summaryrefslogtreecommitdiff
path: root/snappy.cc
blob: 688065b518abc7e238bace9b8f3c8d467beeacc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
// Copyright 2005 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "snappy-internal.h"
#include "snappy-sinksource.h"
#include "snappy.h"
#if !defined(SNAPPY_HAVE_BMI2)
// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2
// specifically, but it does define __AVX2__ when AVX2 support is available.
// Fortunately, AVX2 was introduced in Haswell, just like BMI2.
//
// BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So,
// GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which
// case issuing BMI2 instructions results in a compiler error.
#if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__))
#define SNAPPY_HAVE_BMI2 1
#else
#define SNAPPY_HAVE_BMI2 0
#endif
#endif  // !defined(SNAPPY_HAVE_BMI2)

#if !defined(SNAPPY_HAVE_X86_CRC32)
#if defined(__SSE4_2__)
#define SNAPPY_HAVE_X86_CRC32 1
#else
#define SNAPPY_HAVE_X86_CRC32 0
#endif
#endif  // !defined(SNAPPY_HAVE_X86_CRC32)

#if !defined(SNAPPY_HAVE_NEON_CRC32)
#if SNAPPY_HAVE_NEON && defined(__ARM_FEATURE_CRC32)
#define SNAPPY_HAVE_NEON_CRC32 1
#else
#define SNAPPY_HAVE_NEON_CRC32 0
#endif
#endif  // !defined(SNAPPY_HAVE_NEON_CRC32)

#if SNAPPY_HAVE_BMI2 || SNAPPY_HAVE_X86_CRC32
// Please do not replace with <x86intrin.h>. or with headers that assume more
// advanced SSE versions without checking with all the OWNERS.
#include <immintrin.h>
#elif SNAPPY_HAVE_NEON_CRC32
#include <arm_acle.h>
#endif

#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <string>
#include <utility>
#include <vector>

namespace snappy {

namespace {

// The amount of slop bytes writers are using for unconditional copies.
constexpr int kSlopBytes = 64;

using internal::char_table;
using internal::COPY_1_BYTE_OFFSET;
using internal::COPY_2_BYTE_OFFSET;
using internal::COPY_4_BYTE_OFFSET;
using internal::kMaximumTagLength;
using internal::LITERAL;
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
using internal::V128;
using internal::V128_Load;
using internal::V128_LoadU;
using internal::V128_Shuffle;
using internal::V128_StoreU;
using internal::V128_DupChar;
#endif

// We translate the information encoded in a tag through a lookup table to a
// format that requires fewer instructions to decode. Effectively we store
// the length minus the tag part of the offset. The lowest significant byte
// thus stores the length. While total length - offset is given by
// entry - ExtractOffset(type). The nice thing is that the subtraction
// immediately sets the flags for the necessary check that offset >= length.
// This folds the cmp with sub. We engineer the long literals and copy-4 to
// always fail this check, so their presence doesn't affect the fast path.
// To prevent literals from triggering the guard against offset < length (offset
// does not apply to literals) the table is giving them a spurious offset of
// 256.
inline constexpr int16_t MakeEntry(int16_t len, int16_t offset) {
  return len - (offset << 8);
}

inline constexpr int16_t LengthMinusOffset(int data, int type) {
  return type == 3   ? 0xFF                    // copy-4 (or type == 3)
         : type == 2 ? MakeEntry(data + 1, 0)  // copy-2
         : type == 1 ? MakeEntry((data & 7) + 4, data >> 3)  // copy-1
         : data < 60 ? MakeEntry(data + 1, 1)  // note spurious offset.
                     : 0xFF;                   // long literal
}

inline constexpr int16_t LengthMinusOffset(uint8_t tag) {
  return LengthMinusOffset(tag >> 2, tag & 3);
}

template <size_t... Ints>
struct index_sequence {};

template <std::size_t N, size_t... Is>
struct make_index_sequence : make_index_sequence<N - 1, N - 1, Is...> {};

template <size_t... Is>
struct make_index_sequence<0, Is...> : index_sequence<Is...> {};

template <size_t... seq>
constexpr std::array<int16_t, 256> MakeTable(index_sequence<seq...>) {
  return std::array<int16_t, 256>{LengthMinusOffset(seq)...};
}

alignas(64) const std::array<int16_t, 256> kLengthMinusOffset =
    MakeTable(make_index_sequence<256>{});

// Given a table of uint16_t whose size is mask / 2 + 1, return a pointer to the
// relevant entry, if any, for the given bytes.  Any hash function will do,
// but a good hash function reduces the number of collisions and thus yields
// better compression for compressible input.
//
// REQUIRES: mask is 2 * (table_size - 1), and table_size is a power of two.
inline uint16_t* TableEntry(uint16_t* table, uint32_t bytes, uint32_t mask) {
  // Our choice is quicker-and-dirtier than the typical hash function;
  // empirically, that seems beneficial.  The upper bits of kMagic * bytes are a
  // higher-quality hash than the lower bits, so when using kMagic * bytes we
  // also shift right to get a higher-quality end result.  There's no similar
  // issue with a CRC because all of the output bits of a CRC are equally good
  // "hashes." So, a CPU instruction for CRC, if available, tends to be a good
  // choice.
#if SNAPPY_HAVE_NEON_CRC32
  // We use mask as the second arg to the CRC function, as it's about to
  // be used anyway; it'd be equally correct to use 0 or some constant.
  // Mathematically, _mm_crc32_u32 (or similar) is a function of the
  // xor of its arguments.
  const uint32_t hash = __crc32cw(bytes, mask);
#elif SNAPPY_HAVE_X86_CRC32
  const uint32_t hash = _mm_crc32_u32(bytes, mask);
#else
  constexpr uint32_t kMagic = 0x1e35a7bd;
  const uint32_t hash = (kMagic * bytes) >> (31 - kMaxHashTableBits);
#endif
  return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(table) +
                                     (hash & mask));
}

}  // namespace

size_t MaxCompressedLength(size_t source_bytes) {
  // Compressed data can be defined as:
  //    compressed := item* literal*
  //    item       := literal* copy
  //
  // The trailing literal sequence has a space blowup of at most 62/60
  // since a literal of length 60 needs one tag byte + one extra byte
  // for length information.
  //
  // Item blowup is trickier to measure.  Suppose the "copy" op copies
  // 4 bytes of data.  Because of a special check in the encoding code,
  // we produce a 4-byte copy only if the offset is < 65536.  Therefore
  // the copy op takes 3 bytes to encode, and this type of item leads
  // to at most the 62/60 blowup for representing literals.
  //
  // Suppose the "copy" op copies 5 bytes of data.  If the offset is big
  // enough, it will take 5 bytes to encode the copy op.  Therefore the
  // worst case here is a one-byte literal followed by a five-byte copy.
  // I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
  //
  // This last factor dominates the blowup, so the final estimate is:
  return 32 + source_bytes + source_bytes / 6;
}

namespace {

void UnalignedCopy64(const void* src, void* dst) {
  char tmp[8];
  std::memcpy(tmp, src, 8);
  std::memcpy(dst, tmp, 8);
}

void UnalignedCopy128(const void* src, void* dst) {
  // std::memcpy() gets vectorized when the appropriate compiler options are
  // used. For example, x86 compilers targeting SSE2+ will optimize to an SSE2
  // load and store.
  char tmp[16];
  std::memcpy(tmp, src, 16);
  std::memcpy(dst, tmp, 16);
}

template <bool use_16bytes_chunk>
inline void ConditionalUnalignedCopy128(const char* src, char* dst) {
  if (use_16bytes_chunk) {
    UnalignedCopy128(src, dst);
  } else {
    UnalignedCopy64(src, dst);
    UnalignedCopy64(src + 8, dst + 8);
  }
}

// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
// for handling COPY operations where the input and output regions may overlap.
// For example, suppose:
//    src       == "ab"
//    op        == src + 2
//    op_limit  == op + 20
// After IncrementalCopySlow(src, op, op_limit), the result will have eleven
// copies of "ab"
//    ababababababababababab
// Note that this does not match the semantics of either std::memcpy() or
// std::memmove().
inline char* IncrementalCopySlow(const char* src, char* op,
                                 char* const op_limit) {
  // TODO: Remove pragma when LLVM is aware this
  // function is only called in cold regions and when cold regions don't get
  // vectorized or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
  while (op < op_limit) {
    *op++ = *src++;
  }
  return op_limit;
}

