integer
%apply int { Integer, Number }; // Copy all int typemaps to both Integer and Number</pre>
</div>

<p> The patterns for <tt>%apply</tt> follow the same
rules as for <tt>
%typemap</tt>. For example:</p>

<div class="code">
<pre>%apply int *output { Integer *output }; // Typemap with name
%apply (char *buf, int len) { (char *buffer, int size) }; // Multiple arguments</pre>
</div>

<H3><a name="Ruby_Deleting_a_typemap"></a>36.7.4 Deleting a typemap</H3>


<p> A typemap can be deleted by simply defining no code. For
example:</p>

<div class="code">
<pre>%typemap(in) int; // Clears typemap for int
%typemap(in) int, long, short; // Clears typemap for int, long, short
%typemap(in) int *output; </pre>
</div>

<p> The <tt>%clear</tt> directive clears all
typemaps for a given type. For example:</p>

<div class="code">
<pre>%clear int; // Removes all types for int
%clear int *output, long *output;</pre>
</div>

<p><b> Note:</b> Since SWIG's default behavior is
defined by typemaps, clearing a fundamental type like <tt>int</tt>
will make that type unusable unless you also define a new set of
typemaps immediately after the clear operation.</p>

<H3><a name="Ruby_Placement_of_typemaps"></a>36.7.5 Placement of typemaps</H3>


<p> Typemap declarations can be declared in the global scope,
within a C++ namespace, and within a C++ class. For example:</p>

<div class="code">
<pre>%typemap(in) int {
  ...
}

namespace std {
  class string;
  %typemap(in) string {
    ...
  }
}

class Bar {
public:
  typedef const int &amp; const_reference;
  %typemap(out) const_reference {
    ...
  }
};</pre>
</div>

<p> When a typemap appears inside a namespace or class, it stays
in effect until the end of the SWIG input (just like before). However,
the typemap takes the local scope into account. Therefore, this code</p>

<div class="code">
<pre>namespace std {
  class string;
  %typemap(in) string {
    ...
  }
}</pre>
</div>

<p> is really defining a typemap for the type <tt>std::string</tt>.
You could have code like this:</p>

<div class="code">
<pre>namespace std {
  class string;
  %typemap(in) string { /* std::string */
  ...
  }
}

namespace Foo {
  class string;
  %typemap(in) string { /* Foo::string */
  ...
  }
}</pre>
</div>

<p> In this case, there are two completely distinct typemaps that
apply to two completely different types (<tt>std::string</tt>
and <tt>
Foo::string</tt>).</p>

<p> It should be noted that for scoping to work, SWIG has to know
that <tt>
string</tt> is a typename defined within a particular namespace.
In this example, this is done using the class declaration <tt>class
string</tt>
.</p>

<H3><a name="Ruby_nn39"></a>36.7.6 Ruby typemaps</H3>


<p>The following list details all of the typemap methods that
can be used by the Ruby module: </p>

<H4><a name="Ruby_in_typemap"></a>36.7.6.1 "in" typemap</H4>


<p>Converts Ruby objects to input
function arguments. For example:
</p>

<div class="code">
<pre>%typemap(in) int {
  $1 = NUM2INT($input);
}</pre>
</div>

<p> The following special variables are available:</p>

<div class="diagram">
<table border="1" cellpadding="2" cellspacing="2" width="100%" summary="Special variables - in typemap">
  <tbody>
    <tr>
      <td>$input </td>
      <td> Input object
holding value to be converted.</td>
    </tr>
    <tr>
      <td>$symname </td>
      <td> Name of
function/method being wrapped</td>
    </tr>
    <tr>
      <td>$1...n </td>
      <td> Argument being
sent to the function</td>
    </tr>
    <tr>
      <td>$1_name </td>
      <td> Name of the
argument (if provided)</td>
    </tr>
    <tr>
      <td>$1_type </td>
      <td> The actual C
datatype matched by the typemap.</td>
    </tr>
    <tr>
      <td>$1_ltype </td>
      <td> The assignable
version of the C datatype matched by the typemap.</td>
    </tr>
  </tbody>
</table>
</div>

<p> This is probably the most commonly redefined typemap because
it can be used to implement customized conversions.</p>

<p> In addition, the "in" typemap allows the number of converted
arguments to be specified. For example:</p>

<div class="code">
<pre>// Ignored argument.
%typemap(in, numinputs=0) int *out (int temp) {
  $1 = &amp;temp;
}</pre>
</div>

<p> At this time, only zero or one arguments may be converted.</p>

<H4><a name="Ruby_typecheck_typemap"></a>36.7.6.2 "typecheck" typemap</H4>


<p> The "typecheck" typemap is used to support overloaded
functions and methods. It merely checks an argument to see whether or
not it matches a specific type. For example:</p>

<div class="code">
<pre>%typemap(typecheck,precedence=SWIG_TYPECHECK_INTEGER) int {
  $1 = FIXNUM_P($input) ? 1 : 0;
}</pre>
</div>

<p> For typechecking, the $1 variable is always a simple integer
that is set to 1 or 0 depending on whether or not the input argument is
the correct type.</p>

<p> If you define new "in" typemaps<em> and</em> your
program uses overloaded methods, you should also define a collection of
"typecheck" typemaps. More details about this follow in a later section
on "Typemaps and Overloading."</p>

<H4><a name="Ruby_out_typemap"></a>36.7.6.3 "out" typemap</H4>


<p>Converts return value of a C function
to a Ruby object.</p>

<div class="code">
<pre>%typemap(out) int {
  $result = INT2NUM( $1 );
}
</pre></div>

<p> The following special variables are available.</p>

<div class="diagram">
<table border="1" cellpadding="2" cellspacing="2" width="100%" summary="Special variables - out typemap">
  <tbody>
    <tr>
      <td>$result </td>
      <td> Result object
returned to target language.</td>
    </tr>
    <tr>
      <td>$symname </td>
      <td> Name of
function/method being wrapped</td>
    </tr>
    <tr>
      <td>$1...n </td>
      <td> Argument being
wrapped</td>
    </tr>
    <tr>
      <td>$1_name </td>
      <td> Name of the
argument (if provided)</td>
    </tr>
    <tr>
      <td>$1_type </td>
      <td> The actual C
datatype matched by the typemap.</td>
    </tr>
    <tr>
      <td>$1_ltype </td>
      <td> The assignable
version of the C datatype matched by the typemap.</td>
    </tr>
  </tbody>
</table>
</div>

<H4><a name="Ruby_arginit_typemap"></a>36.7.6.4 "arginit" typemap</H4>


<p> The "arginit" typemap is used to set the initial value of a
function argument--before any conversion has occurred. This is not
normally necessary, but might be useful in highly specialized
applications. For example:</p>

<div class="code">
<pre>// Set argument to NULL before any conversion occurs
%typemap(arginit) int *data {
  $1 = NULL;
}</pre>
</div>

<H4><a name="Ruby_default_typemap"></a>36.7.6.5 "default" typemap</H4>


<p> The "default" typemap is used to turn an argument into a
default argument. For example:</p>

<div class="code">
<pre>%typemap(default) int flags {
  $1 = DEFAULT_FLAGS;
}
...
int foo(int x, int y, int flags);</pre>
</div>

<p> The primary use of this typemap is to either change the
wrapping of default arguments or specify a default argument in a
language where they aren't supported (like C). Target languages that do
not support optional arguments, such as Java and C#, effectively ignore
the value specified by this typemap as all arguments must be given.</p>

<p> Once a default typemap has been applied to an argument, all
arguments that follow must have default values. See the <a href="http://www.swig.org/Doc1.3/SWIGDocumentation.html#SWIG_default_args">
Default/optional arguments</a> section for further information on
default argument wrapping.</p>

<H4><a name="Ruby_check_typemap"></a>36.7.6.6 "check" typemap</H4>


<p> The "check" typemap is used to supply value checking code
during argument conversion. The typemap is applied<em> after</em>
arguments have been converted. For example:</p>

<div class="code">
<pre>%typemap(check) int positive {
  if ($1 &lt;= 0) {
    SWIG_exception(SWIG_ValueError,"Expected positive value.");
  }
}</pre>
</div>

<H4><a name="Ruby_argout_typemap_"></a>36.7.6.7 "argout" typemap</H4>


<p> The "argout" typemap is used to return values from arguments.
This is most commonly used to write wrappers for C/C++ functions that
need to return multiple values. The "argout" typemap is almost always
combined with an "in" typemap---possibly to ignore the input value. For
example:</p>

<div class="code">
<pre>/* Set the input argument to point to a temporary variable */
%typemap(in, numinputs=0) int *out (int temp) {
  $1 = &amp;temp;
}

%typemap(argout, fragment="output_helper") int *out {
  // Append output value $1 to $result (assuming a single integer in this case)
  $result = output_helper( $result, INT2NUM(*$1) );
}</pre>
</div>

<p> The following special variables are available.</p>

<div class="diagram">
<table border="1" cellpadding="2" cellspacing="2" width="100%" summary="Special variables - argout typemap">
  <tbody>
    <tr>
      <td>$result </td>
      <td> Result object
returned to target language.</td>
    </tr>
    <tr>
      <td>$input </td>
      <td> The original
input object passed.</td>
    </tr>
    <tr>
      <td>$symname </td>
      <td> Name of
function/method being wrapped.</td>
    </tr>
  </tbody>
</table>
</div>

<p> The code supplied to the "argout" typemap is always placed
after the "out" typemap. If multiple return values are used, the extra
return values are often appended to return value of the function.</p>

<p>Output helper is a fragment that usually defines a macro to
some function like SWIG_Ruby_AppendOutput.</p>

<p> See the <tt>typemaps.i</tt> library for examples.</p>

<H4><a name="Ruby_freearg_typemap_"></a>36.7.6.8 "freearg" typemap</H4>


<p> The "freearg" typemap is used to cleanup argument data. It is
only used when an argument might have allocated resources that need to
be cleaned up when the wrapper function exits. The "freearg" typemap
usually cleans up argument resources allocated by the "in" typemap. For
example:</p>

<div class="code">
<pre>// Get a list of integers
%typemap(in) int *items {
  int nitems = Length($input); 
  $1 = (int *) malloc(sizeof(int)*nitems);
}
// Free the list 
%typemap(freearg) int *items {
  free($1);
}</pre>
</div>

<p> The "freearg" typemap inserted at the end of the wrapper
function, just before control is returned back to the target language.
This code is also placed into a special variable <tt>$cleanup</tt>
that may be used in other typemaps whenever a wrapper function needs to
abort prematurely.</p>

<H4><a name="Ruby_newfree_typemap"></a>36.7.6.9 "newfree" typemap</H4>


<p> The "newfree" typemap is used in conjunction with the <tt>%newobject</tt>
directive and is used to deallocate memory used by the return result of
a function. For example:</p>

<div class="code">
<pre>%typemap(newfree) string * {
  delete $1;
}
%typemap(out) string * {
  $result = PyString_FromString($1-&gt;c_str());
}
...

