summaryrefslogtreecommitdiff
path: root/snappy_unittest.cc
blob: e57b13d0e8694668c33c9f5f3d2c835390e75db3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
// Copyright 2005 and onwards Google Inc.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
#include <utility>
#include <vector>

#include "snappy-test.h"

#include "gtest/gtest.h"

#include "snappy-internal.h"
#include "snappy-sinksource.h"
#include "snappy.h"
#include "snappy_test_data.h"

SNAPPY_FLAG(bool, snappy_dump_decompression_table, false,
            "If true, we print the decompression table during tests.");

namespace snappy {

namespace {

#if HAVE_FUNC_MMAP && HAVE_FUNC_SYSCONF

// To test against code that reads beyond its input, this class copies a
// string to a newly allocated group of pages, the last of which
// is made unreadable via mprotect. Note that we need to allocate the
// memory with mmap(), as POSIX allows mprotect() only on memory allocated
// with mmap(), and some malloc/posix_memalign implementations expect to
// be able to read previously allocated memory while doing heap allocations.
class DataEndingAtUnreadablePage {
 public:
  explicit DataEndingAtUnreadablePage(const std::string& s) {
    const size_t page_size = sysconf(_SC_PAGESIZE);
    const size_t size = s.size();
    // Round up space for string to a multiple of page_size.
    size_t space_for_string = (size + page_size - 1) & ~(page_size - 1);
    alloc_size_ = space_for_string + page_size;
    mem_ = mmap(NULL, alloc_size_,
                PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    CHECK_NE(MAP_FAILED, mem_);
    protected_page_ = reinterpret_cast<char*>(mem_) + space_for_string;
    char* dst = protected_page_ - size;
    std::memcpy(dst, s.data(), size);
    data_ = dst;
    size_ = size;
    // Make guard page unreadable.
    CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_NONE));
  }

  ~DataEndingAtUnreadablePage() {
    const size_t page_size = sysconf(_SC_PAGESIZE);
    // Undo the mprotect.
    CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_READ|PROT_WRITE));
    CHECK_EQ(0, munmap(mem_, alloc_size_));
  }

  const char* data() const { return data_; }
  size_t size() const { return size_; }

 private:
  size_t alloc_size_;
  void* mem_;
  char* protected_page_;
  const char* data_;
  size_t size_;
};

#else  // HAVE_FUNC_MMAP) && HAVE_FUNC_SYSCONF

// Fallback for systems without mmap.
using DataEndingAtUnreadablePage = std::string;

#endif

int VerifyString(const std::string& input) {
  std::string compressed;
  DataEndingAtUnreadablePage i(input);
  const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
  CHECK_EQ(written, compressed.size());
  CHECK_LE(compressed.size(),
           snappy::MaxCompressedLength(input.size()));
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));

  std::string uncompressed;
  DataEndingAtUnreadablePage c(compressed);
  CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
  CHECK_EQ(uncompressed, input);
  return uncompressed.size();
}

void VerifyStringSink(const std::string& input) {
  std::string compressed;
  DataEndingAtUnreadablePage i(input);
  const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
  CHECK_EQ(written, compressed.size());
  CHECK_LE(compressed.size(),
           snappy::MaxCompressedLength(input.size()));
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));

  std::string uncompressed;
  uncompressed.resize(input.size());
  snappy::UncheckedByteArraySink sink(string_as_array(&uncompressed));
  DataEndingAtUnreadablePage c(compressed);
  snappy::ByteArraySource source(c.data(), c.size());
  CHECK(snappy::Uncompress(&source, &sink));
  CHECK_EQ(uncompressed, input);
}

struct iovec* GetIOVec(const std::string& input, char*& buf, size_t& num) {
  std::minstd_rand0 rng(input.size());
  std::uniform_int_distribution<size_t> uniform_1_to_10(1, 10);
  num = uniform_1_to_10(rng);
  if (input.size() < num) {
    num = input.size();
  }
  struct iovec* iov = new iovec[num];
  size_t used_so_far = 0;
  std::bernoulli_distribution one_in_five(1.0 / 5);
  for (size_t i = 0; i < num; ++i) {
    assert(used_so_far < input.size());
    iov[i].iov_base = buf + used_so_far;
    if (i == num - 1) {
      iov[i].iov_len = input.size() - used_so_far;
    } else {
      // Randomly choose to insert a 0 byte entry.
      if (one_in_five(rng)) {
        iov[i].iov_len = 0;
      } else {
        std::uniform_int_distribution<size_t> uniform_not_used_so_far(
            0, input.size() - used_so_far - 1);
        iov[i].iov_len = uniform_not_used_so_far(rng);
      }
    }
    used_so_far += iov[i].iov_len;
  }
  return iov;
}