#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE

// Computes the bytes for shuffle control mask (please read comments on
// 'pattern_generation_masks' as well) for the given index_offset and
// pattern_size. For example, when the 'offset' is 6, it will generate a
// repeating pattern of size 6. So, the first 16 byte indexes will correspond to
// the pattern-bytes {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3} and the
// next 16 byte indexes will correspond to the pattern-bytes {4, 5, 0, 1, 2, 3,
// 4, 5, 0, 1, 2, 3, 4, 5, 0, 1}. These byte index sequences are generated by
// calling MakePatternMaskBytes(0, 6, index_sequence<16>()) and
// MakePatternMaskBytes(16, 6, index_sequence<16>()) respectively.
template <size_t... indexes>
inline constexpr std::array<char, sizeof...(indexes)> MakePatternMaskBytes(
    int index_offset, int pattern_size, index_sequence<indexes...>) {
  return {static_cast<char>((index_offset + indexes) % pattern_size)...};
}

// Computes the shuffle control mask bytes array for given pattern-sizes and
// returns an array.
template <size_t... pattern_sizes_minus_one>
inline constexpr std::array<std::array<char, sizeof(V128)>,
                            sizeof...(pattern_sizes_minus_one)>
MakePatternMaskBytesTable(int index_offset,
                          index_sequence<pattern_sizes_minus_one...>) {
  return {
      MakePatternMaskBytes(index_offset, pattern_sizes_minus_one + 1,
                           make_index_sequence</*indexes=*/sizeof(V128)>())...};
}

// This is an array of shuffle control masks that can be used as the source
// operand for PSHUFB to permute the contents of the destination XMM register
// into a repeating byte pattern.
alignas(16) constexpr std::array<std::array<char, sizeof(V128)>,
                                 16> pattern_generation_masks =
    MakePatternMaskBytesTable(
        /*index_offset=*/0,
        /*pattern_sizes_minus_one=*/make_index_sequence<16>());

// Similar to 'pattern_generation_masks', this table is used to "rotate" the
// pattern so that we can copy the *next 16 bytes* consistent with the pattern.
// Basically, pattern_reshuffle_masks is a continuation of
// pattern_generation_masks. It follows that, pattern_reshuffle_masks is same as
// pattern_generation_masks for offsets 1, 2, 4, 8 and 16.
alignas(16) constexpr std::array<std::array<char, sizeof(V128)>,
                                 16> pattern_reshuffle_masks =
    MakePatternMaskBytesTable(
        /*index_offset=*/16,
        /*pattern_sizes_minus_one=*/make_index_sequence<16>());

SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline V128 LoadPattern(const char* src, const size_t pattern_size) {
  V128 generation_mask = V128_Load(reinterpret_cast<const V128*>(
      pattern_generation_masks[pattern_size - 1].data()));
  // Uninitialized bytes are masked out by the shuffle mask.
  // TODO: remove annotation and macro defs once MSan is fixed.
  SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(src + pattern_size, 16 - pattern_size);
  return V128_Shuffle(V128_LoadU(reinterpret_cast<const V128*>(src)),
                      generation_mask);
}

SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline std::pair<V128 /* pattern */, V128 /* reshuffle_mask */>
LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) {
  V128 pattern = LoadPattern(src, pattern_size);

  // This mask will generate the next 16 bytes in-place. Doing so enables us to
  // write data by at most 4 V128_StoreU.
  //
  // For example, suppose pattern is:        abcdefabcdefabcd
  // Shuffling with this mask will generate: efabcdefabcdefab
  // Shuffling again will generate:          cdefabcdefabcdef
  V128 reshuffle_mask = V128_Load(reinterpret_cast<const V128*>(
      pattern_reshuffle_masks[pattern_size - 1].data()));
  return {pattern, reshuffle_mask};
}

#endif  // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE

// Fallback for when we need to copy while extending the pattern, for example
// copying 10 bytes from 3 positions back abc -> abcabcabcabca.
//
// REQUIRES: [dst - offset, dst + 64) is a valid address range.
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
  if (SNAPPY_PREDICT_TRUE(offset <= 16)) {
    switch (offset) {
      case 0:
        return false;
      case 1: {
        // TODO: Ideally we should memset, move back once the
        // codegen issues are fixed.
        V128 pattern = V128_DupChar(dst[-1]);
        for (int i = 0; i < 4; i++) {
          V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
        }
        return true;
      }
      case 2:
      case 4:
      case 8:
      case 16: {
        V128 pattern = LoadPattern(dst - offset, offset);
        for (int i = 0; i < 4; i++) {
          V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
        }
        return true;
      }
      default: {
        auto pattern_and_reshuffle_mask =
            LoadPatternAndReshuffleMask(dst - offset, offset);
        V128 pattern = pattern_and_reshuffle_mask.first;
        V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
        for (int i = 0; i < 4; i++) {
          V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
          pattern = V128_Shuffle(pattern, reshuffle_mask);
        }
        return true;
      }
    }
  }
#else
  if (SNAPPY_PREDICT_TRUE(offset < 16)) {
    if (SNAPPY_PREDICT_FALSE(offset == 0)) return false;
    // Extend the pattern to the first 16 bytes.
    // The simpler formulation of `dst[i - offset]` induces undefined behavior.
    for (int i = 0; i < 16; i++) dst[i] = (dst - offset)[i];
    // Find a multiple of pattern >= 16.
    static std::array<uint8_t, 16> pattern_sizes = []() {
      std::array<uint8_t, 16> res;
      for (int i = 1; i < 16; i++) res[i] = (16 / i + 1) * i;
      return res;
    }();
    offset = pattern_sizes[offset];
    for (int i = 1; i < 4; i++) {
      std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
    }
    return true;
  }
#endif  // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE

  // Very rare.
  for (int i = 0; i < 4; i++) {
    std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
  }
  return true;
}

// Copy [src, src+(op_limit-op)) to [op, op_limit) but faster than
// IncrementalCopySlow. buf_limit is the address past the end of the writable
// region of the buffer.
inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
                             char* const buf_limit) {
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
  constexpr int big_pattern_size_lower_bound = 16;
#else
  constexpr int big_pattern_size_lower_bound = 8;
#endif

  // Terminology:
  //
  // slop = buf_limit - op
  // pat  = op - src
  // len  = op_limit - op
  assert(src < op);
  assert(op < op_limit);
  assert(op_limit <= buf_limit);
  // NOTE: The copy tags use 3 or 6 bits to store the copy length, so len <= 64.
  assert(op_limit - op <= 64);
  // NOTE: In practice the compressor always emits len >= 4, so it is ok to
  // assume that to optimize this function, but this is not guaranteed by the
  // compression format, so we have to also handle len < 4 in case the input
  // does not satisfy these conditions.

  size_t pattern_size = op - src;
  // The cases are split into different branches to allow the branch predictor,
  // FDO, and static prediction hints to work better. For each input we list the
  // ratio of invocations that match each condition.
  //
  // input        slop < 16   pat < 8  len > 16
  // ------------------------------------------
  // html|html4|cp   0%         1.01%    27.73%
  // urls            0%         0.88%    14.79%
  // jpg             0%        64.29%     7.14%
  // pdf             0%         2.56%    58.06%
  // txt[1-4]        0%         0.23%     0.97%
  // pb              0%         0.96%    13.88%
  // bin             0.01%     22.27%    41.17%
  //
  // It is very rare that we don't have enough slop for doing block copies. It
  // is also rare that we need to expand a pattern. Small patterns are common
  // for incompressible formats and for those we are plenty fast already.
  // Lengths are normally not greater than 16 but they vary depending on the
  // input. In general if we always predict len <= 16 it would be an ok
  // prediction.
  //
  // In order to be fast we want a pattern >= 16 bytes (or 8 bytes in non-SSE)
  // and an unrolled loop copying 1x 16 bytes (or 2x 8 bytes in non-SSE) at a
  // time.