%newobject foo;
...
string *foo();</pre>
</div>

<p> See <a href="Customization.html#Customization_ownership">Object
ownership and %newobject</a> for further details.</p>

<H4><a name="Ruby_memberin_typemap"></a>36.7.6.10 "memberin" typemap</H4>


<p> The "memberin" typemap is used to copy data from<em> an
already converted input value</em> into a structure member. It is
typically used to handle array members and other special cases. For
example:</p>

<div class="code">
<pre>%typemap(memberin) int [4] {
  memmove($1, $input, 4*sizeof(int));
}</pre>
</div>

<p> It is rarely necessary to write "memberin" typemaps---SWIG
already provides a default implementation for arrays, strings, and
other objects.</p>

<H4><a name="Ruby_varin_typemap"></a>36.7.6.11 "varin" typemap</H4>


<p> The "varin" typemap is used to convert objects in the target
language to C for the purposes of assigning to a C/C++ global variable.
This is implementation specific.</p>

<H4><a name="Ruby_varout_typemap_"></a>36.7.6.12 "varout" typemap</H4>


<p> The "varout" typemap is used to convert a C/C++ object to an
object in the target language when reading a C/C++ global variable.
This is implementation specific.</p>

<H4><a name="Ruby_throws_typemap"></a>36.7.6.13 "throws" typemap</H4>


<p> The "throws" typemap is only used when SWIG parses a C++
method with an exception specification or has the <tt>%catches</tt>
feature attached to the method. It provides a default mechanism for
handling C++ methods that have declared the exceptions they will throw.
The purpose of this typemap is to convert a C++ exception into an error
or exception in the target language. It is slightly different to the
other typemaps as it is based around the exception type rather than the
type of a parameter or variable. For example:</p>

<div class="code">
<pre>%typemap(throws) const char * %{
  rb_raise(rb_eRuntimeError, $1);
  SWIG_fail;
%}
void bar() throw (const char *);</pre>
</div>

<p> As can be seen from the generated code below, SWIG generates
an exception handler with the catch block comprising the "throws"
typemap content.</p>

<div class="code">
<pre>...
try {
  bar();
}
catch(char const *_e) {
  rb_raise(rb_eRuntimeError, _e);
  SWIG_fail;
}
...</pre>
</div>

<p> Note that if your methods do not have an exception
specification yet they do throw exceptions, SWIG cannot know how to
deal with them. For a neat way to handle these, see the <a href="http://www.swig.org/Doc1.3/SWIGDocumentation.html#exception">Exception
handling with %exception</a> section.</p>

<H4><a name="Ruby_directorin_typemap"></a>36.7.6.14 directorin typemap</H4>


<p>Converts C++ objects in director
member functions to ruby objects. It is roughly the opposite
of the "in" typemap, making its typemap rule often similar to the "out"
typemap.
</p>

<div class="code"><pre>
%typemap(directorin) int {
  $result = INT2NUM($1);
}
</pre></div>

<p> The following special variables are available.</p>

<div class="diagram">
<table border="1" cellpadding="2" cellspacing="2" width="100%" summary="Special variables - directorin typemap">
  <tbody>
    <tr>
      <td>$result </td>
      <td> Result object
returned to target language.</td>
    </tr>
    <tr>
      <td>$symname </td>
      <td> Name of
function/method being wrapped</td>
    </tr>
    <tr>
      <td>$1...n </td>
      <td> Argument being
wrapped</td>
    </tr>
    <tr>
      <td>$1_name </td>
      <td> Name of the
argument (if provided)</td>
    </tr>
    <tr>
      <td>$1_type </td>
      <td> The actual C
datatype matched by the typemap.</td>
    </tr>
    <tr>
      <td>$1_ltype </td>
      <td> The assignable
version of the C datatype matched by the typemap.</td>
    </tr>
    <tr>
      <td>this </td>
      <td> C++ this,
referring to the class itself.</td>
    </tr>
  </tbody>
</table>
</div>

<H4><a name="Ruby_directorout_typemap"></a>36.7.6.15 directorout typemap</H4>


<p>Converts Ruby objects in director
member functions to C++ objects. It is roughly the opposite
of the "out" typemap, making its rule often similar to the "in"
typemap.
</p>

<div class="code"><pre>
%typemap(directorout) int {
  $result = NUM2INT($1);
}
</pre>
</div>

<p> The following special variables are available:</p>

<div class="diagram">
<table border="1" cellpadding="2" cellspacing="2" width="100%" summary="Special variables - directorout typemap">
  <tbody>
    <tr>
      <td>$input</td>
      <td>Ruby object being sent to the function</td>
    </tr>
    <tr>
      <td>$symname </td>
      <td>Name of function/method being wrapped</td>
    </tr>
    <tr>
      <td>$1...n </td>
      <td>Argument being sent to the function</td>
    </tr>
    <tr>
      <td>$1_name </td>
      <td> Name of the
argument (if provided)</td>
    </tr>
    <tr>
      <td>$1_type </td>
      <td> The actual C
datatype matched by the typemap.</td>
    </tr>
    <tr>
      <td>$1_ltype </td>
      <td> The assignable
version of the C datatype matched by the typemap.</td>
    </tr>
    <tr>
      <td>this </td>
      <td> C++ this,
referring to the class itself.</td>
    </tr>
  </tbody>
</table>
</div>

<p>Currently, the directorout nor the out typemap support the
option <tt>numoutputs</tt>,
but the Ruby module provides that functionality through a %feature
directive. Thus, a function can be made to return "nothing"
if you do:</p>

<div class="code"><pre>
%feature("numoutputs","0") MyClass::function;
</pre></div>

<p>This feature can be useful if a function returns a status
code, which you want to discard but still use the typemap to raise an
exception.

</p>

<H4><a name="Ruby_directorargout_typemap"></a>36.7.6.16 directorargout typemap</H4>


<p>Output argument processing in director
member functions.</p>

<div class="code"><pre>
%typemap(directorargout,
fragment="output_helper") int {
  $result = output_helper( $result, NUM2INT($1) );
}
</pre></div>

<p> The following special variables are available:</p>

<div class="diagram">
<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2" summary="Special variables - directorargout typemap">
  <tbody>
    <tr>
      <td>$result</td>
      <td>Result that the director function returns</td>
    </tr>
    <tr>
      <td>$input</td>
      <td>Ruby object being sent to the function</td>
    </tr>
    <tr>
      <td>$symname</td>
      <td>name of the function/method being wrapped</td>
    </tr>
    <tr>
      <td>$1...n</td>
      <td>Argument being sent to the function</td>
    </tr>
    <tr>
      <td>$1_name</td>
      <td>Name of the
argument (if provided)</td>
    </tr>
    <tr>
      <td>$1_type</td>
      <td>The actual C
datatype matched by the typemap</td>
    </tr>
    <tr>
      <td>$1_ltype</td>
      <td>The assignable
version of the C datatype matched by the typemap</td>
    </tr>
    <tr>
      <td>this</td>
      <td>C++ this,
referring to the instance of the class itself</td>
    </tr>
  </tbody>
</table>
</div>

<H4><a name="Ruby_ret_typemap"></a>36.7.6.17 ret typemap</H4>


<p>Cleanup of function return values
</p>

<H4><a name="Ruby_globalin_typemap"></a>36.7.6.18 globalin typemap</H4>


<p>Setting of C global variables
</p>

<H3><a name="Ruby_nn40"></a>36.7.7 Typemap variables</H3>


<p>
Within a typemap, a number of special variables prefaced with a <tt>$</tt>
may appear. A full list of variables can be found in the "<a href="Typemaps.html#Typemaps">Typemaps</a>" chapter.
This is a list of the most common variables:
</p>

<p><tt>$1</tt> </p>

<div class="indent">A C local variable corresponding to
the actual type specified in the <tt>%typemap</tt>
directive. For input values, this is a C local variable that is
supposed to hold an argument value. For output values, this is the raw
result that is supposed to be returned to Ruby. </div>

<p><tt>$input</tt></p>

<div class="indent">A <tt>VALUE</tt> holding
a raw Ruby object with an argument or variable value. </div>

<p><tt>$result</tt></p>

<div class="indent">A <tt>VALUE</tt> that
holds the result to be returned to Ruby. </div>

<p><tt>$1_name</tt></p>

<div class="indent">The parameter name that was matched. </div>

<p><tt>$1_type</tt></p>

<div class="indent">The actual C datatype matched by the
typemap. </div>

<p><tt>$1_ltype</tt></p>

<div class="indent">An assignable version of the datatype
matched by the typemap (a type that can appear on the left-hand-side of
a C assignment operation). This type is stripped of qualifiers and may
be an altered version of <tt>$1_type</tt>. All arguments
and local variables in wrapper functions are declared using this type
so that their values can be properly assigned. </div>

<p><tt>$symname</tt></p>

<div class="indent">The Ruby name of the wrapper function
being created. </div>

<H3><a name="Ruby_nn41"></a>36.7.8 Useful Functions</H3>


<p> When you write a typemap, you usually have to work directly
with Ruby objects. The following functions may prove to be useful.
(These functions plus many more can be found in <em>Programming
Ruby</em> book, by David Thomas and Andrew Hunt.)</p>
<p>In addition, we list equivalent functions that SWIG defines, which
provide a language neutral conversion (these functions are defined for
each swig language supported). If you are trying to create a swig
file that will work under multiple languages, it is recommended you
stick to the swig functions instead of the native Ruby functions.
That should help you avoid having to rewrite a lot of typemaps
across multiple languages.</p>

<H4><a name="Ruby_nn42"></a>36.7.8.1 C Datatypes to Ruby Objects</H4>


<div class="diagram">
<table style="width: 100%;" border="1" cellpadding="2" cellspacing="2" summary="Datatypes">

  <tbody>
    <tr>
      <th><b>RUBY</b></th>
      <th><b>SWIG</b></th>
      <td></td>
    </tr>
    <tr>
      <td>INT2NUM(long or int) </td>
      <td>SWIG_From_int(int x)</td>
      <td> int to Fixnum or Bignum</td>
    </tr>
    <tr>
      <td>INT2FIX(long or int) </td>
      <td></td>
      <td> int to Fixnum (faster than INT2NUM)</td>
    </tr>
    <tr>
      <td>CHR2FIX(char) </td>
      <td>SWIG_From_char(char x)</td>
      <td> char to Fixnum</td>
    </tr>
    <tr>
      <td>rb_str_new2(char*) </td>
      <td>SWIG_FromCharPtrAndSize(char*, size_t)</td>
      <td> char* to String</td>
    </tr>
    <tr>
      <td>rb_float_new(double) </td>
      <td>SWIG_From_double(double),<br>
SWIG_From_float(float)</td>
      <td>float/double to Float</td>
    </tr>
  </tbody>
</table>
</div>

<H4><a name="Ruby_nn43"></a>36.7.8.2 Ruby Objects to C Datatypes</H4>


<p>Here, while the Ruby versions return the value directly, the SWIG
versions do not, but return a status value to indicate success (<tt>SWIG_OK</tt>). While more akward to use, this allows you to write typemaps that report more helpful error messages, like:</p>