int VerifyIOVecSource(const std::string& input) {
  std::string compressed;
  std::string copy = input;
  char* buf = const_cast<char*>(copy.data());
  size_t num = 0;
  struct iovec* iov = GetIOVec(input, buf, num);
  const size_t written = snappy::CompressFromIOVec(iov, num, &compressed);
  CHECK_EQ(written, compressed.size());
  CHECK_LE(compressed.size(), snappy::MaxCompressedLength(input.size()));
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));

  std::string uncompressed;
  DataEndingAtUnreadablePage c(compressed);
  CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
  CHECK_EQ(uncompressed, input);
  delete[] iov;
  return uncompressed.size();
}

void VerifyIOVecSink(const std::string& input) {
  std::string compressed;
  DataEndingAtUnreadablePage i(input);
  const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
  CHECK_EQ(written, compressed.size());
  CHECK_LE(compressed.size(), snappy::MaxCompressedLength(input.size()));
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  char* buf = new char[input.size()];
  size_t num = 0;
  struct iovec* iov = GetIOVec(input, buf, num);
  CHECK(snappy::RawUncompressToIOVec(compressed.data(), compressed.size(), iov,
                                     num));
  CHECK(!memcmp(buf, input.data(), input.size()));
  delete[] iov;
  delete[] buf;
}

// Test that data compressed by a compressor that does not
// obey block sizes is uncompressed properly.
void VerifyNonBlockedCompression(const std::string& input) {
  if (input.length() > snappy::kBlockSize) {
    // We cannot test larger blocks than the maximum block size, obviously.
    return;
  }

  std::string prefix;
  Varint::Append32(&prefix, input.size());

  // Setup compression table
  snappy::internal::WorkingMemory wmem(input.size());
  int table_size;
  uint16_t* table = wmem.GetHashTable(input.size(), &table_size);

  // Compress entire input in one shot
  std::string compressed;
  compressed += prefix;
  compressed.resize(prefix.size()+snappy::MaxCompressedLength(input.size()));
  char* dest = string_as_array(&compressed) + prefix.size();
  char* end = snappy::internal::CompressFragment(input.data(), input.size(),
                                                dest, table, table_size);
  compressed.resize(end - compressed.data());

  // Uncompress into std::string
  std::string uncomp_str;
  CHECK(snappy::Uncompress(compressed.data(), compressed.size(), &uncomp_str));
  CHECK_EQ(uncomp_str, input);

  // Uncompress using source/sink
  std::string uncomp_str2;
  uncomp_str2.resize(input.size());
  snappy::UncheckedByteArraySink sink(string_as_array(&uncomp_str2));
  snappy::ByteArraySource source(compressed.data(), compressed.size());
  CHECK(snappy::Uncompress(&source, &sink));
  CHECK_EQ(uncomp_str2, input);

  // Uncompress into iovec
  {
    static const int kNumBlocks = 10;
    struct iovec vec[kNumBlocks];
    const int block_size = 1 + input.size() / kNumBlocks;
    std::string iovec_data(block_size * kNumBlocks, 'x');
    for (int i = 0; i < kNumBlocks; ++i) {
      vec[i].iov_base = string_as_array(&iovec_data) + i * block_size;
      vec[i].iov_len = block_size;
    }
    CHECK(snappy::RawUncompressToIOVec(compressed.data(), compressed.size(),
                                       vec, kNumBlocks));
    CHECK_EQ(std::string(iovec_data.data(), input.size()), input);
  }
}

// Expand the input so that it is at least K times as big as block size
std::string Expand(const std::string& input) {
  static const int K = 3;
  std::string data = input;
  while (data.size() < K * snappy::kBlockSize) {
    data += input;
  }
  return data;
}

int Verify(const std::string& input) {
  VLOG(1) << "Verifying input of size " << input.size();

  // Compress using string based routines
  const int result = VerifyString(input);

  // Compress using `iovec`-based routines.
  CHECK_EQ(VerifyIOVecSource(input), result);

  // Verify using sink based routines
  VerifyStringSink(input);

  VerifyNonBlockedCompression(input);
  VerifyIOVecSink(input);
  if (!input.empty()) {
    const std::string expanded = Expand(input);
    VerifyNonBlockedCompression(expanded);
    VerifyIOVecSink(input);
  }

  return result;
}

bool IsValidCompressedBuffer(const std::string& c) {
  return snappy::IsValidCompressedBuffer(c.data(), c.size());
}
bool Uncompress(const std::string& c, std::string* u) {
  return snappy::Uncompress(c.data(), c.size(), u);
}