  // Handle the uncommon case where pattern is less than 16 (or 8 in non-SSE)
  // bytes.
  if (pattern_size < big_pattern_size_lower_bound) {
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
    // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
    // to permute the register's contents in-place into a repeating sequence of
    // the first "pattern_size" bytes.
    // For example, suppose:
    //    src       == "abc"
    //    op        == op + 3
    // After V128_Shuffle(), "pattern" will have five copies of "abc"
    // followed by one byte of slop: abcabcabcabcabca.
    //
    // The non-SSE fallback implementation suffers from store-forwarding stalls
    // because its loads and stores partly overlap. By expanding the pattern
    // in-place, we avoid the penalty.

    // Typically, the op_limit is the gating factor so try to simplify the loop
    // based on that.
    if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
      auto pattern_and_reshuffle_mask =
          LoadPatternAndReshuffleMask(src, pattern_size);
      V128 pattern = pattern_and_reshuffle_mask.first;
      V128 reshuffle_mask = pattern_and_reshuffle_mask.second;

      // There is at least one, and at most four 16-byte blocks. Writing four
      // conditionals instead of a loop allows FDO to layout the code with
      // respect to the actual probabilities of each length.
      // TODO: Replace with loop with trip count hint.
      V128_StoreU(reinterpret_cast<V128*>(op), pattern);

      if (op + 16 < op_limit) {
        pattern = V128_Shuffle(pattern, reshuffle_mask);
        V128_StoreU(reinterpret_cast<V128*>(op + 16), pattern);
      }
      if (op + 32 < op_limit) {
        pattern = V128_Shuffle(pattern, reshuffle_mask);
        V128_StoreU(reinterpret_cast<V128*>(op + 32), pattern);
      }
      if (op + 48 < op_limit) {
        pattern = V128_Shuffle(pattern, reshuffle_mask);
        V128_StoreU(reinterpret_cast<V128*>(op + 48), pattern);
      }
      return op_limit;
    }
    char* const op_end = buf_limit - 15;
    if (SNAPPY_PREDICT_TRUE(op < op_end)) {
      auto pattern_and_reshuffle_mask =
          LoadPatternAndReshuffleMask(src, pattern_size);
      V128 pattern = pattern_and_reshuffle_mask.first;
      V128 reshuffle_mask = pattern_and_reshuffle_mask.second;

      // This code path is relatively cold however so we save code size
      // by avoiding unrolling and vectorizing.
      //
      // TODO: Remove pragma when when cold regions don't get
      // vectorized or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
      do {
        V128_StoreU(reinterpret_cast<V128*>(op), pattern);
        pattern = V128_Shuffle(pattern, reshuffle_mask);
        op += 16;
      } while (SNAPPY_PREDICT_TRUE(op < op_end));
    }
    return IncrementalCopySlow(op - pattern_size, op, op_limit);
#else   // !SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
    // If plenty of buffer space remains, expand the pattern to at least 8
    // bytes. The way the following loop is written, we need 8 bytes of buffer
    // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
    // bytes if pattern_size is 2.  Precisely encoding that is probably not
    // worthwhile; instead, invoke the slow path if we cannot write 11 bytes
    // (because 11 are required in the worst case).
    if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) {
      while (pattern_size < 8) {
        UnalignedCopy64(src, op);
        op += pattern_size;
        pattern_size *= 2;
      }
      if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
    } else {
      return IncrementalCopySlow(src, op, op_limit);
    }
#endif  // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
  }
  assert(pattern_size >= big_pattern_size_lower_bound);
  constexpr bool use_16bytes_chunk = big_pattern_size_lower_bound == 16;

  // Copy 1x 16 bytes (or 2x 8 bytes in non-SSE) at a time. Because op - src can
  // be < 16 in non-SSE, a single UnalignedCopy128 might overwrite data in op.
  // UnalignedCopy64 is safe because expanding the pattern to at least 8 bytes
  // guarantees that op - src >= 8.
  //
  // Typically, the op_limit is the gating factor so try to simplify the loop
  // based on that.
  if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
    // There is at least one, and at most four 16-byte blocks. Writing four
    // conditionals instead of a loop allows FDO to layout the code with respect
    // to the actual probabilities of each length.
    // TODO: Replace with loop with trip count hint.
    ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
    if (op + 16 < op_limit) {
      ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 16, op + 16);
    }
    if (op + 32 < op_limit) {
      ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 32, op + 32);
    }
    if (op + 48 < op_limit) {
      ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 48, op + 48);
    }
    return op_limit;
  }

  // Fall back to doing as much as we can with the available slop in the
  // buffer. This code path is relatively cold however so we save code size by
  // avoiding unrolling and vectorizing.
  //
  // TODO: Remove pragma when when cold regions don't get vectorized
  // or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
  for (char* op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
    ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
  }
  if (op >= op_limit) return op_limit;

  // We only take this branch if we didn't have enough slop and we can do a
  // single 8 byte copy.
  if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
    UnalignedCopy64(src, op);
    src += 8;
    op += 8;
  }
  return IncrementalCopySlow(src, op, op_limit);
}

}  // namespace

template <bool allow_fast_path>
static inline char* EmitLiteral(char* op, const char* literal, int len) {
  // The vast majority of copies are below 16 bytes, for which a
  // call to std::memcpy() is overkill. This fast path can sometimes
  // copy up to 15 bytes too much, but that is okay in the
  // main loop, since we have a bit to go on for both sides:
  //
  //   - The input will always have kInputMarginBytes = 15 extra
  //     available bytes, as long as we're in the main loop, and
  //     if not, allow_fast_path = false.
  //   - The output will always have 32 spare bytes (see
  //     MaxCompressedLength).
  assert(len > 0);  // Zero-length literals are disallowed
  int n = len - 1;
  if (allow_fast_path && len <= 16) {
    // Fits in tag byte
    *op++ = LITERAL | (n << 2);

    UnalignedCopy128(literal, op);
    return op + len;
  }

  if (n < 60) {
    // Fits in tag byte
    *op++ = LITERAL | (n << 2);
  } else {
    int count = (Bits::Log2Floor(n) >> 3) + 1;
    assert(count >= 1);
    assert(count <= 4);
    *op++ = LITERAL | ((59 + count) << 2);
    // Encode in upcoming bytes.
    // Write 4 bytes, though we may care about only 1 of them. The output buffer
    // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds
    // here and there is a std::memcpy() of size 'len' below.
    LittleEndian::Store32(op, n);
    op += count;
  }
  // When allow_fast_path is true, we can overwrite up to 16 bytes.
  if (allow_fast_path) {
    char* destination = op;
    const char* source = literal;
    const char* end = destination + len;
    do {
      std::memcpy(destination, source, 16);
      destination += 16;
      source += 16;
    } while (destination < end);
  } else {
    std::memcpy(op, literal, len);
  }
  return op + len;
}

template <bool len_less_than_12>
static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) {
  assert(len <= 64);
  assert(len >= 4);
  assert(offset < 65536);
  assert(len_less_than_12 == (len < 12));

  if (len_less_than_12) {
    uint32_t u = (len << 2) + (offset << 8);
    uint32_t copy1 = COPY_1_BYTE_OFFSET - (4 << 2) + ((offset >> 3) & 0xe0);
    uint32_t copy2 = COPY_2_BYTE_OFFSET - (1 << 2);
    // It turns out that offset < 2048 is a difficult to predict branch.
    // `perf record` shows this is the highest percentage of branch misses in
    // benchmarks. This code produces branch free code, the data dependency
    // chain that bottlenecks the throughput is so long that a few extra
    // instructions are completely free (IPC << 6 because of data deps).
    u += offset < 2048 ? copy1 : copy2;
    LittleEndian::Store32(op, u);
    op += offset < 2048 ? 2 : 3;
  } else {
    // Write 4 bytes, though we only care about 3 of them.  The output buffer
    // is required to have some slack, so the extra byte won't overrun it.
    uint32_t u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
    LittleEndian::Store32(op, u);
    op += 3;
  }
  return op;
}

template <bool len_less_than_12>
static inline char* EmitCopy(char* op, size_t offset, size_t len) {
  assert(len_less_than_12 == (len < 12));
  if (len_less_than_12) {
    return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
  } else {
    // A special case for len <= 64 might help, but so far measurements suggest
    // it's in the noise.