<div class="code">
<pre>
%typemap(in) size_t (int ok)
  ok = SWIG_AsVal_size_t($input, &amp;$1);
  if (!SWIG_IsOK(ok)) {
    SWIG_exception_fail(SWIG_ArgError(ok), Ruby_Format_TypeError( "$1_name", "$1_type","$symname", $argnum, $input));
  }
}
</pre>
</div>

<div class="diagram">
<table border="1" cellpadding="2" cellspacing="2" width="100%" summary="Ruby objects">
  <tbody>
    <tr>
      <td>int NUM2INT(Numeric)</td>
      <td>SWIG_AsVal_int(VALUE, int*)</td>
    </tr>
    <tr>
      <td>int FIX2INT(Numeric)</td>
      <td>SWIG_AsVal_int(VALUE, int*)</td>
    </tr>
    <tr>
      <td>unsigned int NUM2UINT(Numeric)</td>
      <td>SWIG_AsVal_unsigned_SS_int(VALUE, int*)</td>
    </tr>
    <tr>
      <td>unsigned int FIX2UINT(Numeric)</td>
      <td>SWIG_AsVal_unsigned_SS_int(VALUE, int*)</td>
    </tr>
    <tr>
      <td>long NUM2LONG(Numeric)</td>
      <td>SWIG_AsVal_long(VALUE, long*)</td>
    </tr>
    <tr>
      <td>long FIX2LONG(Numeric)</td>
      <td>SWIG_AsVal_long(VALUE, long*)</td>
    </tr>
    <tr>
      <td>unsigned long FIX2ULONG(Numeric)</td>
      <td>SWIG_AsVal_unsigned_SS_long(VALUE, unsigned long*)</td>
    </tr>
    <tr>
      <td>char NUM2CHR(Numeric or String)</td>
      <td>SWIG_AsVal_char(VALUE, int*)</td>
    </tr>
    <tr>
      <td>char * StringValuePtr(String)</td>
      <td>SWIG_AsCharPtrAndSize(VALUE, char*, size_t, int* alloc)</td>
    </tr>
    <tr>
      <td>char * rb_str2cstr(String, int*length)</td>
      <td></td>
    </tr>
    <tr>
      <td>double NUM2DBL(Numeric)</td>
      <td>(double) SWIG_AsVal_int(VALUE) or similar</td>
    </tr>
  </tbody>
</table>
</div>

<H4><a name="Ruby_nn44"></a>36.7.8.3 Macros for VALUE</H4>


<p> <tt>RSTRING_LEN(str)</tt> </p>

<div class="indent">length of the Ruby string</div>

<p><tt>RSTRING_PTR(str)</tt></p>

<div class="indent">pointer to string storage</div>

<p><tt>RARRAY_LEN(arr)</tt></p>

<div class="indent">length of the Ruby array</div>

<p><tt>RARRAY(arr)-&gt;capa</tt></p>

<div class="indent">capacity of the Ruby array</div>

<p><tt>RARRAY_PTR(arr)</tt></p>

<div class="indent">pointer to array storage</div>

<H4><a name="Ruby_nn45"></a>36.7.8.4 Exceptions</H4>


<p> <tt>void rb_raise(VALUE exception, const char *fmt,
...)</tt> </p>

<div class="indent"> Raises an exception. The given format
string <i>fmt</i> and remaining arguments are interpreted
as with <tt>printf()</tt>. </div>

<p><tt>void rb_fatal(const char *fmt, ...)</tt></p>

<div class="indent"> Raises a fatal exception, terminating
the process. No rescue blocks are called, but ensure blocks will be
called. The given format string <i>fmt</i> and remaining
arguments are interpreted as with <tt>printf()</tt>. </div>

<p><tt>void rb_bug(const char *fmt, ...)</tt></p>

<div class="indent"> Terminates the process immediately --
no handlers of any sort will be called. The given format string <i>fmt</i>
and remaining arguments are interpreted as with <tt>printf()</tt>.
You should call this function only if a fatal bug has been exposed. </div>

<p><tt>void rb_sys_fail(const char *msg)</tt></p>

<div class="indent"> Raises a platform-specific exception
corresponding to the last known system error, with the given string <i>msg</i>.
</div>

<p><tt>VALUE rb_rescue(VALUE (*body)(VALUE), VALUE args,
VALUE(*rescue)(VALUE, VALUE), VALUE rargs)</tt></p>

<div class="indent"> Executes <i>body</i>
with the given <i>args</i>. If a <tt>StandardError</tt>
exception is raised, then execute <i>rescue</i> with the
given <i>rargs</i>. </div>

<p><tt>VALUE rb_ensure(VALUE(*body)(VALUE), VALUE args,
VALUE(*ensure)(VALUE), VALUE eargs)</tt></p>

<div class="indent"> Executes <i>body</i>
with the given <i>args</i>. Whether or not an exception is
raised, execute <i>ensure</i> with the given <i>rargs</i>
after <i>body</i> has completed. </div>

<p><tt>VALUE rb_protect(VALUE (*body)(VALUE), VALUE args,
int *result)</tt></p>

<div class="indent"> Executes <i>body</i>
with the given <i>args</i> and returns nonzero in result
if any exception was raised. </div>

<p><tt>void rb_notimplement()</tt></p>

<div class="indent"> Raises a <tt>NotImpError</tt>
exception to indicate that the enclosed function is not implemented
yet, or not available on this platform. </div>

<p><tt>void rb_exit(int status)</tt></p>

<div class="indent"> Exits Ruby with the given <i>status</i>.
Raises a <tt>SystemExit</tt> exception and calls
registered exit functions and finalizers. </div>

<p><tt>void rb_warn(const char *fmt, ...)</tt></p>

<div class="indent"> Unconditionally issues a warning
message to standard error. The given format string <i>fmt</i>
and remaining arguments are interpreted as with <tt>printf()</tt>.
</div>

<p><tt>void rb_warning(const char *fmt, ...)</tt></p>

<div class="indent"> Conditionally issues a warning
message to standard error if Ruby was invoked with the <tt>-w</tt>
flag. The given format string <i>fmt</i> and remaining
arguments are interpreted as with <tt>printf()</tt>. </div>

<H4><a name="Ruby_nn46"></a>36.7.8.5 Iterators</H4>


<p> <tt>void rb_iter_break()</tt> </p>

<div class="indent"> Breaks out of the enclosing iterator
block. </div>

<p><tt>VALUE rb_each(VALUE obj)</tt></p>

<div class="indent"> Invokes the <tt>each</tt>
method of the given <i>obj</i>. </div>

<p><tt>VALUE rb_yield(VALUE arg)</tt></p>

<div class="indent"> Transfers execution to the iterator
block in the current context, passing <i>arg</i> as an
argument. Multiple values may be passed in an array. </div>

<p><tt>int rb_block_given_p()</tt></p>

<div class="indent"> Returns <tt>true</tt> if
<tt>yield</tt> would execute a block in the current
context; that is, if a code block was passed to the current method and
is available to be called. </div>

<p><tt>VALUE rb_iterate(VALUE (*method)(VALUE), VALUE args,
VALUE (*block)(VALUE, VALUE), VALUE arg2)</tt></p>

<div class="indent"> Invokes <i>method</i>
with argument <i>args</i> and block <i>block</i>.
A <tt>yield</tt> from that method will invoke <i>block</i>
with the argument given to <tt>yield</tt>, and a second
argument <i>arg2</i>. </div>

<p><tt>VALUE rb_catch(const char *tag, VALUE (*proc)(VALUE,
VALUE), VALUE value)</tt></p>

<div class="indent"> Equivalent to Ruby's <tt>catch</tt>.
</div>

<p><tt>void rb_throw(const char *tag, VALUE value)</tt></p>

<div class="indent"> Equivalent to Ruby's <tt>throw</tt>.
</div>

<H3><a name="Ruby_nn47"></a>36.7.9 Typemap Examples</H3>


<p> This section includes a few examples of typemaps. For more
examples, you might look at the examples in the <tt>Example/ruby</tt>
directory. </p>

<H3><a name="Ruby_nn48"></a>36.7.10 Converting a Ruby array to a char **</H3>


<p> A common problem in many C programs is the processing of
command line arguments, which are usually passed in an array of <tt>NULL</tt>
terminated strings. The following SWIG interface file allows a Ruby
Array instance to be used as a <tt>char **</tt> object. </p>

<div class="code">
<pre>%module argv

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
  /* Get the length of the array */
  int size = RARRAY($input)-&gt;len; 
  int i;
  $1 = (char **) malloc((size+1)*sizeof(char *));
  /* Get the first element in memory */
  VALUE *ptr = RARRAY($input)-&gt;ptr; 
  for (i=0; i &lt; size; i++, ptr++) {
    /* Convert Ruby Object String to char* */
    $1[i]= StringValuePtr(*ptr); 
  }
  $1[i]=NULL; /* End of list */
}

// This cleans up the char ** array created before 
// the function call

%typemap(freearg) char ** {
  free((char *) $1);
}

// Now a test function
%inline %{
int print_args(char **argv) {
  int i = 0;
  while (argv[i]) {
    printf("argv[%d] = %s\n", i,argv[i]);
    i++;
  }
  return i;
}
%}</pre>
</div>

<p> When this module is compiled, the wrapped C function now
operates as follows : </p>

<div class="code targetlang">
<pre>require 'Argv'
Argv.print_args(["Dave","Mike","Mary","Jane","John"])
argv[0] = Dave
argv[1] = Mike
argv[2] = Mary
argv[3] = Jane
argv[4] = John</pre>
</div>

<p> In the example, two different typemaps are used. The "in"
typemap is used to receive an input argument and convert it to a C
array. Since dynamic memory allocation is used to allocate memory for
the array, the "freearg" typemap is used to later release this memory
after the execution of the C function. </p>

<H3><a name="Ruby_nn49"></a>36.7.11 Collecting arguments in a hash</H3>


<p> Ruby's solution to the "keyword arguments" capability of some
other languages is to allow the programmer to pass in one or more
key-value pairs as arguments to a function. All of those key-value
pairs are collected in a single <tt>Hash</tt> argument
that's presented to the function. If it makes sense, you might want to
provide similar functionality for your Ruby interface. For example,
suppose you'd like to wrap this C function that collects information
about people's vital statistics: </p>

<div class="code">
<pre>void setVitalStats(const char *person, int nattributes, const char **names, int *values);</pre>
</div>

<p> and you'd like to be able to call it from Ruby by passing in
an arbitrary number of key-value pairs as inputs, e.g. </p>

<div class="code targetlang">
<pre>setVitalStats("Fred", 
  'weight' =&gt; 270, 
  'age' =&gt; 42 
)</pre>
</div>

<p> To make this work, you need to write a typemap that expects a
Ruby <tt>Hash</tt> as its input and somehow extracts the
last three arguments (<i>nattributes</i>, <i>names</i>
and <i>values</i>) needed by your C function. Let's start
with the basics: </p>