// This test checks to ensure that snappy doesn't coredump if it gets
// corrupted data.
TEST(CorruptedTest, VerifyCorrupted) {
  std::string source = "making sure we don't crash with corrupted input";
  VLOG(1) << source;
  std::string dest;
  std::string uncmp;
  snappy::Compress(source.data(), source.size(), &dest);

  // Mess around with the data. It's hard to simulate all possible
  // corruptions; this is just one example ...
  CHECK_GT(dest.size(), 3);
  dest[1]--;
  dest[3]++;
  // this really ought to fail.
  CHECK(!IsValidCompressedBuffer(dest));
  CHECK(!Uncompress(dest, &uncmp));

  // This is testing for a security bug - a buffer that decompresses to 100k
  // but we lie in the snappy header and only reserve 0 bytes of memory :)
  source.resize(100000);
  for (char& source_char : source) {
    source_char = 'A';
  }
  snappy::Compress(source.data(), source.size(), &dest);
  dest[0] = dest[1] = dest[2] = dest[3] = 0;
  CHECK(!IsValidCompressedBuffer(dest));
  CHECK(!Uncompress(dest, &uncmp));

  if (sizeof(void *) == 4) {
    // Another security check; check a crazy big length can't DoS us with an
    // over-allocation.
    // Currently this is done only for 32-bit builds.  On 64-bit builds,
    // where 3 GB might be an acceptable allocation size, Uncompress()
    // attempts to decompress, and sometimes causes the test to run out of
    // memory.
    dest[0] = dest[1] = dest[2] = dest[3] = '\xff';
    // This decodes to a really large size, i.e., about 3 GB.
    dest[4] = 'k';
    CHECK(!IsValidCompressedBuffer(dest));
    CHECK(!Uncompress(dest, &uncmp));
  } else {
    LOG(WARNING) << "Crazy decompression lengths not checked on 64-bit build";
  }

  // This decodes to about 2 MB; much smaller, but should still fail.
  dest[0] = dest[1] = dest[2] = '\xff';
  dest[3] = 0x00;
  CHECK(!IsValidCompressedBuffer(dest));
  CHECK(!Uncompress(dest, &uncmp));

  // try reading stuff in from a bad file.
  for (int i = 1; i <= 3; ++i) {
    std::string data =
        ReadTestDataFile(StrFormat("baddata%d.snappy", i).c_str(), 0);
    std::string uncmp;
    // check that we don't return a crazy length
    size_t ulen;
    CHECK(!snappy::GetUncompressedLength(data.data(), data.size(), &ulen)
          || (ulen < (1<<20)));
    uint32_t ulen2;
    snappy::ByteArraySource source(data.data(), data.size());
    CHECK(!snappy::GetUncompressedLength(&source, &ulen2) ||
          (ulen2 < (1<<20)));
    CHECK(!IsValidCompressedBuffer(data));
    CHECK(!Uncompress(data, &uncmp));
  }
}

// Helper routines to construct arbitrary compressed strings.
// These mirror the compression code in snappy.cc, but are copied
// here so that we can bypass some limitations in the how snappy.cc
// invokes these routines.
void AppendLiteral(std::string* dst, const std::string& literal) {
  if (literal.empty()) return;
  int n = literal.size() - 1;
  if (n < 60) {
    // Fit length in tag byte
    dst->push_back(0 | (n << 2));
  } else {
    // Encode in upcoming bytes
    char number[4];
    int count = 0;
    while (n > 0) {
      number[count++] = n & 0xff;
      n >>= 8;
    }
    dst->push_back(0 | ((59+count) << 2));
    *dst += std::string(number, count);
  }
  *dst += literal;
}

void AppendCopy(std::string* dst, int offset, int length) {
  while (length > 0) {
    // Figure out how much to copy in one shot
    int to_copy;
    if (length >= 68) {
      to_copy = 64;
    } else if (length > 64) {
      to_copy = 60;
    } else {
      to_copy = length;
    }
    length -= to_copy;

    if ((to_copy >= 4) && (to_copy < 12) && (offset < 2048)) {
      assert(to_copy-4 < 8);            // Must fit in 3 bits
      dst->push_back(1 | ((to_copy-4) << 2) | ((offset >> 8) << 5));
      dst->push_back(offset & 0xff);
    } else if (offset < 65536) {
      dst->push_back(2 | ((to_copy-1) << 2));
      dst->push_back(offset & 0xff);
      dst->push_back(offset >> 8);
    } else {
      dst->push_back(3 | ((to_copy-1) << 2));
      dst->push_back(offset & 0xff);
      dst->push_back((offset >> 8) & 0xff);
      dst->push_back((offset >> 16) & 0xff);
      dst->push_back((offset >> 24) & 0xff);
    }
  }
}