    // Emit 64 byte copies but make sure to keep at least four bytes reserved.
    while (SNAPPY_PREDICT_FALSE(len >= 68)) {
      op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64);
      len -= 64;
    }

    // One or two copies will now finish the job.
    if (len > 64) {
      op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60);
      len -= 60;
    }

    // Emit remainder.
    if (len < 12) {
      op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
    } else {
      op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len);
    }
    return op;
  }
}

bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
  uint32_t v = 0;
  const char* limit = start + n;
  if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
    *result = v;
    return true;
  } else {
    return false;
  }
}

namespace {
uint32_t CalculateTableSize(uint32_t input_size) {
  static_assert(
      kMaxHashTableSize >= kMinHashTableSize,
      "kMaxHashTableSize should be greater or equal to kMinHashTableSize.");
  if (input_size > kMaxHashTableSize) {
    return kMaxHashTableSize;
  }
  if (input_size < kMinHashTableSize) {
    return kMinHashTableSize;
  }
  // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1.
  // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)).
  return 2u << Bits::Log2Floor(input_size - 1);
}
}  // namespace

namespace internal {
WorkingMemory::WorkingMemory(size_t input_size) {
  const size_t max_fragment_size = std::min(input_size, kBlockSize);
  const size_t table_size = CalculateTableSize(max_fragment_size);
  size_ = table_size * sizeof(*table_) + max_fragment_size +
          MaxCompressedLength(max_fragment_size);
  mem_ = std::allocator<char>().allocate(size_);
  table_ = reinterpret_cast<uint16_t*>(mem_);
  input_ = mem_ + table_size * sizeof(*table_);
  output_ = input_ + max_fragment_size;
}

WorkingMemory::~WorkingMemory() {
  std::allocator<char>().deallocate(mem_, size_);
}

uint16_t* WorkingMemory::GetHashTable(size_t fragment_size,
                                      int* table_size) const {
  const size_t htsize = CalculateTableSize(fragment_size);
  memset(table_, 0, htsize * sizeof(*table_));
  *table_size = htsize;
  return table_;
}
}  // end namespace internal

// Flat array compression that does not emit the "uncompressed length"
// prefix. Compresses "input" string to the "*op" buffer.
//
// REQUIRES: "input" is at most "kBlockSize" bytes long.
// REQUIRES: "op" points to an array of memory that is at least
// "MaxCompressedLength(input.size())" in size.
// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
// REQUIRES: "table_size" is a power of two
//
// Returns an "end" pointer into "op" buffer.
// "end - op" is the compressed size of "input".
namespace internal {
char* CompressFragment(const char* input, size_t input_size, char* op,
                       uint16_t* table, const int table_size) {
  // "ip" is the input pointer, and "op" is the output pointer.
  const char* ip = input;
  assert(input_size <= kBlockSize);
  assert((table_size & (table_size - 1)) == 0);  // table must be power of two
  const uint32_t mask = 2 * (table_size - 1);
  const char* ip_end = input + input_size;
  const char* base_ip = ip;

  const size_t kInputMarginBytes = 15;
  if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
    const char* ip_limit = input + input_size - kInputMarginBytes;

    for (uint32_t preload = LittleEndian::Load32(ip + 1);;) {
      // Bytes in [next_emit, ip) will be emitted as literal bytes.  Or
      // [next_emit, ip_end) after the main loop.
      const char* next_emit = ip++;
      uint64_t data = LittleEndian::Load64(ip);
      // The body of this loop calls EmitLiteral once and then EmitCopy one or
      // more times.  (The exception is that when we're close to exhausting
      // the input we goto emit_remainder.)
      //
      // In the first iteration of this loop we're just starting, so
      // there's nothing to copy, so calling EmitLiteral once is
      // necessary.  And we only start a new iteration when the
      // current iteration has determined that a call to EmitLiteral will
      // precede the next call to EmitCopy (if any).
      //
      // Step 1: Scan forward in the input looking for a 4-byte-long match.
      // If we get close to exhausting the input then goto emit_remainder.
      //
      // Heuristic match skipping: If 32 bytes are scanned with no matches
      // found, start looking only at every other byte. If 32 more bytes are
      // scanned (or skipped), look at every third byte, etc.. When a match is
      // found, immediately go back to looking at every byte. This is a small
      // loss (~5% performance, ~0.1% density) for compressible data due to more
      // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
      // win since the compressor quickly "realizes" the data is incompressible
      // and doesn't bother looking for matches everywhere.
      //
      // The "skip" variable keeps track of how many bytes there are since the
      // last match; dividing it by 32 (ie. right-shifting by five) gives the
      // number of bytes to move ahead for each iteration.
      uint32_t skip = 32;

      const char* candidate;
      if (ip_limit - ip >= 16) {
        auto delta = ip - base_ip;
        for (int j = 0; j < 4; ++j) {
          for (int k = 0; k < 4; ++k) {
            int i = 4 * j + k;
            // These for-loops are meant to be unrolled. So we can freely
            // special case the first iteration to use the value already
            // loaded in preload.
            uint32_t dword = i == 0 ? preload : static_cast<uint32_t>(data);
            assert(dword == LittleEndian::Load32(ip + i));
            uint16_t* table_entry = TableEntry(table, dword, mask);
            candidate = base_ip + *table_entry;
            assert(candidate >= base_ip);
            assert(candidate < ip + i);
            *table_entry = delta + i;
            if (SNAPPY_PREDICT_FALSE(LittleEndian::Load32(candidate) == dword)) {
              *op = LITERAL | (i << 2);
              UnalignedCopy128(next_emit, op + 1);
              ip += i;
              op = op + i + 2;
              goto emit_match;
            }
            data >>= 8;
          }
          data = LittleEndian::Load64(ip + 4 * j + 4);
        }
        ip += 16;
        skip += 16;
      }
      while (true) {
        assert(static_cast<uint32_t>(data) == LittleEndian::Load32(ip));
        uint16_t* table_entry = TableEntry(table, data, mask);
        uint32_t bytes_between_hash_lookups = skip >> 5;
        skip += bytes_between_hash_lookups;
        const char* next_ip = ip + bytes_between_hash_lookups;
        if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
          ip = next_emit;
          goto emit_remainder;
        }
        candidate = base_ip + *table_entry;
        assert(candidate >= base_ip);
        assert(candidate < ip);

        *table_entry = ip - base_ip;
        if (SNAPPY_PREDICT_FALSE(static_cast<uint32_t>(data) ==
                                LittleEndian::Load32(candidate))) {
          break;
        }
        data = LittleEndian::Load32(next_ip);
        ip = next_ip;
      }

      // Step 2: A 4-byte match has been found.  We'll later see if more
      // than 4 bytes match.  But, prior to the match, input
      // bytes [next_emit, ip) are unmatched.  Emit them as "literal bytes."
      assert(next_emit + 16 <= ip_end);
      op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit);