<div class="code">
<pre>%typemap(in) (int nattributes, const char **names, const int *values)
  (VALUE keys_arr, int i, VALUE key, VALUE val) {
}
 </pre>
</div>

<p> This <tt>%typemap</tt> directive tells SWIG that
we want to match any function declaration that has the specified types
and names of arguments somewhere in the argument list. The fact that we
specified the argument names (<i>nattributes</i>, <i>names</i>
and <i>values</i>) in our typemap is significant; this
ensures that SWIG won't try to apply this typemap to <i>other</i>
functions it sees that happen to have a similar declaration with
different argument names. The arguments that appear in the second set
of parentheses (<i>keys_arr</i>, <i>i</i>, <i>key</i>
and <i>val</i>) define local variables that our typemap
will need. </p>

<p>Since we expect the input argument to be a <tt>Hash</tt>,
let's next add a check for that: </p>

<div class="code">
<pre>%typemap(in) (int nattributes, const char **names, const int *values)
  (VALUE keys_arr, int i, VALUE key, VALUE val) {
    <b>Check_Type($input, T_HASH);</b>
}</pre>
</div>

<p> <tt>Check_Type()</tt> is just a macro (defined
in the Ruby header files) that confirms that the input argument is of
the correct type; if it isn't, an exception will be raised. </p>

<p>The next task is to determine how many key-value pairs are
present in the hash; we'll assign this number to the first typemap
argument (<tt>$1</tt>). This is a little tricky since the
Ruby/C API doesn't provide a public function for querying the size of a
hash, but we can get around that by calling the hash's <i>size</i>
method directly and converting its result to a C <tt>int</tt>
value: </p>

<div class="code">
<pre>%typemap(in) (int nattributes, const char **names, const int *values)
  (VALUE keys_arr, int i, VALUE key, VALUE val) {
    Check_Type($input, T_HASH);
    <b>$1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));</b>
}</pre>
</div>

<p> So now we know the number of attributes. Next we need to
initialize the second and third typemap arguments (i.e. the two C
arrays) to <tt>NULL</tt> and set the stage for extracting
the keys and values from the hash: </p>

<div class="code">
<pre>%typemap(in) (int nattributes, const char **names, const int *values)
  (VALUE keys_arr, int i, VALUE key, VALUE val) {
    Check_Type($input, T_HASH);
    $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
    <b>$2 = NULL;
    $3 = NULL;
    if ($1 &gt; 0) {
      $2 = (char **) malloc($1*sizeof(char *));
      $3 = (int *) malloc($1*sizeof(int));
    }</b>
}</pre>
</div>

<p> There are a number of ways we could extract the keys and
values from the input hash, but the simplest approach is to first call
the hash's <i>keys</i> method (which returns a Ruby array
of the keys) and then start looping over the elements in that array: </p>

<div class="code">
<pre>%typemap(in) (int nattributes, const char **names, const int *values)
  (VALUE keys_arr, int i, VALUE key, VALUE val) {
    Check_Type($input, T_HASH);
    $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
    $2 = NULL;
    $3 = NULL;
    if ($1 &gt; 0) {
      $2 = (char **) malloc($1*sizeof(char *));
      $3 = (int *) malloc($1*sizeof(int));
      <b>keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
      for (i = 0; i &lt; $1; i++) {
      }</b>
    }
}</pre>
</div>

<p> Recall that <i>keys_arr</i> and <i>i</i>
are local variables for this typemap. For each element in the <i>keys_arr</i>
array, we want to get the key itself, as well as the value
corresponding to that key in the hash: </p>

<div class="code">
<pre>%typemap(in) (int nattributes, const char **names, const int *values)
  (VALUE keys_arr, int i, VALUE key, VALUE val) {
    Check_Type($input, T_HASH);
    $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
    $2 = NULL;
    $3 = NULL;
    if ($1 &gt; 0) {
      $2 = (char **) malloc($1*sizeof(char *));
      $3 = (int *) malloc($1*sizeof(int));
      keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
      for (i = 0; i &lt; $1; i++) {
        <b>key = rb_ary_entry(keys_arr, i);
        val = rb_hash_aref($input, key);</b>
      }
    }
}</pre>
</div>

<p> To be safe, we should again use the <tt>Check_Type()</tt>
macro to confirm that the key is a <tt>String</tt> and the
value is a <tt>Fixnum</tt>: </p>

<div class="code">
<pre>%typemap(in) (int nattributes, const char **names, const int *values)
  (VALUE keys_arr, int i, VALUE key, VALUE val) {
    Check_Type($input, T_HASH);
    $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
    $2 = NULL;
    $3 = NULL;
    if ($1 &gt; 0) {
      $2 = (char **) malloc($1*sizeof(char *));
      $3 = (int *) malloc($1*sizeof(int));
      keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
      for (i = 0; i &lt; $1; i++) {
        key = rb_ary_entry(keys_arr, i);
        val = rb_hash_aref($input, key);
        <b>Check_Type(key, T_STRING);
        Check_Type(val, T_FIXNUM);</b>
      }
    }
}</pre>
</div>

<p> Finally, we can convert these Ruby objects into their C
equivalents and store them in our local C arrays: </p>

<div class="code">
<pre>%typemap(in) (int nattributes, const char **names, const int *values)
  (VALUE keys_arr, int i, VALUE key, VALUE val) {
  Check_Type($input, T_HASH);
  $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
  $2 = NULL;
  $3 = NULL;
  if ($1 &gt; 0) {
    $2 = (char **) malloc($1*sizeof(char *));
    $3 = (int *) malloc($1*sizeof(int));
    keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
    for (i = 0; i &lt; $1; i++) {
      key = rb_ary_entry(keys_arr, i);
      val = rb_hash_aref($input, key);
      Check_Type(key, T_STRING);
      Check_Type(val, T_FIXNUM);
      <b>$2[i] = StringValuePtr(key);
      $3[i] = NUM2INT(val);</b>
    }
  }
}</pre>
</div>

<p> We're not done yet. Since we used <tt>malloc()</tt>
to dynamically allocate the memory used for the <i>names</i>
and <i>values</i> arguments, we need to provide a
corresponding "freearg" typemap to free that memory so that there is no
memory leak. Fortunately, this typemap is a lot easier to write: </p>

<div class="code">
<pre>%typemap(freearg) (int nattributes, const char **names, const int *values) {
  free((void *) $2);
  free((void *) $3);
}</pre>
</div>

<p> All of the code for this example, as well as a sample Ruby
program that uses the extension, can be found in the <tt>Examples/ruby/hashargs</tt>
directory of the SWIG distribution. </p>

<H3><a name="Ruby_nn50"></a>36.7.12 Pointer handling</H3>


<p> Occasionally, it might be necessary to convert pointer values
that have been stored using the SWIG typed-pointer representation.
Since there are several ways in which pointers can be represented, the
following two functions are used to safely perform this conversion: </p>

<p><tt>int SWIG_ConvertPtr(VALUE obj, void **ptr,
swig_type_info *ty, int flags)</tt> </p>

<div class="indent">Converts a Ruby object <i>obj</i>
to a C pointer whose address is <i>ptr</i> (i.e. <i>ptr</i>
is a pointer to a pointer). The third argument, <i>ty</i>,
is a pointer to a SWIG type descriptor structure. If <i>ty</i>
is not <tt>NULL</tt>, that type information is used to
validate type compatibility and other aspects of the type conversion.
If <i>flags</i> is non-zero, any type errors encountered
during this validation result in a Ruby <tt>TypeError</tt>
exception being raised; if <i>flags</i> is zero, such type
errors will cause <tt>SWIG_ConvertPtr()</tt> to return -1
but not raise an exception. If <i>ty</i> is <tt>NULL</tt>,
no type-checking is performed. </div>

<p> <tt>VALUE SWIG_NewPointerObj(void *ptr, swig_type_info
*ty, int own)</tt> </p>

<div class="indent">Creates a new Ruby pointer object.
Here, <i>ptr</i> is the pointer to convert, <i>ty</i>
is the SWIG type descriptor structure that describes the type, and <i>own</i>
is a flag that indicates whether or not Ruby should take ownership of
the pointer (i.e. whether Ruby should free this data when the
corresponding Ruby instance is garbage-collected). </div>

<p> Both of these functions require the use of a special SWIG
type-descriptor structure. This structure contains information about
the mangled name of the datatype, type-equivalence information, as well
as information about converting pointer values under C++ inheritance.
For a type of <tt>Foo *</tt>, the type descriptor
structure is usually accessed as follows: </p>

<div class="indent code">
<pre>Foo *foo;
SWIG_ConvertPtr($input, (void **) &amp;foo, SWIGTYPE_p_Foo, 1);

VALUE obj;
obj = SWIG_NewPointerObj(f, SWIGTYPE_p_Foo, 0);</pre>
</div>

<p> In a typemap, the type descriptor should always be accessed
using the special typemap variable <tt>$1_descriptor</tt>.
For example: </p>

<div class="indent code">
<pre>%typemap(in) Foo * {
  SWIG_ConvertPtr($input, (void **) &amp;$1, $1_descriptor, 1);
}</pre>
</div>

<H4><a name="Ruby_nn51"></a>36.7.12.1 Ruby Datatype Wrapping</H4>


<p> <tt>VALUE Data_Wrap_Struct(VALUE class, void
(*mark)(void *), void (*free)(void *), void *ptr)</tt> </p>

<div class="indent">Given a pointer <i>ptr</i>
to some C data, and the two garbage collection routines for this data (<i>mark</i>
and <i>free</i>), return a <tt>VALUE</tt> for
the Ruby object. </div>

<p><tt>VALUE Data_Make_Struct(VALUE class, <i>c-type</i>,
void (*mark)(void *), void (*free)(void *), <i>c-type</i>
*ptr)</tt></p>

<div class="indent">Allocates a new instance of a C data
type <i>c-type</i>, assigns it to the pointer <i>ptr</i>,
then wraps that pointer with <tt>Data_Wrap_Struct()</tt>
as above. </div>

<p><tt>Data_Get_Struct(VALUE obj, <i>c-type</i>,
<i>c-type</i> *ptr)</tt></p>

<div class="indent">Retrieves the original C pointer of
type <i>c-type</i> from the data object <i>obj</i>
and assigns that pointer to <i>ptr</i>. </div>

<H3><a name="Ruby_nn52"></a>36.7.13 Example: STL Vector to Ruby Array</H3>


<p>Another use for macros and type maps is to create a Ruby array
from a STL vector of pointers. In essence, copy of all the pointers in
the vector into a Ruby array. The use of the macro is to make the
typemap so generic that any vector with pointers can use the type map.
The following is an example of how to construct this type of
macro/typemap and should give insight into constructing similar
typemaps for other STL structures: </p>