TEST(Snappy, SimpleTests) {
  Verify("");
  Verify("a");
  Verify("ab");
  Verify("abc");

  Verify("aaaaaaa" + std::string(16, 'b') + std::string("aaaaa") + "abc");
  Verify("aaaaaaa" + std::string(256, 'b') + std::string("aaaaa") + "abc");
  Verify("aaaaaaa" + std::string(2047, 'b') + std::string("aaaaa") + "abc");
  Verify("aaaaaaa" + std::string(65536, 'b') + std::string("aaaaa") + "abc");
  Verify("abcaaaaaaa" + std::string(65536, 'b') + std::string("aaaaa") + "abc");
}

// Regression test for cr/345340892.
TEST(Snappy, AppendSelfPatternExtensionEdgeCases) {
  Verify("abcabcabcabcabcabcab");
  Verify("abcabcabcabcabcabcab0123456789ABCDEF");

  Verify("abcabcabcabcabcabcabcabcabcabcabcabc");
  Verify("abcabcabcabcabcabcabcabcabcabcabcabc0123456789ABCDEF");
}

// Regression test for cr/345340892.
TEST(Snappy, AppendSelfPatternExtensionEdgeCasesExhaustive) {
  std::mt19937 rng;
  std::uniform_int_distribution<int> uniform_byte(0, 255);
  for (int pattern_size = 1; pattern_size <= 18; ++pattern_size) {
    for (int length = 1; length <= 64; ++length) {
      for (int extra_bytes_after_pattern : {0, 1, 15, 16, 128}) {
        const int size = pattern_size + length + extra_bytes_after_pattern;
        std::string input;
        input.resize(size);
        for (int i = 0; i < pattern_size; ++i) {
          input[i] = 'a' + i;
        }
        for (int i = 0; i < length; ++i) {
          input[pattern_size + i] = input[i];
        }
        for (int i = 0; i < extra_bytes_after_pattern; ++i) {
          input[pattern_size + length + i] =
              static_cast<char>(uniform_byte(rng));
        }
        Verify(input);
      }
    }
  }
}

// Verify max blowup (lots of four-byte copies)
TEST(Snappy, MaxBlowup) {
  std::mt19937 rng;
  std::uniform_int_distribution<int> uniform_byte(0, 255);
  std::string input;
  for (int i = 0; i < 80000; ++i)
    input.push_back(static_cast<char>(uniform_byte(rng)));

  for (int i = 0; i < 80000; i += 4) {
    std::string four_bytes(input.end() - i - 4, input.end() - i);
    input.append(four_bytes);
  }
  Verify(input);
}

TEST(Snappy, RandomData) {
  std::minstd_rand0 rng(snappy::GetFlag(FLAGS_test_random_seed));
  std::uniform_int_distribution<int> uniform_0_to_3(0, 3);
  std::uniform_int_distribution<int> uniform_0_to_8(0, 8);
  std::uniform_int_distribution<int> uniform_byte(0, 255);
  std::uniform_int_distribution<size_t> uniform_4k(0, 4095);
  std::uniform_int_distribution<size_t> uniform_64k(0, 65535);
  std::bernoulli_distribution one_in_ten(1.0 / 10);

  constexpr int num_ops = 20000;
  for (int i = 0; i < num_ops; ++i) {
    if ((i % 1000) == 0) {
      VLOG(0) << "Random op " << i << " of " << num_ops;
    }

    std::string x;
    size_t len = uniform_4k(rng);
    if (i < 100) {
      len = 65536 + uniform_64k(rng);
    }
    while (x.size() < len) {
      int run_len = 1;
      if (one_in_ten(rng)) {
        int skewed_bits = uniform_0_to_8(rng);
        // int is guaranteed to hold at least 16 bits, this uses at most 8 bits.
        std::uniform_int_distribution<int> skewed_low(0,
                                                      (1 << skewed_bits) - 1);
        run_len = skewed_low(rng);
      }
      char c = static_cast<char>(uniform_byte(rng));
      if (i >= 100) {
        int skewed_bits = uniform_0_to_3(rng);
        // int is guaranteed to hold at least 16 bits, this uses at most 3 bits.
        std::uniform_int_distribution<int> skewed_low(0,
                                                      (1 << skewed_bits) - 1);
        c = static_cast<char>(skewed_low(rng));
      }
      while (run_len-- > 0 && x.size() < len) {
        x.push_back(c);
      }
    }

    Verify(x);
  }
}

TEST(Snappy, FourByteOffset) {
  // The new compressor cannot generate four-byte offsets since
  // it chops up the input into 32KB pieces.  So we hand-emit the
  // copy manually.