      // Step 3: Call EmitCopy, and then see if another EmitCopy could
      // be our next move.  Repeat until we find no match for the
      // input immediately after what was consumed by the last EmitCopy call.
      //
      // If we exit this loop normally then we need to call EmitLiteral next,
      // though we don't yet know how big the literal will be.  We handle that
      // by proceeding to the next iteration of the main loop.  We also can exit
      // this loop via goto if we get close to exhausting the input.
    emit_match:
      do {
        // We have a 4-byte match at ip, and no need to emit any
        // "literal bytes" prior to ip.
        const char* base = ip;
        std::pair<size_t, bool> p =
            FindMatchLength(candidate + 4, ip + 4, ip_end, &data);
        size_t matched = 4 + p.first;
        ip += matched;
        size_t offset = base - candidate;
        assert(0 == memcmp(base, candidate, matched));
        if (p.second) {
          op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched);
        } else {
          op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched);
        }
        if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
          goto emit_remainder;
        }
        // Expect 5 bytes to match
        assert((data & 0xFFFFFFFFFF) ==
               (LittleEndian::Load64(ip) & 0xFFFFFFFFFF));
        // We are now looking for a 4-byte match again.  We read
        // table[Hash(ip, mask)] for that.  To improve compression,
        // we also update table[Hash(ip - 1, mask)] and table[Hash(ip, mask)].
        *TableEntry(table, LittleEndian::Load32(ip - 1), mask) =
            ip - base_ip - 1;
        uint16_t* table_entry = TableEntry(table, data, mask);
        candidate = base_ip + *table_entry;
        *table_entry = ip - base_ip;
        // Measurements on the benchmarks have shown the following probabilities
        // for the loop to exit (ie. avg. number of iterations is reciprocal).
        // BM_Flat/6  txt1    p = 0.3-0.4
        // BM_Flat/7  txt2    p = 0.35
        // BM_Flat/8  txt3    p = 0.3-0.4
        // BM_Flat/9  txt3    p = 0.34-0.4
        // BM_Flat/10 pb      p = 0.4
        // BM_Flat/11 gaviota p = 0.1
        // BM_Flat/12 cp      p = 0.5
        // BM_Flat/13 c       p = 0.3
      } while (static_cast<uint32_t>(data) == LittleEndian::Load32(candidate));
      // Because the least significant 5 bytes matched, we can utilize data
      // for the next iteration.
      preload = data >> 8;
    }
  }

emit_remainder:
  // Emit the remaining bytes as a literal
  if (ip < ip_end) {
    op = EmitLiteral</*allow_fast_path=*/false>(op, ip, ip_end - ip);
  }

  return op;
}
}  // end namespace internal

// Called back at avery compression call to trace parameters and sizes.
static inline void Report(const char *algorithm, size_t compressed_size,
                          size_t uncompressed_size) {
  // TODO: Switch to [[maybe_unused]] when we can assume C++17.
  (void)algorithm;
  (void)compressed_size;
  (void)uncompressed_size;
}

// Signature of output types needed by decompression code.
// The decompression code is templatized on a type that obeys this
// signature so that we do not pay virtual function call overhead in
// the middle of a tight decompression loop.
//
// class DecompressionWriter {
//  public:
//   // Called before decompression
//   void SetExpectedLength(size_t length);
//
//   // For performance a writer may choose to donate the cursor variable to the
//   // decompression function. The decompression will inject it in all its
//   // function calls to the writer. Keeping the important output cursor as a
//   // function local stack variable allows the compiler to keep it in
//   // register, which greatly aids performance by avoiding loads and stores of
//   // this variable in the fast path loop iterations.
//   T GetOutputPtr() const;
//
//   // At end of decompression the loop donates the ownership of the cursor
//   // variable back to the writer by calling this function.
//   void SetOutputPtr(T op);
//
//   // Called after decompression
//   bool CheckLength() const;
//
//   // Called repeatedly during decompression
//   // Each function get a pointer to the op (output pointer), that the writer
//   // can use and update. Note it's important that these functions get fully
//   // inlined so that no actual address of the local variable needs to be
//   // taken.
//   bool Append(const char* ip, size_t length, T* op);
//   bool AppendFromSelf(uint32_t offset, size_t length, T* op);
//
//   // The rules for how TryFastAppend differs from Append are somewhat
//   // convoluted:
//   //
//   //  - TryFastAppend is allowed to decline (return false) at any
//   //    time, for any reason -- just "return false" would be
//   //    a perfectly legal implementation of TryFastAppend.
//   //    The intention is for TryFastAppend to allow a fast path
//   //    in the common case of a small append.
//   //  - TryFastAppend is allowed to read up to <available> bytes
//   //    from the input buffer, whereas Append is allowed to read
//   //    <length>. However, if it returns true, it must leave
//   //    at least five (kMaximumTagLength) bytes in the input buffer
//   //    afterwards, so that there is always enough space to read the
//   //    next tag without checking for a refill.
//   //  - TryFastAppend must always return decline (return false)
//   //    if <length> is 61 or more, as in this case the literal length is not
//   //    decoded fully. In practice, this should not be a big problem,
//   //    as it is unlikely that one would implement a fast path accepting
//   //    this much data.
//   //
//   bool TryFastAppend(const char* ip, size_t available, size_t length, T* op);
// };

static inline uint32_t ExtractLowBytes(const uint32_t& v, int n) {
  assert(n >= 0);
  assert(n <= 4);
#if SNAPPY_HAVE_BMI2
  return _bzhi_u32(v, 8 * n);
#else
  // This needs to be wider than uint32_t otherwise `mask << 32` will be
  // undefined.
  uint64_t mask = 0xffffffff;
  return v & ~(mask << (8 * n));
#endif
}

static inline bool LeftShiftOverflows(uint8_t value, uint32_t shift) {
  assert(shift < 32);
  static const uint8_t masks[] = {
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  //
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  //
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  //
      0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe};
  return (value & masks[shift]) != 0;
}

inline bool Copy64BytesWithPatternExtension(ptrdiff_t dst, size_t offset) {
  // TODO: Switch to [[maybe_unused]] when we can assume C++17.
  (void)dst;
  return offset != 0;
}

// Copies between size bytes and 64 bytes from src to dest.  size cannot exceed
// 64.  More than size bytes, but never exceeding 64, might be copied if doing
// so gives better performance.  [src, src + size) must not overlap with
// [dst, dst + size), but [src, src + 64) may overlap with [dst, dst + 64).
void MemCopy64(char* dst, const void* src, size_t size) {
  // Always copy this many bytes.  If that's below size then copy the full 64.
  constexpr int kShortMemCopy = 32;

  assert(size <= 64);
  assert(std::less_equal<const void*>()(static_cast<const char*>(src) + size,
                                        dst) ||
         std::less_equal<const void*>()(dst + size, src));

  // We know that src and dst are at least size bytes apart. However, because we
  // might copy more than size bytes the copy still might overlap past size.
  // E.g. if src and dst appear consecutively in memory (src + size >= dst).
  // TODO: Investigate wider copies on other platforms.
#if defined(__x86_64__) && defined(__AVX__)
  assert(kShortMemCopy <= 32);
  __m256i data = _mm256_lddqu_si256(static_cast<const __m256i *>(src));
  _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst), data);
  // Profiling shows that nearly all copies are short.
  if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) {
    data = _mm256_lddqu_si256(static_cast<const __m256i *>(src) + 1);
    _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst) + 1, data);
  }
#else
  std::memmove(dst, src, kShortMemCopy);
  // Profiling shows that nearly all copies are short.
  if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) {
    std::memmove(dst + kShortMemCopy,
                 static_cast<const uint8_t*>(src) + kShortMemCopy,
                 64 - kShortMemCopy);
  }
#endif
}

void MemCopy64(ptrdiff_t dst, const void* src, size_t size) {
  // TODO: Switch to [[maybe_unused]] when we can assume C++17.
  (void)dst;
  (void)src;
  (void)size;
}

void ClearDeferred(const void** deferred_src, size_t* deferred_length,
                   uint8_t* safe_source) {
  *deferred_src = safe_source;
  *deferred_length = 0;
}

void DeferMemCopy(const void** deferred_src, size_t* deferred_length,
                  const void* src, size_t length) {
  *deferred_src = src;
  *deferred_length = length;
}

SNAPPY_ATTRIBUTE_ALWAYS_INLINE
inline size_t AdvanceToNextTagARMOptimized(const uint8_t** ip_p, size_t* tag) {
  const uint8_t*& ip = *ip_p;
  // This section is crucial for the throughput of the decompression loop.
  // The latency of an iteration is fundamentally constrained by the
  // following data chain on ip.
  // ip -> c = Load(ip) -> delta1 = (c & 3)        -> ip += delta1 or delta2
  //                       delta2 = ((c >> 2) + 1)    ip++
  // This is different from X86 optimizations because ARM has conditional add
  // instruction (csinc) and it removes several register moves.
  const size_t tag_type = *tag & 3;
  const bool is_literal = (tag_type == 0);
  if (is_literal) {
    size_t next_literal_tag = (*tag >> 2) + 1;
    *tag = ip[next_literal_tag];
    ip += next_literal_tag + 1;
  } else {
    *tag = ip[tag_type];
    ip += tag_type + 1;
  }
  return tag_type;
}