<div class="code">
<pre>%define PTR_VECTOR_TO_RUBY_ARRAY(vectorclassname, classname)
%typemap(out) vectorclassname &amp;, const vectorclassname &amp; {
  VALUE arr = rb_ary_new2($1-&gt;size());
  vectorclassname::iterator i = $1-&gt;begin(), iend = $1-&gt;end();
  for ( ; i!=iend; i++ )
    rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, *i));
  $result = arr;
}
%typemap(out) vectorclassname, const vectorclassname {
  VALUE arr = rb_ary_new2($1.size());
  vectorclassname::iterator i = $1.begin(), iend = $1.end();
  for ( ; i!=iend; i++ )
    rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, *i));
  $result = arr;
}
%enddef</pre>
</div>

<p> Note, that the "<tt>c ## classname.klass"</tt> is
used in the preprocessor step to determine the actual object from the
class name. </p>

<p>To use the macro with a class Foo, the following is used: </p>

<div class="code">
<pre>PTR_VECTOR_TO_RUBY_ARRAY(vector&lt;foo *=""&gt;, Foo)</pre>
</div>

<p> It is also possible to create a STL vector of Ruby objects: </p>

<div class="code">
<pre>%define RUBY_ARRAY_TO_PTR_VECTOR(vectorclassname, classname)
%typemap(in) vectorclassname &amp;, const vectorclassname &amp; {
  Check_Type($input, T_ARRAY);
  vectorclassname *vec = new vectorclassname;
  int len = RARRAY($input)-&gt;len;
  for (int i=0; i!=len; i++) {
    VALUE inst = rb_ary_entry($input, i);
    //The following _should_ work but doesn't on HPUX
    // Check_Type(inst, T_DATA);
    classname *element = NULL;
    Data_Get_Struct(inst, classname, element);
    vec-&gt;push_back(element);
  }
  $1 = vec;
}

%typemap(freearg) vectorclassname &amp;, const vectorclassname &amp; {
  delete $1;
}
%enddef</pre>
</div>

<p> It is also possible to create a Ruby array from a vector of
static data types: </p>

<div class="code">
<pre>%define VECTOR_TO_RUBY_ARRAY(vectorclassname, classname)
%typemap(out) vectorclassname &amp;, const vectorclassname &amp; {
  VALUE arr = rb_ary_new2($1-&gt;size()); 
  vectorclassname::iterator i = $1-&gt;begin(), iend = $1-&gt;end();
  for ( ; i!=iend; i++ )
    rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, &amp;(*i)));
  $result = arr;
}
%typemap(out) vectorclassname, const vectorclassname {
  VALUE arr = rb_ary_new2($1.size()); 
  vectorclassname::iterator i = $1.begin(), iend = $1.end();
  for ( ; i!=iend; i++ )
    rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, &amp;(*i)));
  $result = arr;
}
%enddef</pre>
</div>

Note that this is mostly an example of typemaps. If you want to use the
STL with ruby, you are advised to use the standard swig STL library,
which does much more than this. Refer to the section called
the<a href="#Ruby_nn23_1"> C++ Standard Template Library</a>.

<H2><a name="Ruby_nn65"></a>36.8 Docstring Features</H2>


<p>
Using ri and rdoc web pages in Ruby libraries is a common practice.
Given the way that SWIG generates the extensions by default, your users
will normally not get
any documentation for it, even if they run 'rdoc' on the resulting .c
or .cxx file.</p>

<p>The features described in this section make it easy for you to
add
rdoc strings to your modules, functions and methods that can then be
read by Ruby's rdoc tool to generate html web pages, ri documentation,
Windows chm file and an .xml description.</p>

<p>rdoc can then be run from a console or shell window on a swig
generated file.</p>

<p>For example, to generate html web pages from a C++ file, you'd
do:</p>

<div class="code shell">
<pre>
$ rdoc -E cxx=c -f html file_wrap.cxx
</pre></div>

<p>To
generate ri documentation from a c wrap file, you could do:</p>

<div class="code shell"><pre>
$ rdoc -r file_wrap.c
</pre></div>

<H3><a name="Ruby_nn66"></a>36.8.1 Module docstring</H3>


<p>
Ruby allows a docstring at the beginning of the file
before any other statements, and it is typically used to give a
general description of the entire module. SWIG supports this by
setting an option of the <tt>%module</tt> directive. For
example:
</p>

<div class="code">
<pre>%module(docstring="This is the example module's docstring") example</pre>
</div>

<p>
When you have more than just a line or so then you can retain the easy
readability of the <tt>%module</tt> directive by using a
macro. For example:
</p>

<div class="code">
<pre>%define DOCSTRING
"The `XmlResource` class allows program resources defining menus, 
layout of controls on a panel, etc. to be loaded from an XML file."
%enddef

%module(docstring=DOCSTRING) xrc</pre>
</div>

<H3><a name="Ruby_nn67"></a>36.8.2 %feature("autodoc")</H3>


<p>Since SWIG does know everything about the function it wraps,
it is possible to generate an rdoc containing the parameter types,
names
and default values. Since Ruby ships with one of the best documentation
systems of any language, it makes sense to take advantage of it.
</p>

<p>SWIG's Ruby module provides support for the "autodoc"
feature,
which when attached to a node in the parse tree will cause an rdoc
comment
to be generated in the wrapper file that includes the name of the
function, parameter
names, default values if any, and return type if any. There are also
several options for autodoc controlled by the value given to the
feature, described below.
</p>

<H4><a name="Ruby_nn68"></a>36.8.2.1 %feature("autodoc", "0")</H4>


<p>
When the "0" option is given then the types of the parameters will
<em>not</em> be included in the autodoc string. For
example, given
this function prototype:
</p>

<div class="code">
<pre>%feature("autodoc", "0");
bool function_name(int x, int y, Foo* foo=NULL, Bar* bar=NULL);</pre>
</div>

<p>
Then Ruby code like this will be generated:
</p>

<div class="targetlang">
<pre>function_name(x, y, foo=nil, bar=nil) -&gt; bool
  ...</pre>
</div>

<H4><a name="Ruby_autodoc1"></a>36.8.2.2 %feature("autodoc", "1")</H4>


<p>
When the "1" option is used then the parameter types <em>will</em>
be used in the rdoc string. In addition, an attempt is made to
simplify the type name such that it makes more sense to the Ruby
user. Pointer, reference and const info is removed,
<tt>%rename</tt>'s are evaluated, etc. (This is not always
successful, but works most of the time. See the next section for what
to do when it doesn't.) Given the example above, then turning on the
parameter types with the "1" option will result in rdoc code like
this:
</p>

<div class="targetlang">
<pre>function_name(int x, int y, Foo foo=nil, Bar bar=nil) -&gt; bool
  ...</pre>
</div>

<H4><a name="Ruby_autodoc2"></a>36.8.2.3 %feature("autodoc", "2")</H4>


<p>
When the "2" option is used then the parameter types will not
be
used in the rdoc string. However, they will be listed in full after the
function. Given the example above, then turning on the
parameter types with the "2" option will result in Ruby code like
this:
</p>

<H4><a name="Ruby_feature_autodoc3"></a>36.8.2.4 %feature("autodoc", "3")</H4>


<p>
When the "3" option is used then the function will be documented using
a combination of "1" and "2" above. Given the example above,
then turning on the
parameter types with the "2" option will result in Ruby code like
this:
</p>

<div class="targetlang">
<pre>function_name(int x, int y, Foo foo=nil, Bar bar=nil) -&gt; bool

Parameters:
	x - int
	y - int
	foo - Foo
	bar - Bar</pre>
</div>

<H4><a name="Ruby_nn70"></a>36.8.2.5 %feature("autodoc", "docstring")</H4>


<p>
Finally, there are times when the automatically generated autodoc
string will make no sense for a Ruby programmer, particularly when a
typemap is involved. So if you give an explicit value for the autodoc
feature then that string will be used in place of the automatically
generated string. For example:
</p>

<div class="code">
<pre>%feature("autodoc", "GetPosition() -&gt; (x, y)") GetPosition;
void GetPosition(int* OUTPUT, int* OUTPUT);</pre>
</div>

<H3><a name="Ruby_nn71"></a>36.8.3 %feature("docstring")</H3>


<p>
In addition to the autodoc strings described above, you can also
attach any arbitrary descriptive text to a node in the parse tree with
the "docstring" feature. When the proxy module is generated then any
docstring associated with classes, function or methods are output.
If an item already has an autodoc string then it is combined with the
docstring and they are output together. </p>

<H2><a name="Ruby_nn53"></a>36.9 Advanced Topics</H2>


<H3><a name="Ruby_operator_overloading"></a>36.9.1 Operator overloading</H3>


<p> SWIG allows operator overloading with, by using the <tt>%extend</tt>
or <tt>%rename</tt> commands in SWIG and the following
operator names (derived from Python): </p>

<div class="code diagram">
<table style="width: 100%; font-family: monospace;" border="1" cellpadding="2" cellspacing="2" summary="operator names">
  <tbody>
    <tr>
      <td><b> General</b></td>
    </tr>
    <tr>
      <td>__repr__ </td>
      <td> inspect</td>
    </tr>
    <tr>
      <td>__str__ </td>
      <td> to_s</td>
    </tr>
    <tr>
      <td>__cmp__ </td>
      <td> &lt;=&gt;</td>
    </tr>
    <tr>
      <td>__hash__ </td>
      <td> hash</td>
    </tr>
    <tr>
      <td>__nonzero__ </td>
      <td> nonzero?</td>
    </tr>
    <tr>
      <td></td>
    </tr>
    <tr>
      <td><b> Callable</b></td>
    </tr>
    <tr>
      <td>__call__ </td>
      <td> call</td>
    </tr>
    <tr>
      <td></td>
    </tr>
    <tr>
      <td><b> Collection</b></td>
    </tr>
    <tr>
      <td>__len__ </td>
      <td> length</td>
    </tr>
    <tr>
      <td>__getitem__ </td>
      <td> []</td>
    </tr>
    <tr>
      <td>__setitem__ </td>
      <td> []=</td>
    </tr>
    <tr>
      <td></td>
    </tr>
    <tr>
      <td><b> Numeric</b></td>
    </tr>
    <tr>
      <td>__add__ </td>
      <td> +</td>
    </tr>
    <tr>
      <td>__sub__ </td>
      <td> -</td>
      <td></td>
    </tr>
    <tr>
      <td>__mul__ </td>
      <td> *</td>
    </tr>
    <tr>
      <td>__div__ </td>
      <td> /</td>
    </tr>
    <tr>
      <td>__mod__ </td>
      <td> %</td>
    </tr>
    <tr>
      <td>__divmod__ </td>
      <td> divmod</td>
    </tr>
    <tr>
      <td>__pow__ </td>
      <td> **</td>
    </tr>
    <tr>
      <td>__lshift__ </td>
      <td> &lt;&lt;</td>
    </tr>
    <tr>
      <td>__rshift__ </td>
      <td> &gt;&gt;</td>
    </tr>
    <tr>
      <td>__and__ </td>
      <td> &amp;</td>
    </tr>
    <tr>
      <td>__xor__ </td>
      <td> ^</td>
    </tr>
    <tr>
      <td>__or__ </td>
      <td> |</td>
    </tr>
    <tr>
      <td>__neg__ </td>
      <td> -@</td>
      <td></td>
    </tr>
    <tr>
      <td>__pos__ </td>
      <td> +@</td>
    </tr>
    <tr>
      <td>__abs__ </td>
      <td> abs</td>
    </tr>
    <tr>
      <td>__invert__ </td>
      <td> ~</td>
    </tr>
    <tr>
      <td>__int__ </td>
      <td> to_i</td>
    </tr>
    <tr>
      <td>__float__ </td>
      <td> to_f</td>
    </tr>
    <tr>
      <td>__coerce__ </td>
      <td> coerce</td>
    </tr>
    <tr>
      <td></td>
    </tr>
    <tr>
      <td><b>Additions in 1.3.13 </b></td>
    </tr>
    <tr>
      <td>__lt__ </td>
      <td> &lt;</td>
    </tr>
    <tr>
      <td>__le__ </td>
      <td> &lt;=</td>
    </tr>
    <tr>
      <td>__eq__ </td>
      <td> ==</td>
    </tr>
    <tr>
      <td>__gt__ </td>
      <td> &gt;</td>
    </tr>
    <tr>
      <td>__ge__ </td>
      <td> &gt;=</td>
    </tr>
  </tbody>
</table>
</div>