  // The two fragments that make up the input string.
  std::string fragment1 = "012345689abcdefghijklmnopqrstuvwxyz";
  std::string fragment2 = "some other string";

  // How many times each fragment is emitted.
  const int n1 = 2;
  const int n2 = 100000 / fragment2.size();
  const size_t length = n1 * fragment1.size() + n2 * fragment2.size();

  std::string compressed;
  Varint::Append32(&compressed, length);

  AppendLiteral(&compressed, fragment1);
  std::string src = fragment1;
  for (int i = 0; i < n2; ++i) {
    AppendLiteral(&compressed, fragment2);
    src += fragment2;
  }
  AppendCopy(&compressed, src.size(), fragment1.size());
  src += fragment1;
  CHECK_EQ(length, src.size());

  std::string uncompressed;
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  CHECK(snappy::Uncompress(compressed.data(), compressed.size(),
                           &uncompressed));
  CHECK_EQ(uncompressed, src);
}

TEST(Snappy, IOVecSourceEdgeCases) {
  // Validate that empty leading, trailing, and in-between iovecs are handled:
  // [] [] ['a'] [] ['b'] [].
  std::string data = "ab";
  char* buf = const_cast<char*>(data.data());
  size_t used_so_far = 0;
  static const int kLengths[] = {0, 0, 1, 0, 1, 0};
  struct iovec iov[ARRAYSIZE(kLengths)];
  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    iov[i].iov_base = buf + used_so_far;
    iov[i].iov_len = kLengths[i];
    used_so_far += kLengths[i];
  }
  std::string compressed;
  snappy::CompressFromIOVec(iov, ARRAYSIZE(kLengths), &compressed);
  std::string uncompressed;
  snappy::Uncompress(compressed.data(), compressed.size(), &uncompressed);
  CHECK_EQ(data, uncompressed);
}

TEST(Snappy, IOVecSinkEdgeCases) {
  // Test some tricky edge cases in the iovec output that are not necessarily
  // exercised by random tests.

  // Our output blocks look like this initially (the last iovec is bigger
  // than depicted):
  // [  ] [ ] [    ] [        ] [        ]
  static const int kLengths[] = { 2, 1, 4, 8, 128 };

  struct iovec iov[ARRAYSIZE(kLengths)];
  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    iov[i].iov_base = new char[kLengths[i]];
    iov[i].iov_len = kLengths[i];
  }

  std::string compressed;
  Varint::Append32(&compressed, 22);

  // A literal whose output crosses three blocks.
  // [ab] [c] [123 ] [        ] [        ]
  AppendLiteral(&compressed, "abc123");

  // A copy whose output crosses two blocks (source and destination
  // segments marked).
  // [ab] [c] [1231] [23      ] [        ]
  //           ^--^   --
  AppendCopy(&compressed, 3, 3);

  // A copy where the input is, at first, in the block before the output:
  //
  // [ab] [c] [1231] [231231  ] [        ]
  //           ^---     ^---
  // Then during the copy, the pointers move such that the input and
  // output pointers are in the same block:
  //
  // [ab] [c] [1231] [23123123] [        ]
  //                  ^-    ^-
  // And then they move again, so that the output pointer is no longer
  // in the same block as the input pointer:
  // [ab] [c] [1231] [23123123] [123     ]
  //                    ^--      ^--
  AppendCopy(&compressed, 6, 9);

  // Finally, a copy where the input is from several blocks back,
  // and it also crosses three blocks:
  //
  // [ab] [c] [1231] [23123123] [123b    ]
  //   ^                            ^
  // [ab] [c] [1231] [23123123] [123bc   ]
  //       ^                         ^
  // [ab] [c] [1231] [23123123] [123bc12 ]
  //           ^-                     ^-
  AppendCopy(&compressed, 17, 4);

  CHECK(snappy::RawUncompressToIOVec(
      compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));
  CHECK_EQ(0, memcmp(iov[0].iov_base, "ab", 2));
  CHECK_EQ(0, memcmp(iov[1].iov_base, "c", 1));
  CHECK_EQ(0, memcmp(iov[2].iov_base, "1231", 4));
  CHECK_EQ(0, memcmp(iov[3].iov_base, "23123123", 8));
  CHECK_EQ(0, memcmp(iov[4].iov_base, "123bc12", 7));

  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    delete[] reinterpret_cast<char *>(iov[i].iov_base);
  }
}