SNAPPY_ATTRIBUTE_ALWAYS_INLINE
inline size_t AdvanceToNextTagX86Optimized(const uint8_t** ip_p, size_t* tag) {
  const uint8_t*& ip = *ip_p;
  // This section is crucial for the throughput of the decompression loop.
  // The latency of an iteration is fundamentally constrained by the
  // following data chain on ip.
  // ip -> c = Load(ip) -> ip1 = ip + 1 + (c & 3) -> ip = ip1 or ip2
  //                       ip2 = ip + 2 + (c >> 2)
  // This amounts to 8 cycles.
  // 5 (load) + 1 (c & 3) + 1 (lea ip1, [ip + (c & 3) + 1]) + 1 (cmov)
  size_t literal_len = *tag >> 2;
  size_t tag_type = *tag;
  bool is_literal;
#if defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(__x86_64__)
  // TODO clang misses the fact that the (c & 3) already correctly
  // sets the zero flag.
  asm("and $3, %k[tag_type]\n\t"
      : [tag_type] "+r"(tag_type), "=@ccz"(is_literal)
      :: "cc");
#else
  tag_type &= 3;
  is_literal = (tag_type == 0);
#endif
  // TODO
  // This is code is subtle. Loading the values first and then cmov has less
  // latency then cmov ip and then load. However clang would move the loads
  // in an optimization phase, volatile prevents this transformation.
  // Note that we have enough slop bytes (64) that the loads are always valid.
  size_t tag_literal =
      static_cast<const volatile uint8_t*>(ip)[1 + literal_len];
  size_t tag_copy = static_cast<const volatile uint8_t*>(ip)[tag_type];
  *tag = is_literal ? tag_literal : tag_copy;
  const uint8_t* ip_copy = ip + 1 + tag_type;
  const uint8_t* ip_literal = ip + 2 + literal_len;
  ip = is_literal ? ip_literal : ip_copy;
#if defined(__GNUC__) && defined(__x86_64__)
  // TODO Clang is "optimizing" zero-extension (a totally free
  // operation) this means that after the cmov of tag, it emits another movzb
  // tag, byte(tag). It really matters as it's on the core chain. This dummy
  // asm, persuades clang to do the zero-extension at the load (it's automatic)
  // removing the expensive movzb.
  asm("" ::"r"(tag_copy));
#endif
  return tag_type;
}

// Extract the offset for copy-1 and copy-2 returns 0 for literals or copy-4.
inline uint32_t ExtractOffset(uint32_t val, size_t tag_type) {
  // For x86 non-static storage works better. For ARM static storage is better.
  // TODO: Once the array is recognized as a register, improve the
  // readability for x86.
#if defined(__x86_64__)
  constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull;
  uint16_t result;
  memcpy(&result,
         reinterpret_cast<const char*>(&kExtractMasksCombined) + 2 * tag_type,
         sizeof(result));
  return val & result;
#elif defined(__aarch64__)
  constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull;
  return val & static_cast<uint32_t>(
      (kExtractMasksCombined >> (tag_type * 16)) & 0xFFFF);
#else
  static constexpr uint32_t kExtractMasks[4] = {0, 0xFF, 0xFFFF, 0};
  return val & kExtractMasks[tag_type];
#endif
};

// Core decompression loop, when there is enough data available.
// Decompresses the input buffer [ip, ip_limit) into the output buffer
// [op, op_limit_min_slop). Returning when either we are too close to the end
// of the input buffer, or we exceed op_limit_min_slop or when a exceptional
// tag is encountered (literal of length > 60) or a copy-4.
// Returns {ip, op} at the points it stopped decoding.
// TODO This function probably does not need to be inlined, as it
// should decode large chunks at a time. This allows runtime dispatch to
// implementations based on CPU capability (BMI2 / perhaps 32 / 64 byte memcpy).
template <typename T>
std::pair<const uint8_t*, ptrdiff_t> DecompressBranchless(
    const uint8_t* ip, const uint8_t* ip_limit, ptrdiff_t op, T op_base,
    ptrdiff_t op_limit_min_slop) {
  // If deferred_src is invalid point it here.
  uint8_t safe_source[64];
  const void* deferred_src;
  size_t deferred_length;
  ClearDeferred(&deferred_src, &deferred_length, safe_source);

  // We unroll the inner loop twice so we need twice the spare room.
  op_limit_min_slop -= kSlopBytes;
  if (2 * (kSlopBytes + 1) < ip_limit - ip && op < op_limit_min_slop) {
    const uint8_t* const ip_limit_min_slop = ip_limit - 2 * kSlopBytes - 1;
    ip++;
    // ip points just past the tag and we are touching at maximum kSlopBytes
    // in an iteration.
    size_t tag = ip[-1];
#if defined(__clang__) && defined(__aarch64__)
    // Workaround for https://bugs.llvm.org/show_bug.cgi?id=51317
    // when loading 1 byte, clang for aarch64 doesn't realize that it(ldrb)
    // comes with free zero-extension, so clang generates another
    // 'and xn, xm, 0xff' before it use that as the offset. This 'and' is
    // redundant and can be removed by adding this dummy asm, which gives
    // clang a hint that we're doing the zero-extension at the load.
    asm("" ::"r"(tag));
#endif
    do {
      // The throughput is limited by instructions, unrolling the inner loop
      // twice reduces the amount of instructions checking limits and also
      // leads to reduced mov's.

      SNAPPY_PREFETCH(ip + 128);
      for (int i = 0; i < 2; i++) {
        const uint8_t* old_ip = ip;
        assert(tag == ip[-1]);
        // For literals tag_type = 0, hence we will always obtain 0 from
        // ExtractLowBytes. For literals offset will thus be kLiteralOffset.
        ptrdiff_t len_minus_offset = kLengthMinusOffset[tag];
        uint32_t next;
#if defined(__aarch64__)
        size_t tag_type = AdvanceToNextTagARMOptimized(&ip, &tag);
        // We never need more than 16 bits. Doing a Load16 allows the compiler
        // to elide the masking operation in ExtractOffset.
        next = LittleEndian::Load16(old_ip);
#else
        size_t tag_type = AdvanceToNextTagX86Optimized(&ip, &tag);
        next = LittleEndian::Load32(old_ip);
#endif
        size_t len = len_minus_offset & 0xFF;
        ptrdiff_t extracted = ExtractOffset(next, tag_type);
        ptrdiff_t len_min_offset = len_minus_offset - extracted;
        if (SNAPPY_PREDICT_FALSE(len_minus_offset > extracted)) {
          if (SNAPPY_PREDICT_FALSE(len & 0x80)) {
            // Exceptional case (long literal or copy 4).
            // Actually doing the copy here is negatively impacting the main
            // loop due to compiler incorrectly allocating a register for
            // this fallback. Hence we just break.
          break_loop:
            ip = old_ip;
            goto exit;
          }
          // Only copy-1 or copy-2 tags can get here.
          assert(tag_type == 1 || tag_type == 2);
          std::ptrdiff_t delta = (op + deferred_length) + len_min_offset - len;
          // Guard against copies before the buffer start.
          // Execute any deferred MemCopy since we write to dst here.
          MemCopy64(op_base + op, deferred_src, deferred_length);
          op += deferred_length;
          ClearDeferred(&deferred_src, &deferred_length, safe_source);
          if (SNAPPY_PREDICT_FALSE(delta < 0 ||
                                  !Copy64BytesWithPatternExtension(
                                      op_base + op, len - len_min_offset))) {
            goto break_loop;
          }
          // We aren't deferring this copy so add length right away.
          op += len;
          continue;
        }
        std::ptrdiff_t delta = (op + deferred_length) + len_min_offset - len;
        if (SNAPPY_PREDICT_FALSE(delta < 0)) {
          // Due to the spurious offset in literals have this will trigger
          // at the start of a block when op is still smaller than 256.
          if (tag_type != 0) goto break_loop;
          MemCopy64(op_base + op, deferred_src, deferred_length);
          op += deferred_length;
          DeferMemCopy(&deferred_src, &deferred_length, old_ip, len);
          continue;
        }