<p> Note that although SWIG supports the <tt>__eq__</tt>
magic method name for defining an equivalence operator, there is no
separate method for handling <i>inequality</i> since Ruby
parses the expression <i>a != b</i> as <i>!(a == b)</i>.
</p>

<H3><a name="Ruby_nn55"></a>36.9.2 Creating Multi-Module Packages</H3>


<p> The chapter on <a href="Modules.html#Modules">Working
with Modules</a> discusses the basics of creating multi-module
extensions with SWIG, and in particular the considerations for sharing
runtime type information among the different modules. </p>

<p>As an example, consider one module's interface file (<tt>shape.i</tt>)
that defines our base class: </p>

<div class="code">
<pre>%module shape

%{
#include "Shape.h"
%}

class Shape {
protected:
  double xpos;
  double ypos;
protected:
  Shape(double x, double y);
public:
  double getX() const;
  double getY() const;
};</pre>
</div>

<p> We also have a separate interface file (<tt>circle.i</tt>)
that defines a derived class: </p>

<div class="code">
<pre>%module circle

%{
#include "Shape.h"
#include "Circle.h"
%}

// Import the base class definition from Shape module
%import shape.i

class Circle : public Shape {
protected:
  double radius;
public:
  Circle(double x, double y, double r);
  double getRadius() const;
};</pre>
</div>

<p> We'll start by building the <b>Shape</b>
extension module: </p>

<div class="code shell">
<pre>$ swig -c++ -ruby shape.i
</pre>
</div>

<p> SWIG generates a wrapper file named <tt>shape_wrap.cxx</tt>.
To compile this into a dynamically loadable extension for Ruby, prepare
an <tt>extconf.rb</tt> script using this template: </p>

<div class="code targetlang">
<pre>require 'mkmf'

# Since the SWIG runtime support library for Ruby
# depends on the Ruby library, make sure it's in the list
# of libraries.
$libs = append_library($libs, Config::CONFIG['RUBY_INSTALL_NAME'])

# Create the makefile
create_makefile('shape')</pre>
</div>

<p> Run this script to create a <tt>Makefile</tt>
and then type <tt>make</tt> to build the shared library: </p>

<div class="code targetlang">
<pre>$ <b>ruby extconf.rb</b>
creating Makefile
$ <b>make</b>
g++ -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.7/i686-linux \
-I. -c shape_wrap.cxx
gcc -shared -L/usr/local/lib -o shape.so shape_wrap.o -L. \
-lruby -lruby -lc</pre>
</div>

<p> Note that depending on your installation, the outputs may be
slightly different; these outputs are those for a Linux-based
development environment. The end result should be a shared library
(here, <tt>shape.so</tt>) containing the extension module
code. Now repeat this process in a separate directory for the <b>Circle</b>
module: </p>

<ol>
  <li> Run SWIG to generate the wrapper code (<tt>circle_wrap.cxx</tt>);
  </li>
  <li> Write an <tt>extconf.rb</tt> script that your
end-users can use to create a platform-specific <tt>Makefile</tt>
for the extension; </li>
  <li> Build the shared library for this extension by typing <tt>make</tt>.
  </li>
</ol>

<p> Once you've built both of these extension modules, you can
test them interactively in IRB to confirm that the <tt>Shape</tt>
and <tt>Circle</tt> modules are properly loaded and
initialized: </p>

<div class="code targetlang">
<pre>$ <b>irb</b>
irb(main):001:0&gt; <b>require 'shape'</b>
true
irb(main):002:0&gt; <b>require 'circle'</b>
true
irb(main):003:0&gt; <b>c = Circle::Circle.new(5, 5, 20)</b>
#&lt;Circle::Circle:0xa097208&gt;
irb(main):004:0&gt; <b>c.kind_of? Shape::Shape</b>
true
irb(main):005:0&gt; <b>c.getX()</b>
5.0</pre>
</div>

<H3><a name="Ruby_nn56"></a>36.9.3 Specifying Mixin Modules</H3>


<p> The Ruby language doesn't support multiple inheritance, but
it does allow you to mix one or more modules into a class using Ruby's <tt>include</tt>
method. For example, if you have a Ruby class that defines an <em>each</em>
instance method, e.g. </p>

<div class="code targetlang">
<pre>class Set
  def initialize
  @members = []
  end
 
  def each
  @members.each { |m| yield m }
  end
end</pre>
</div>

<p> then you can mix-in Ruby's <tt>Enumerable</tt>
module to easily add a lot of functionality to your class: </p>

<div class="code targetlang">
<pre>class Set
  <b>include Enumerable</b>
  def initialize
    @members = []
  end
  def each
    @members.each { |m| yield m }
  end
end</pre>
</div>

<p> To get the same benefit for your SWIG-wrapped classes, you
can use the <tt>%mixin</tt> directive to specify the names
of one or more modules that should be mixed-in to a class. For the
above example, the SWIG interface specification might look like this: </p>

<div class="code">
<pre>%mixin Set "Enumerable";

class Set {
public:
  // Constructor
  Set();
 
  // Iterates through set members
  void each();
};</pre>
</div>

<p> Multiple modules can be mixed into a class by providing a
comma-separated list of module names to the <tt>%mixin</tt>
directive, e.g. </p>

<div class="code">
<pre>%mixin Set "Fee,Fi,Fo,Fum";</pre>
</div>

<p> Note that the <tt>%mixin</tt> directive is
implemented using SWIG's "features" mechanism and so the same name
matching rules used for other kinds of features apply (see the chapter
on <a href="Customization.html#Customization">"Customization
Features"</a>) for more details). </p>

<H2><a name="Ruby_nn57"></a>36.10 Memory Management</H2>


<p>One of the most common issues in generating SWIG bindings for
Ruby is proper memory management. The key to proper memory management
is clearly defining whether a wrapper Ruby object owns the underlying C
struct or C++ class. There are two possibilities:</p>

<ul>

  <li> The Ruby object is responsible for freeing the C struct or
C++ object </li>

  <li> The Ruby object should not free the C struct or C++ object
because it will be freed by the underlying C or C++ code</li>

</ul>

<p>To complicate matters, object ownership may transfer from Ruby
to C++ (or vice versa) depending on what function or methods are
invoked. Clearly, developing a SWIG wrapper requires a thorough
understanding of how the underlying library manages memory.</p>

<H3><a name="Ruby_nn58"></a>36.10.1 Mark and Sweep Garbage Collector </H3>


<p>Ruby uses a mark and sweep garbage collector. When the garbage
collector runs, it finds all the "root" objects, including local
variables, global variables, global constants, hardware registers and
the C stack. For each root object, the garbage collector sets its mark
flag to true and calls <tt>rb_gc_mark</tt> on the object.
The job of <tt>rb_gc_mark</tt> is to recursively mark all
the objects that a Ruby object has a reference to (ignoring those
objects that have already been marked). Those objects, in turn, may
reference other objects. This process will continue until all active
objects have been "marked." After the mark phase comes the sweep phase.
In the sweep phase, all objects that have not been marked will be
garbage collected. For more information about the Ruby garbage
collector please refer to <a href="http://rubygarden.org/ruby/ruby?GCAndExtensions"> <span style="text-decoration: underline;">http://rubygarden.org/ruby/ruby?GCAndExtensions</span></a>.</p>

<p>The Ruby C/API provides extension developers two hooks into
the garbage collector - a "mark" function and a "sweep" function. By
default these functions are set to NULL.</p>

<p>If a C struct or C++ class references any other Ruby objects,
then it must provide a "mark" function. The "mark" function should
identify any referenced Ruby objects by calling the rb_gc_mark function
for each one. Unsurprisingly, this function will be called by the Ruby
garbage during the "mark" phase.</p>

<p>During the sweep phase, Ruby destroys any unused objects. If
any memory has been allocated in creating the underlying C struct or
C++ struct, then a "free" function must be defined that deallocates
this memory. </p>

<H3><a name="Ruby_nn59"></a>36.10.2 Object Ownership</H3>


<p>As described above, memory management depends on clearly
defining who is responsible for freeing the underlying C struct or C++
class. If the Ruby object is responsible for freeing the C++ object,
then a "free" function must be registered for the object. If the Ruby
object is not responsible for freeing the underlying memory, then a
"free" function must not be registered for the object.</p>

<p>For the most part, SWIG takes care of memory management
issues. The rules it uses are:</p>

<ul>

  <li> When calling a C++ object's constructor from Ruby, SWIG
will assign a "free" function thereby making the Ruby object
responsible for freeing the C++ object</li>

  <li> When calling a C++ member function that returns a pointer,
SWIG will not assign a "free" function thereby making the underlying
library responsible for freeing the object.</li>

</ul>

<p>To make this clearer, let's look at an example. Assume we have
a Foo and a Bar class. </p>

<div class="code">
<pre>/* File "RubyOwernshipExample.h" */

class Foo
{
public:
  Foo() {}
  ~Foo() {}
};

class Bar
{
  Foo *foo_;
public:
  Bar(): foo_(new Foo) {}
  ~Bar() { delete foo_; }
  Foo* get_foo() { return foo_; }
  Foo* get_new_foo() { return new Foo; }
  void set_foo(Foo *foo) { delete foo_; foo_ = foo; }
};</pre>
</div>

<p>First, consider this Ruby code: </p>

<div class="code targetlang">
<pre>foo = Foo.new</pre>
</div>

<p>In this case, the Ruby code calls the underlying <tt>Foo</tt>
C++ constructor, thus creating a new <tt>foo</tt> object.
By default, SWIG will assign the new Ruby object a "free" function.
When the Ruby object is garbage collected, the "free" function will be
called. It in turn will call <tt>Foo's</tt> destructor.</p>

<p>Next, consider this code: </p>

<div class="code targetlang">
<pre>bar = Bar.new
foo = bar.get_foo()</pre>
</div>