TEST(Snappy, IOVecLiteralOverflow) {
  static const int kLengths[] = { 3, 4 };

  struct iovec iov[ARRAYSIZE(kLengths)];
  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    iov[i].iov_base = new char[kLengths[i]];
    iov[i].iov_len = kLengths[i];
  }

  std::string compressed;
  Varint::Append32(&compressed, 8);

  AppendLiteral(&compressed, "12345678");

  CHECK(!snappy::RawUncompressToIOVec(
      compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));

  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    delete[] reinterpret_cast<char *>(iov[i].iov_base);
  }
}

TEST(Snappy, IOVecCopyOverflow) {
  static const int kLengths[] = { 3, 4 };

  struct iovec iov[ARRAYSIZE(kLengths)];
  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    iov[i].iov_base = new char[kLengths[i]];
    iov[i].iov_len = kLengths[i];
  }

  std::string compressed;
  Varint::Append32(&compressed, 8);

  AppendLiteral(&compressed, "123");
  AppendCopy(&compressed, 3, 5);

  CHECK(!snappy::RawUncompressToIOVec(
      compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));

  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    delete[] reinterpret_cast<char *>(iov[i].iov_base);
  }
}

bool CheckUncompressedLength(const std::string& compressed, size_t* ulength) {
  const bool result1 = snappy::GetUncompressedLength(compressed.data(),
                                                     compressed.size(),
                                                     ulength);

  snappy::ByteArraySource source(compressed.data(), compressed.size());
  uint32_t length;
  const bool result2 = snappy::GetUncompressedLength(&source, &length);
  CHECK_EQ(result1, result2);
  return result1;
}

TEST(SnappyCorruption, TruncatedVarint) {
  std::string compressed, uncompressed;
  size_t ulength;
  compressed.push_back('\xf0');
  CHECK(!CheckUncompressedLength(compressed, &ulength));
  CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
                            &uncompressed));
}

TEST(SnappyCorruption, UnterminatedVarint) {
  std::string compressed, uncompressed;
  size_t ulength;
  compressed.push_back('\x80');
  compressed.push_back('\x80');
  compressed.push_back('\x80');
  compressed.push_back('\x80');
  compressed.push_back('\x80');
  compressed.push_back(10);
  CHECK(!CheckUncompressedLength(compressed, &ulength));
  CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
                            &uncompressed));
}

TEST(SnappyCorruption, OverflowingVarint) {
  std::string compressed, uncompressed;
  size_t ulength;
  compressed.push_back('\xfb');
  compressed.push_back('\xff');
  compressed.push_back('\xff');
  compressed.push_back('\xff');
  compressed.push_back('\x7f');
  CHECK(!CheckUncompressedLength(compressed, &ulength));
  CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
                            &uncompressed));
}

TEST(Snappy, ReadPastEndOfBuffer) {
  // Check that we do not read past end of input

  // Make a compressed string that ends with a single-byte literal
  std::string compressed;
  Varint::Append32(&compressed, 1);
  AppendLiteral(&compressed, "x");

  std::string uncompressed;
  DataEndingAtUnreadablePage c(compressed);
  CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
  CHECK_EQ(uncompressed, std::string("x"));
}

// Check for an infinite loop caused by a copy with offset==0
TEST(Snappy, ZeroOffsetCopy) {
  const char* compressed = "\x40\x12\x00\x00";
  //  \x40              Length (must be > kMaxIncrementCopyOverflow)
  //  \x12\x00\x00      Copy with offset==0, length==5
  char uncompressed[100];
  EXPECT_FALSE(snappy::RawUncompress(compressed, 4, uncompressed));
}

TEST(Snappy, ZeroOffsetCopyValidation) {
  const char* compressed = "\x05\x12\x00\x00";
  //  \x05              Length
  //  \x12\x00\x00      Copy with offset==0, length==5
  EXPECT_FALSE(snappy::IsValidCompressedBuffer(compressed, 4));
}

int TestFindMatchLength(const char* s1, const char *s2, unsigned length) {
  uint64_t data;
  std::pair<size_t, bool> p =
      snappy::internal::FindMatchLength(s1, s2, s2 + length, &data);
  CHECK_EQ(p.first < 8, p.second);
  return p.first;
}

TEST(Snappy, FindMatchLength) {
  // Exercise all different code paths through the function.
  // 64-bit version:

  // Hit s1_limit in 64-bit loop, hit s1_limit in single-character loop.
  EXPECT_EQ(6, TestFindMatchLength("012345", "012345", 6));
  EXPECT_EQ(11, TestFindMatchLength("01234567abc", "01234567abc", 11));

  // Hit s1_limit in 64-bit loop, find a non-match in single-character loop.
  EXPECT_EQ(9, TestFindMatchLength("01234567abc", "01234567axc", 9));