        // For copies we need to copy from op_base + delta, for literals
        // we need to copy from ip instead of from the stream.
        const void* from =
            tag_type ? reinterpret_cast<void*>(op_base + delta) : old_ip;
        MemCopy64(op_base + op, deferred_src, deferred_length);
        op += deferred_length;
        DeferMemCopy(&deferred_src, &deferred_length, from, len);
      }
    } while (ip < ip_limit_min_slop &&
             (op + deferred_length) < op_limit_min_slop);
  exit:
    ip--;
    assert(ip <= ip_limit);
  }
  // If we deferred a copy then we can perform.  If we are up to date then we
  // might not have enough slop bytes and could run past the end.
  if (deferred_length) {
    MemCopy64(op_base + op, deferred_src, deferred_length);
    op += deferred_length;
    ClearDeferred(&deferred_src, &deferred_length, safe_source);
  }
  return {ip, op};
}

// Helper class for decompression
class SnappyDecompressor {
 private:
  Source* reader_;        // Underlying source of bytes to decompress
  const char* ip_;        // Points to next buffered byte
  const char* ip_limit_;  // Points just past buffered bytes
  // If ip < ip_limit_min_maxtaglen_ it's safe to read kMaxTagLength from
  // buffer.
  const char* ip_limit_min_maxtaglen_;
  uint32_t peeked_;                  // Bytes peeked from reader (need to skip)
  bool eof_;                         // Hit end of input without an error?
  char scratch_[kMaximumTagLength];  // See RefillTag().

  // Ensure that all of the tag metadata for the next tag is available
  // in [ip_..ip_limit_-1].  Also ensures that [ip,ip+4] is readable even
  // if (ip_limit_ - ip_ < 5).
  //
  // Returns true on success, false on error or end of input.
  bool RefillTag();

  void ResetLimit(const char* ip) {
    ip_limit_min_maxtaglen_ =
        ip_limit_ - std::min<ptrdiff_t>(ip_limit_ - ip, kMaximumTagLength - 1);
  }

 public:
  explicit SnappyDecompressor(Source* reader)
      : reader_(reader), ip_(NULL), ip_limit_(NULL), peeked_(0), eof_(false) {}

  ~SnappyDecompressor() {
    // Advance past any bytes we peeked at from the reader
    reader_->Skip(peeked_);
  }

  // Returns true iff we have hit the end of the input without an error.
  bool eof() const { return eof_; }

  // Read the uncompressed length stored at the start of the compressed data.
  // On success, stores the length in *result and returns true.
  // On failure, returns false.
  bool ReadUncompressedLength(uint32_t* result) {
    assert(ip_ == NULL);  // Must not have read anything yet
    // Length is encoded in 1..5 bytes
    *result = 0;
    uint32_t shift = 0;
    while (true) {
      if (shift >= 32) return false;
      size_t n;
      const char* ip = reader_->Peek(&n);
      if (n == 0) return false;
      const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
      reader_->Skip(1);
      uint32_t val = c & 0x7f;
      if (LeftShiftOverflows(static_cast<uint8_t>(val), shift)) return false;
      *result |= val << shift;
      if (c < 128) {
        break;
      }
      shift += 7;
    }
    return true;
  }

  // Process the next item found in the input.
  // Returns true if successful, false on error or end of input.
  template <class Writer>
#if defined(__GNUC__) && defined(__x86_64__)
  __attribute__((aligned(32)))
#endif
  void
  DecompressAllTags(Writer* writer) {
    const char* ip = ip_;
    ResetLimit(ip);
    auto op = writer->GetOutputPtr();
    // We could have put this refill fragment only at the beginning of the loop.
    // However, duplicating it at the end of each branch gives the compiler more
    // scope to optimize the <ip_limit_ - ip> expression based on the local
    // context, which overall increases speed.
#define MAYBE_REFILL()                                      \
  if (SNAPPY_PREDICT_FALSE(ip >= ip_limit_min_maxtaglen_)) { \
    ip_ = ip;                                               \
    if (SNAPPY_PREDICT_FALSE(!RefillTag())) goto exit;       \
    ip = ip_;                                               \
    ResetLimit(ip);                                         \
  }                                                         \
  preload = static_cast<uint8_t>(*ip)

    // At the start of the for loop below the least significant byte of preload
    // contains the tag.
    uint32_t preload;
    MAYBE_REFILL();
    for (;;) {
      {
        ptrdiff_t op_limit_min_slop;
        auto op_base = writer->GetBase(&op_limit_min_slop);
        if (op_base) {
          auto res =
              DecompressBranchless(reinterpret_cast<const uint8_t*>(ip),
                                   reinterpret_cast<const uint8_t*>(ip_limit_),
                                   op - op_base, op_base, op_limit_min_slop);
          ip = reinterpret_cast<const char*>(res.first);
          op = op_base + res.second;
          MAYBE_REFILL();
        }
      }
      const uint8_t c = static_cast<uint8_t>(preload);
      ip++;

      // Ratio of iterations that have LITERAL vs non-LITERAL for different
      // inputs.
      //
      // input          LITERAL  NON_LITERAL
      // -----------------------------------
      // html|html4|cp   23%        77%
      // urls            36%        64%
      // jpg             47%        53%
      // pdf             19%        81%
      // txt[1-4]        25%        75%
      // pb              24%        76%
      // bin             24%        76%
      if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) {
        size_t literal_length = (c >> 2) + 1u;
        if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length, &op)) {
          assert(literal_length < 61);
          ip += literal_length;
          // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend()
          // will not return true unless there's already at least five spare
          // bytes in addition to the literal.
          preload = static_cast<uint8_t>(*ip);
          continue;
        }
        if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) {
          // Long literal.
          const size_t literal_length_length = literal_length - 60;
          literal_length =
              ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) +
              1;
          ip += literal_length_length;
        }

        size_t avail = ip_limit_ - ip;
        while (avail < literal_length) {
          if (!writer->Append(ip, avail, &op)) goto exit;
          literal_length -= avail;
          reader_->Skip(peeked_);
          size_t n;
          ip = reader_->Peek(&n);
          avail = n;
          peeked_ = avail;
          if (avail == 0) goto exit;
          ip_limit_ = ip + avail;
          ResetLimit(ip);
        }
        if (!writer->Append(ip, literal_length, &op)) goto exit;
        ip += literal_length;
        MAYBE_REFILL();
      } else {
        if (SNAPPY_PREDICT_FALSE((c & 3) == COPY_4_BYTE_OFFSET)) {
          const size_t copy_offset = LittleEndian::Load32(ip);
          const size_t length = (c >> 2) + 1;
          ip += 4;

          if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit;
        } else {
          const ptrdiff_t entry = kLengthMinusOffset[c];
          preload = LittleEndian::Load32(ip);
          const uint32_t trailer = ExtractLowBytes(preload, c & 3);
          const uint32_t length = entry & 0xff;
          assert(length > 0);

          // copy_offset/256 is encoded in bits 8..10.  By just fetching
          // those bits, we get copy_offset (since the bit-field starts at
          // bit 8).
          const uint32_t copy_offset = trailer - entry + length;
          if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit;

          ip += (c & 3);
          // By using the result of the previous load we reduce the critical
          // dependency chain of ip to 4 cycles.
          preload >>= (c & 3) * 8;
          if (ip < ip_limit_min_maxtaglen_) continue;
        }
        MAYBE_REFILL();
      }
    }
#undef MAYBE_REFILL
  exit:
    writer->SetOutputPtr(op);
  }
};

constexpr uint32_t CalculateNeeded(uint8_t tag) {
  return ((tag & 3) == 0 && tag >= (60 * 4))
             ? (tag >> 2) - 58
             : (0x05030201 >> ((tag * 8) & 31)) & 0xFF;
}

#if __cplusplus >= 201402L
constexpr bool VerifyCalculateNeeded() {
  for (int i = 0; i < 1; i++) {
    if (CalculateNeeded(i) != (char_table[i] >> 11) + 1) return false;
  }
  return true;
}