<p>In this case, the Ruby code calls a C++ member function, <tt>get_foo</tt>.
By default, SWIG will not assign the Ruby object a "free" function.
Thus, when the Ruby object is garbage collected the underlying C++ <tt>foo</tt>
object is not affected.</p>

<p>Unfortunately, the real world is not as simple as the examples
above. For example:</p>

<div class="code targetlang">
<pre>bar = Bar.new
foo = bar.get_new_foo()</pre>
</div>

<p>In this case, the default SWIG behavior for calling member
functions is incorrect. The Ruby object should assume ownership of the
returned object. This can be done by using the %newobject directive.
See <a href="Customization.html#Customization_ownership">
Object ownership and %newobject</a> for more information. </p>

<p>The SWIG default mappings are also incorrect in this case:</p>

<div class="code targetlang">
<pre>foo = Foo.new
bar = Bar.new
bar.set_foo(foo)</pre>
</div>

<p>Without modification, this code will cause a segmentation
fault. When the Ruby <tt>foo</tt> object goes out of
scope, it will free the underlying C++ <tt>foo</tt>
object. However, when the Ruby bar object goes out of scope, it will
call the C++ bar destructor which will also free the C++ <tt>foo</tt>
object. The problem is that object ownership is transferred from the
Ruby object to the C++ object when the <tt>set_foo</tt>
method is called. This can be done by using the special DISOWN type
map, which was added to the Ruby bindings in SWIG-1.3.26.</p>

<p>Thus, a correct SWIG interface file correct mapping for these
classes is:</p>

<div class="code">
<pre>/* File RubyOwnershipExample.i */

%module RubyOwnershipExample

%{
#include "RubyOwnershipExample.h"
%}

class Foo
{
public:
  Foo();
  ~Foo();
};

class Bar
{
  Foo *foo_;
public:
  Bar();
  ~Bar();
  Foo* get_foo();

<b>  %newobject get_new_foo;</b>
  Foo* get_new_foo();

<b>  %apply SWIGTYPE *DISOWN {Foo *foo};</b>
  void set_foo(Foo *foo);
<b>  %clear Foo *foo;</b>
};
</pre>
</div>

<p> This code can be seen in swig/examples/ruby/tracking.</p>

<H3><a name="Ruby_nn60"></a>36.10.3 Object Tracking</H3>


<p>The remaining parts of this section will use the class library
shown below to illustrate different memory management techniques. The
class library models a zoo and the animals it contains. </p>

<div class="code">
<pre>%module zoo

%{
#include &lt;string&gt;
#include &lt;vector&gt;

#include "zoo.h"
%}

class Animal
{
private:
  typedef std::vector&lt;Animal*&gt; AnimalsType;
  typedef AnimalsType::iterator IterType;
protected:
  AnimalsType animals;
protected:
  std::string name_;
public:
  // Construct an animal with this name
  Animal(const char* name) : name_(name) {}
 
  // Return the animal's name
  const char* get_name() const { return name.c_str(); }
};

class Zoo
{
protected:
 std::vector&lt;animal *=""&gt; animals;
 
public:
  // Construct an empty zoo
  Zoo() {}
  
  /* Create a new animal. */
  static Animal* Zoo::create_animal(const char* name) {
    return new Animal(name);
  }
 
  // Add a new animal to the zoo
  void add_animal(Animal* animal) {
    animals.push_back(animal); 
  }
 
  Animal* remove_animal(size_t i) {
    Animal* result = this-&gt;animals[i];
    IterType iter = this-&gt;animals.begin();
    std::advance(iter, i);
    this-&gt;animals.erase(iter);
   
    return result;
  }
  
  // Return the number of animals in the zoo
  size_t get_num_animals() const {
    return animals.size(); 
  }
  
  // Return a pointer to the ith animal
  Animal* get_animal(size_t i) const {
    return animals[i]; 
  }
};</pre>
</div>

<p>Let's say you SWIG this code and then run IRB:

</p>

<div class="code targetlang">
<pre>$ <b>irb</b>
irb(main):001:0&gt; <b>require 'example'</b>
=&gt; true

irb(main):002:0&gt; <b>tiger1 = Example::Animal.new("tiger1")</b>
=&gt; #&lt;Example::Animal:0x2be3820&gt;

irb(main):004:0&gt; <b>tiger1.get_name()</b>
=&gt; "tiger1"

irb(main):003:0&gt; <b>zoo = Example::Zoo.new()</b>
=&gt; #&lt;Example::Zoo:0x2be0a60&gt;

irb(main):006:0&gt; <b>zoo.add_animal(tiger)</b>
=&gt; nil

irb(main):007:0&gt; <b>zoo.get_num_animals()</b>
=&gt; 1

irb(main):007:0&gt; <b>tiger2 = zoo.remove_animal(0)</b>
=&gt; #&lt;Example::Animal:0x2bd4a18&gt;

irb(main):008:0&gt; <b>tiger2.get_name()</b>
=&gt; "tiger1"

irb(main):009:0&gt; <b>tiger1.equal?(tiger2)</b>
=&gt; false
</pre>
</div>

<p>Pay particular attention to the code <tt>tiger1.equal?(tiger2)</tt>.
Note that the two Ruby objects are not the same - but they reference
the same underlying C++ object. This can cause problems. For example:
</p>

<div class="code targetlang">
<pre>irb(main):010:0&gt; <b>tiger1 = nil</b>
=&gt; nil

irb(main):011:0&gt; <b>GC.start</b>
=&gt; nil

irb(main):012:0&gt; <b>tiger2.get_name()</b>
(irb):12: [BUG] Segmentation fault
</pre>
</div>

<p>After the garbage collector runs, as a result of our call
to <tt>GC.start</tt>, calling<tt>tiger2.get_name()</tt>
causes a segmentation fault. The problem is that when <tt>tiger1</tt>
is garbage collected, it frees the underlying C++ object. Thus, when <tt>tiger2</tt>
calls the <tt>get_name()</tt> method it invokes it on a
destroyed object.</p>

<p>This problem can be avoided if SWIG enforces a one-to-one
mapping between Ruby objects and C++ classes. This can be done via the
use of the <tt>%trackobjects</tt> functionality available
in SWIG-1.3.26. and later.</p>

<p>When the <tt>%trackobjects</tt> is turned on,
SWIG automatically keeps track of mappings between C++ objects and Ruby
objects. Note that enabling object tracking causes a slight performance
degradation. Test results show this degradation to be about 3% to 5%
when creating and destroying 100,000 animals in a row.</p>

<p>Since <tt>%trackobjects</tt> is implemented as a <tt>%feature</tt>,
it uses the same name matching rules as other kinds of features (see
the chapter on <a href="Customization.html#Customization">
"Customization Features"</a>) . Thus it can be applied on a
class-by-class basis if needed. To fix the example above:</p>

<div class="code">
<pre>%module example

%{
#include "example.h"
%}

<b>/* Tell SWIG that create_animal creates a new object */</b>
<b>%newobject Zoo::create_animal;</b>

<b>/* Tell SWIG to keep track of mappings between C/C++ structs/classes. */</b><b>%trackobjects;</b>

%include "example.h"</pre>
</div>

<p>When this code runs we see:
</p>

<div class="code targetlang">
<pre>$ <b>irb</b>
irb(main):001:0&gt; <b>require 'example'</b>
=&gt; true

irb(main):002:0&gt; <b>tiger1 = Example::Animal.new("tiger1")</b>
=&gt; #&lt;Example::Animal:0x2be37d8&gt;

irb(main):003:0&gt; <b>zoo = Example::Zoo.new()</b>
=&gt; #&lt;Example::Zoo:0x2be0a18&gt;

irb(main):004:0&gt; <b>zoo.add_animal(tiger1)</b>
=&gt; nil

irb(main):006:0&gt; <b>tiger2 = zoo.remove_animal(0)</b>
=&gt; #&lt;Example::Animal:0x2be37d8&gt;

irb(main):007:0&gt; <b>tiger1.equal?(tiger2)</b>
=&gt; true

irb(main):008:0&gt; <b>tiger1 = nil</b>
=&gt; nil

irb(main):009:0&gt; <b>GC.start</b>
=&gt; nil

irb(main):010:0&gt; <b>tiger.get_name()</b>
=&gt; "tiger1"
irb(main):011:0&gt;</pre>
</div>

<p>For those who are interested, object tracking is implemented
by storing Ruby objects in a hash table and keying them on C++
pointers. The underlying API is:

</p>

<div class="code">
<pre>static void SWIG_RubyAddTracking(void* ptr, VALUE object);
static VALUE SWIG_RubyInstanceFor(void* ptr) ;
static void SWIG_RubyRemoveTracking(void* ptr);
static void SWIG_RubyUnlinkObjects(void* ptr);</pre>
</div>

<p>When an object is created, SWIG will automatically call the <tt>SWIG_RubyAddTracking</tt>
method. Similarly, when an object is deleted, SWIG will call the <tt>SWIG_RubyRemoveTracking</tt>.
When an object is returned to Ruby from C++, SWIG will use the <tt>SWIG_RubyInstanceFor</tt>
method to ensure a one-to-one mapping from Ruby to C++ objects. Last,
the <tt>RubyUnlinkObjects</tt> method unlinks a Ruby
object from its underlying C++ object.</p>

<p>In general, you will only need to use the <tt>SWIG_RubyInstanceFor</tt>,
which is required for implementing mark functions as shown below.
However, if you implement your own free functions (see below) you may
also have to call the<tt> SWIG_RubyRemoveTracking</tt> and <tt>RubyUnlinkObjects</tt>
methods.</p>

<H3><a name="Ruby_nn61"></a>36.10.4 Mark Functions</H3>


<p>With a bit more testing, we see that our class library still
has problems. For example:

</p>

<div class="targetlang">
<pre>$ <b>irb</b>
irb(main):001:0&gt; <b>require 'example'</b>
=&gt; true

irb(main):002:0&gt; tiger1 = <b>Example::Animal.new("tiger1")</b>
=&gt; #&lt;Example::Animal:0x2bea6a8&gt;

irb(main):003:0&gt; zoo = <b>Example::Zoo.new()</b>
=&gt; #&lt;Example::Zoo:0x2be7960&gt;

irb(main):004:0&gt; <b>zoo.add_animal(tiger1)</b>
=&gt; nil

irb(main):007:0&gt; <b>tiger1 = nil</b>
=&gt; nil

irb(main):007:0&gt; <b>GC.start</b>
=&gt; nil

irb(main):005:0&gt; <b>tiger2 = zoo.get_animal(0)</b>
(irb):12: [BUG] Segmentation fault</pre>
</div>

<p>The problem is that Ruby does not know that the <tt>zoo</tt>
object contains a reference to a Ruby object. Thus, when Ruby garbage
collects <tt>tiger1</tt>
it frees the underlying C++ object.</p>