  // Same, but edge cases.
  EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc!", 11));
  EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc?", 11));

  // Find non-match at once in first loop.
  EXPECT_EQ(0, TestFindMatchLength("01234567xxxxxxxx", "?1234567xxxxxxxx", 16));
  EXPECT_EQ(1, TestFindMatchLength("01234567xxxxxxxx", "0?234567xxxxxxxx", 16));
  EXPECT_EQ(4, TestFindMatchLength("01234567xxxxxxxx", "01237654xxxxxxxx", 16));
  EXPECT_EQ(7, TestFindMatchLength("01234567xxxxxxxx", "0123456?xxxxxxxx", 16));

  // Find non-match in first loop after one block.
  EXPECT_EQ(8, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
                                   "abcdefgh?1234567xxxxxxxx", 24));
  EXPECT_EQ(9, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
                                   "abcdefgh0?234567xxxxxxxx", 24));
  EXPECT_EQ(12, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
                                    "abcdefgh01237654xxxxxxxx", 24));
  EXPECT_EQ(15, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
                                    "abcdefgh0123456?xxxxxxxx", 24));

  // 32-bit version:

  // Short matches.
  EXPECT_EQ(0, TestFindMatchLength("01234567", "?1234567", 8));
  EXPECT_EQ(1, TestFindMatchLength("01234567", "0?234567", 8));
  EXPECT_EQ(2, TestFindMatchLength("01234567", "01?34567", 8));
  EXPECT_EQ(3, TestFindMatchLength("01234567", "012?4567", 8));
  EXPECT_EQ(4, TestFindMatchLength("01234567", "0123?567", 8));
  EXPECT_EQ(5, TestFindMatchLength("01234567", "01234?67", 8));
  EXPECT_EQ(6, TestFindMatchLength("01234567", "012345?7", 8));
  EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 8));
  EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 7));
  EXPECT_EQ(7, TestFindMatchLength("01234567!", "0123456??", 7));

  // Hit s1_limit in 32-bit loop, hit s1_limit in single-character loop.
  EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd", "xxxxxxabcd", 10));
  EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd?", "xxxxxxabcd?", 10));
  EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcdef", "xxxxxxabcdef", 13));

  // Same, but edge cases.
  EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc!", 12));
  EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc?", 12));

  // Hit s1_limit in 32-bit loop, find a non-match in single-character loop.
  EXPECT_EQ(11, TestFindMatchLength("xxxxxx0123abc", "xxxxxx0123axc", 13));

  // Find non-match at once in first loop.
  EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123xxxxxxxx",
                                   "xxxxxx?123xxxxxxxx", 18));
  EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123xxxxxxxx",
                                   "xxxxxx0?23xxxxxxxx", 18));
  EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123xxxxxxxx",
                                   "xxxxxx0132xxxxxxxx", 18));
  EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123xxxxxxxx",
                                   "xxxxxx012?xxxxxxxx", 18));

  // Same, but edge cases.
  EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123", "xxxxxx?123", 10));
  EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123", "xxxxxx0?23", 10));
  EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123", "xxxxxx0132", 10));
  EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123", "xxxxxx012?", 10));

  // Find non-match in first loop after one block.
  EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123xx",
                                    "xxxxxxabcd?123xx", 16));
  EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123xx",
                                    "xxxxxxabcd0?23xx", 16));
  EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123xx",
                                    "xxxxxxabcd0132xx", 16));
  EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123xx",
                                    "xxxxxxabcd012?xx", 16));

  // Same, but edge cases.
  EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd?123", 14));
  EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0?23", 14));
  EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0132", 14));
  EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd012?", 14));
}

TEST(Snappy, FindMatchLengthRandom) {
  constexpr int kNumTrials = 10000;
  constexpr int kTypicalLength = 10;
  std::minstd_rand0 rng(snappy::GetFlag(FLAGS_test_random_seed));
  std::uniform_int_distribution<int> uniform_byte(0, 255);
  std::bernoulli_distribution one_in_two(1.0 / 2);
  std::bernoulli_distribution one_in_typical_length(1.0 / kTypicalLength);

  for (int i = 0; i < kNumTrials; ++i) {
    std::string s, t;
    char a = static_cast<char>(uniform_byte(rng));
    char b = static_cast<char>(uniform_byte(rng));
    while (!one_in_typical_length(rng)) {
      s.push_back(one_in_two(rng) ? a : b);
      t.push_back(one_in_two(rng) ? a : b);
    }
    DataEndingAtUnreadablePage u(s);
    DataEndingAtUnreadablePage v(t);
    size_t matched = TestFindMatchLength(u.data(), v.data(), t.size());
    if (matched == t.size()) {
      EXPECT_EQ(s, t);
    } else {
      EXPECT_NE(s[matched], t[matched]);
      for (size_t j = 0; j < matched; ++j) {
        EXPECT_EQ(s[j], t[j]);
      }
    }
  }
}