<p>This can be fixed by implementing a <tt>mark</tt>
function as described above in the <a href="Ruby.html#Ruby_nn52">Mark
and Sweep Garbage Collector</a> section. You can specify a mark
function by using the <tt>%markfunc</tt> directive. Since
the <tt>%markfunc</tt> directive is implemented using
SWIG's' "features" mechanism it uses the same name matching rules as
other kinds of features (see the chapter on <a href="Customization.html#Customization">"Customization
Features"</a> for more details). </p>

<p>A <tt>mark</tt> function takes a single argument,
which is a pointer to the C++ object being marked; it should, in turn,
call <tt>rb_gc_mark()</tt> for any instances that are
reachable from the current object. The mark function for our <tt>
Zoo</tt> class should therefore loop over all of the C++ animal
objects in the zoo object, look up their Ruby object equivalent, and
then call <tt>rb_gc_mark()</tt>. One possible
implementation is:</p>

<div class="code">
<pre>%module example

%{
#include "example.h"
%}

/* Keep track of mappings between C/C++ structs/classes
 and Ruby objects so we can implement a mark function. */
<b>%trackobjects;</b>

/* Specify the mark function */
<b>%markfunc Zoo "mark_Zoo";</b>

%include "example.h"

%header %{

static void mark_Zoo(void* ptr) {
  Zoo* zoo = (Zoo*) ptr;
 
  /* Loop over each object and tell the garbage collector
  that we are holding a reference to them. */
  int count = zoo-&gt;get_num_animals();
 
  for(int i = 0; i &lt; count; ++i) {
    Animal* animal = zoo-&gt;get_animal(i);
    VALUE object = SWIG_RubyInstanceFor(animal);
 
    if (object != Qnil) {
      rb_gc_mark(object);
    }
  }
}
%}</pre>
</div>

<p> Note the <tt>mark</tt> function is dependent on
the <tt>SWIG_RUBY_InstanceFor</tt> method, and thus
requires that <tt>%trackobjects</tt> is enabled. For more
information, please refer to the track_object.i test case in the SWIG
test suite.</p>

<p>When this code is compiled we now see:</p>

<div class="targetlang">
<pre>$ <b>irb
</b>irb(main):002:0&gt; <b>tiger1=Example::Animal.new("tiger1")</b>
=&gt; #&lt;Example::Animal:0x2be3bf8&gt;

irb(main):003:0&gt; <b>Example::Zoo.new()</b>
=&gt; #&lt;Example::Zoo:0x2be1780&gt;

irb(main):004:0&gt; <b>zoo = Example::Zoo.new()</b>
=&gt; #&lt;Example::Zoo:0x2bde9c0&gt;

irb(main):005:0&gt; <b>zoo.add_animal(tiger1)</b>
=&gt; nil

irb(main):009:0&gt; <b>tiger1 = nil</b>
=&gt; nil

irb(main):010:0&gt; <b>GC.start</b>
=&gt; nil
irb(main):014:0&gt; <b>tiger2 = zoo.get_animal(0)</b>
=&gt; #&lt;Example::Animal:0x2be3bf8&gt;

irb(main):015:0&gt; <b>tiger2.get_name()</b>
=&gt; "tiger1"
irb(main):016:0&gt;</pre>
</div>

<p>This code can be seen in swig/examples/ruby/mark_function.</p>

<H3><a name="Ruby_nn62"></a>36.10.5 Free Functions</H3>


<p>By default, SWIG creates a "free" function that is called when
a Ruby object is garbage collected. The free function simply calls the
C++ object's destructor.</p>

<p>However, sometimes an appropriate destructor does not exist or
special processing needs to be performed before the destructor is
called. Therefore, SWIG allows you to manually specify a "free"
function via the use of the <tt>%freefunc</tt> directive.
The <tt>%freefunc</tt> directive is implemented using
SWIG's' "features" mechanism and so the same name matching rules used
for other kinds of features apply (see the chapter on <a href="Customization.html#Customization">"Customization
Features"</a>) for more details).</p>

<p>IMPORTANT ! - If you define your own free function, then you
must ensure that you call the underlying C++ object's destructor. In
addition, if object tracking is activated for the object's class, you
must also call the <tt>SWIG_RubyRemoveTracking</tt>
function (of course call this before you destroy the C++ object). Note
that it is harmless to call this method if object tracking if off so it
is advised to always call it.</p>

<p>Note there is a subtle interaction between object ownership
and free functions. A custom defined free function will only be called
if the Ruby object owns the underlying C++ object. This also to Ruby
objects which are created, but then transfer ownership to C++ objects
via the use of the <tt>disown</tt> typemap described
above. </p>

<p>To show how to use the <tt>%freefunc</tt>
directive, let's slightly change our example. Assume that the zoo
object is responsible for freeing animal that it contains. This means
that the <tt>Zoo::add_animal</tt>
function should be marked with a <tt>DISOWN</tt> typemap
and the destructor should be updated as below:</p>

<div class="code">
<pre>Zoo::~Zoo() {
 IterType iter = this-&gt;animals.begin();
 IterType end = this-&gt;animals.end();

 for(iter; iter != end; ++iter) {
 Animal* animal = *iter;
 delete animal;
 }
}</pre>
</div>

<p>When we use these objects in IRB we see:</p>

<div class="code targetlang">
<pre class="targetlang"><b>$irb</b>
irb(main):002:0&gt; <b>require 'example'</b>
=&gt; true

irb(main):003:0&gt; <b>zoo = Example::Zoo.new()</b>
=&gt; #&lt;Example::Zoo:0x2be0fe8&gt;

irb(main):005:0&gt; <b>tiger1 = Example::Animal.new("tiger1")</b>
=&gt; #&lt;Example::Animal:0x2bda760&gt;

irb(main):006:0&gt; <b>zoo.add_animal(tiger1)</b>
=&gt; nil

irb(main):007:0&gt; <b>zoo = nil</b>
=&gt; nil

irb(main):008:0&gt; <b>GC.start</b>
=&gt; nil

irb(main):009:0&gt; <b>tiger1.get_name()</b>
(irb):12: [BUG] Segmentation fault
</pre>
</div>

<p>The error happens because the C++ <tt>animal</tt>
object is freed when the <tt>zoo</tt> object is freed.
Although this error is unavoidable, we can at least prevent the
segmentation fault. To do this requires enabling object tracking and
implementing a custom free function that calls the <tt>SWIG_RubyUnlinkObjects</tt>
function for each animal object that is destroyed. The <tt>SWIG_RubyUnlinkObjects</tt>
function notifies SWIG that a Ruby object's underlying C++ object is no
longer valid. Once notified, SWIG will intercept any calls from the
existing Ruby object to the destroyed C++ object and raise an exception.
</p>

<div class="code">
<pre>%module example

%{
#include "example.h"
%}

/* Specify that ownership is transferred to the zoo
	when calling add_animal */
%apply SWIGTYPE *DISOWN { Animal* animal };

/* Track objects */
%trackobjects;

/* Specify the mark function */
%freefunc Zoo "free_Zoo";

%include "example.h"

%header %{
  static void free_Zoo(void* ptr) {
    Zoo* zoo = (Zoo*) ptr;

    /* Loop over each animal */
    int count = zoo-&gt;get_num_animals();

    for(int i = 0; i &lt; count; ++i) {
      /* Get an animal */
      Animal* animal = zoo-&gt;get_animal(i);

      /* Unlink the Ruby object from the C++ object */
      SWIG_RubyUnlinkObjects(animal);

      /* Now remove the tracking for this animal */
      SWIG_RubyRemoveTracking(animal);
    }

    /* Now call SWIG_RubyRemoveTracking for the zoo */
    SWIG_RubyRemoveTracking(ptr);
    /* Now free the zoo which will free the animals it contains */
    delete zoo;
  }
%} </pre>
</div>

<p>Now when we use these objects in IRB we see:</p>

<div class="code targetlang">
<pre><b>$irb</b>
irb(main):002:0&gt; <b>require 'example'</b>
=&gt; true

irb(main):003:0&gt; <b>zoo = Example::Zoo.new()</b>
=&gt; #&lt;Example::Zoo:0x2be0fe8&gt;

irb(main):005:0&gt; <b>tiger1 = Example::Animal.new("tiger1")</b>
=&gt; #&lt;Example::Animal:0x2bda760&gt;

irb(main):006:0&gt; <b>zoo.add_animal(tiger1)</b>
=&gt; nil

irb(main):007:0&gt; <b>zoo = nil</b>
=&gt; nil

irb(main):008:0&gt; <b>GC.start</b>
=&gt; nil

irb(main):009:0&gt; <b>tiger1.get_name()</b>
RuntimeError: This Animal * already released
 from (irb):10:in `get_name'
 from (irb):10
irb(main):011:0&gt;</pre>
</div>

<p>Notice that SWIG can now detect the underlying C++ object has
been freed, and thus raises a runtime exception.</p>

<p>This code can be seen in swig/examples/ruby/free_function.</p>

<H3><a name="Ruby_nn63"></a>36.10.6 Embedded Ruby and the C++ Stack</H3>


<p>As has been said, the Ruby GC runs and marks objects before
its
sweep phase. When the garbage collector is called, it will
also
try to mark any Ruby objects (VALUE) it finds in the machine registers
and in the C++ stack.</p>

<p>The stack is basically the history of the functions that have
been
called and also contains local variables, such as the ones you define
whenever you do inside a function:</p>

<div class="diagram">VALUE obj; </div>

<p>For ruby to determine where its stack space begins, during
initialization a normal Ruby interpreter will call the ruby_init()
function which in turn will call a function called Init_stack or
similar. This function will store a pointer to the location
where
the stack points at that point in time.</p>

<p>ruby_init() is presumed to always be called within the main()
function of your program and whenever the GC is called, ruby will
assume that the memory between the current location in memory and the
pointer that was stored previously represents the stack, which may
contain local (and temporary) VALUE ruby objects.  Ruby will
then be careful not to remove any of those objects in that location.</p>

<p>So far so good. For a normal Ruby session, all the
above is
completely transparent and magic to the extensions developer.
</p>

<p>However, with an embedded Ruby, it may not always be possible
to
modify main() to make sure ruby_init() is called there.  As
such,
ruby_init() will likely end up being called from within some other
function. This can lead Ruby to measure incorrectly where the
stack begins and can result in Ruby incorrectly collecting
those
temporary VALUE objects that are created once another function
is
called. The end result: random crashes and segmentation
faults.</p>

<p>This problem will often be seen in director functions that are
used for callbacks, for example. </p>

<p>To solve the problem, SWIG can now generate code with director
functions containing the optional macros SWIG_INIT_STACK and
SWIG_RELEASE_STACK. These macros will try to force Ruby to
reinitiliaze the beginning of the stack the first time a
director
function is called. This will lead Ruby to measure and not
collect any VALUE objects defined from that point on. </p>

<p>To mark functions to either reset the ruby stack or not, you
can use:</p>

<div class="code"><pre>
%initstack Class::memberfunction;   // only re-init the stack in this director method
%ignorestack Class::memberfunction; // do not re-init the stack in this director method
%initstack Class;                   // init the stack on all the methods of this class
%initstack;                         // all director functions will re-init the stack
</pre></div>

</body>
</html>