uint16_t MakeEntry(unsigned int extra, unsigned int len,
                   unsigned int copy_offset) {
  // Check that all of the fields fit within the allocated space
  assert(extra       == (extra & 0x7));          // At most 3 bits
  assert(copy_offset == (copy_offset & 0x7));    // At most 3 bits
  assert(len         == (len & 0x7f));           // At most 7 bits
  return len | (copy_offset << 8) | (extra << 11);
}

// Check that the decompression table is correct, and optionally print out
// the computed one.
TEST(Snappy, VerifyCharTable) {
  using snappy::internal::LITERAL;
  using snappy::internal::COPY_1_BYTE_OFFSET;
  using snappy::internal::COPY_2_BYTE_OFFSET;
  using snappy::internal::COPY_4_BYTE_OFFSET;
  using snappy::internal::char_table;

  uint16_t dst[256];

  // Place invalid entries in all places to detect missing initialization
  int assigned = 0;
  for (int i = 0; i < 256; ++i) {
    dst[i] = 0xffff;
  }

  // Small LITERAL entries.  We store (len-1) in the top 6 bits.
  for (uint8_t len = 1; len <= 60; ++len) {
    dst[LITERAL | ((len - 1) << 2)] = MakeEntry(0, len, 0);
    assigned++;
  }

  // Large LITERAL entries.  We use 60..63 in the high 6 bits to
  // encode the number of bytes of length info that follow the opcode.
  for (uint8_t extra_bytes = 1; extra_bytes <= 4; ++extra_bytes) {
    // We set the length field in the lookup table to 1 because extra
    // bytes encode len-1.
    dst[LITERAL | ((extra_bytes + 59) << 2)] = MakeEntry(extra_bytes, 1, 0);
    assigned++;
  }

  // COPY_1_BYTE_OFFSET.
  //
  // The tag byte in the compressed data stores len-4 in 3 bits, and
  // offset/256 in 3 bits.  offset%256 is stored in the next byte.
  //
  // This format is used for length in range [4..11] and offset in
  // range [0..2047]
  for (uint8_t len = 4; len < 12; ++len) {
    for (uint16_t offset = 0; offset < 2048; offset += 256) {
      uint8_t offset_high = static_cast<uint8_t>(offset >> 8);
      dst[COPY_1_BYTE_OFFSET | ((len - 4) << 2) | (offset_high << 5)] =
          MakeEntry(1, len, offset_high);
      assigned++;
    }
  }

  // COPY_2_BYTE_OFFSET.
  // Tag contains len-1 in top 6 bits, and offset in next two bytes.
  for (uint8_t len = 1; len <= 64; ++len) {
    dst[COPY_2_BYTE_OFFSET | ((len - 1) << 2)] = MakeEntry(2, len, 0);
    assigned++;
  }

  // COPY_4_BYTE_OFFSET.
  // Tag contents len-1 in top 6 bits, and offset in next four bytes.
  for (uint8_t len = 1; len <= 64; ++len) {
    dst[COPY_4_BYTE_OFFSET | ((len - 1) << 2)] = MakeEntry(4, len, 0);
    assigned++;
  }

  // Check that each entry was initialized exactly once.
  EXPECT_EQ(256, assigned) << "Assigned only " << assigned << " of 256";
  for (int i = 0; i < 256; ++i) {
    EXPECT_NE(0xffff, dst[i]) << "Did not assign byte " << i;
  }

  if (snappy::GetFlag(FLAGS_snappy_dump_decompression_table)) {
    std::printf("static const uint16_t char_table[256] = {\n  ");
    for (int i = 0; i < 256; ++i) {
      std::printf("0x%04x%s",
                  dst[i],
                  ((i == 255) ? "\n" : (((i % 8) == 7) ? ",\n  " : ", ")));
    }
    std::printf("};\n");
  }

  // Check that computed table matched recorded table.
  for (int i = 0; i < 256; ++i) {
    EXPECT_EQ(dst[i], char_table[i]) << "Mismatch in byte " << i;
  }
}

TEST(Snappy, TestBenchmarkFiles) {
  for (int i = 0; i < ARRAYSIZE(kTestDataFiles); ++i) {
    Verify(ReadTestDataFile(kTestDataFiles[i].filename,
                            kTestDataFiles[i].size_limit));
  }
}

}  // namespace

}  // namespace snappy