// Make sure CalculateNeeded is correct by verifying it against the established
// table encoding the number of added bytes needed.
static_assert(VerifyCalculateNeeded(), "");
#endif  // c++14

bool SnappyDecompressor::RefillTag() {
  const char* ip = ip_;
  if (ip == ip_limit_) {
    // Fetch a new fragment from the reader
    reader_->Skip(peeked_);  // All peeked bytes are used up
    size_t n;
    ip = reader_->Peek(&n);
    peeked_ = n;
    eof_ = (n == 0);
    if (eof_) return false;
    ip_limit_ = ip + n;
  }

  // Read the tag character
  assert(ip < ip_limit_);
  const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
  // At this point make sure that the data for the next tag is consecutive.
  // For copy 1 this means the next 2 bytes (tag and 1 byte offset)
  // For copy 2 the next 3 bytes (tag and 2 byte offset)
  // For copy 4 the next 5 bytes (tag and 4 byte offset)
  // For all small literals we only need 1 byte buf for literals 60...63 the
  // length is encoded in 1...4 extra bytes.
  const uint32_t needed = CalculateNeeded(c);
  assert(needed <= sizeof(scratch_));

  // Read more bytes from reader if needed
  uint32_t nbuf = ip_limit_ - ip;
  if (nbuf < needed) {
    // Stitch together bytes from ip and reader to form the word
    // contents.  We store the needed bytes in "scratch_".  They
    // will be consumed immediately by the caller since we do not
    // read more than we need.
    std::memmove(scratch_, ip, nbuf);
    reader_->Skip(peeked_);  // All peeked bytes are used up
    peeked_ = 0;
    while (nbuf < needed) {
      size_t length;
      const char* src = reader_->Peek(&length);
      if (length == 0) return false;
      uint32_t to_add = std::min<uint32_t>(needed - nbuf, length);
      std::memcpy(scratch_ + nbuf, src, to_add);
      nbuf += to_add;
      reader_->Skip(to_add);
    }
    assert(nbuf == needed);
    ip_ = scratch_;
    ip_limit_ = scratch_ + needed;
  } else if (nbuf < kMaximumTagLength) {
    // Have enough bytes, but move into scratch_ so that we do not
    // read past end of input
    std::memmove(scratch_, ip, nbuf);
    reader_->Skip(peeked_);  // All peeked bytes are used up
    peeked_ = 0;
    ip_ = scratch_;
    ip_limit_ = scratch_ + nbuf;
  } else {
    // Pass pointer to buffer returned by reader_.
    ip_ = ip;
  }
  return true;
}

template <typename Writer>
static bool InternalUncompress(Source* r, Writer* writer) {
  // Read the uncompressed length from the front of the compressed input
  SnappyDecompressor decompressor(r);
  uint32_t uncompressed_len = 0;
  if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;

  return InternalUncompressAllTags(&decompressor, writer, r->Available(),
                                   uncompressed_len);
}

template <typename Writer>
static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
                                      Writer* writer, uint32_t compressed_len,
                                      uint32_t uncompressed_len) {
  Report("snappy_uncompress", compressed_len, uncompressed_len);

  writer->SetExpectedLength(uncompressed_len);

  // Process the entire input
  decompressor->DecompressAllTags(writer);
  writer->Flush();
  return (decompressor->eof() && writer->CheckLength());
}

bool GetUncompressedLength(Source* source, uint32_t* result) {
  SnappyDecompressor decompressor(source);
  return decompressor.ReadUncompressedLength(result);
}

size_t Compress(Source* reader, Sink* writer) {
  size_t written = 0;
  size_t N = reader->Available();
  const size_t uncompressed_size = N;
  char ulength[Varint::kMax32];
  char* p = Varint::Encode32(ulength, N);
  writer->Append(ulength, p - ulength);
  written += (p - ulength);

  internal::WorkingMemory wmem(N);

  while (N > 0) {
    // Get next block to compress (without copying if possible)
    size_t fragment_size;
    const char* fragment = reader->Peek(&fragment_size);
    assert(fragment_size != 0);  // premature end of input
    const size_t num_to_read = std::min(N, kBlockSize);
    size_t bytes_read = fragment_size;

    size_t pending_advance = 0;
    if (bytes_read >= num_to_read) {
      // Buffer returned by reader is large enough
      pending_advance = num_to_read;
      fragment_size = num_to_read;
    } else {
      char* scratch = wmem.GetScratchInput();
      std::memcpy(scratch, fragment, bytes_read);
      reader->Skip(bytes_read);

      while (bytes_read < num_to_read) {
        fragment = reader->Peek(&fragment_size);
        size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read);
        std::memcpy(scratch + bytes_read, fragment, n);
        bytes_read += n;
        reader->Skip(n);
      }
      assert(bytes_read == num_to_read);
      fragment = scratch;
      fragment_size = num_to_read;
    }
    assert(fragment_size == num_to_read);

    // Get encoding table for compression
    int table_size;
    uint16_t* table = wmem.GetHashTable(num_to_read, &table_size);

    // Compress input_fragment and append to dest
    const int max_output = MaxCompressedLength(num_to_read);

    // Need a scratch buffer for the output, in case the byte sink doesn't
    // have room for us directly.

    // Since we encode kBlockSize regions followed by a region
    // which is <= kBlockSize in length, a previously allocated
    // scratch_output[] region is big enough for this iteration.
    char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput());
    char* end = internal::CompressFragment(fragment, fragment_size, dest, table,
                                           table_size);
    writer->Append(dest, end - dest);
    written += (end - dest);

    N -= num_to_read;
    reader->Skip(pending_advance);
  }

  Report("snappy_compress", written, uncompressed_size);

  return written;
}

// -----------------------------------------------------------------------
// IOVec interfaces
// -----------------------------------------------------------------------

// A `Source` implementation that yields the contents of an `iovec` array. Note
// that `total_size` is the total number of bytes to be read from the elements
// of `iov` (_not_ the total number of elements in `iov`).
class SnappyIOVecReader : public Source {
 public:
  SnappyIOVecReader(const struct iovec* iov, size_t total_size)
      : curr_iov_(iov),
        curr_pos_(total_size > 0 ? reinterpret_cast<const char*>(iov->iov_base)
                                 : nullptr),
        curr_size_remaining_(total_size > 0 ? iov->iov_len : 0),
        total_size_remaining_(total_size) {
    // Skip empty leading `iovec`s.
    if (total_size > 0 && curr_size_remaining_ == 0) Advance();
  }

  ~SnappyIOVecReader() = default;

  size_t Available() const { return total_size_remaining_; }

  const char* Peek(size_t* len) {
    *len = curr_size_remaining_;
    return curr_pos_;
  }

  void Skip(size_t n) {
    while (n >= curr_size_remaining_ && n > 0) {
      n -= curr_size_remaining_;
      Advance();
    }
    curr_size_remaining_ -= n;
    total_size_remaining_ -= n;
    curr_pos_ += n;
  }

 private:
  // Advances to the next nonempty `iovec` and updates related variables.
  void Advance() {
    do {
      assert(total_size_remaining_ >= curr_size_remaining_);
      total_size_remaining_ -= curr_size_remaining_;
      if (total_size_remaining_ == 0) {
        curr_pos_ = nullptr;
        curr_size_remaining_ = 0;
        return;
      }
      ++curr_iov_;
      curr_pos_ = reinterpret_cast<const char*>(curr_iov_->iov_base);
      curr_size_remaining_ = curr_iov_->iov_len;
    } while (curr_size_remaining_ == 0);
  }

  // The `iovec` currently being read.
  const struct iovec* curr_iov_;
  // The location in `curr_iov_` currently being read.
  const char* curr_pos_;
  // The amount of unread data in `curr_iov_`.
  size_t curr_size_remaining_;
  // The amount of unread data in the entire input array.
  size_t total_size_remaining_;
};

// A type that writes to an iovec.
// Note that this is not a "ByteSink", but a type that matches the
// Writer template argument to SnappyDecompressor::DecompressAllTags().
class SnappyIOVecWriter {
 private:
  // output_iov_end_ is set to iov + count and used to determine when
  // the end of the iovs is reached.
  const struct iovec* output_iov_end_;

#if !defined(NDEBUG)
  const struct iovec* output_iov_;
#endif  // !defined(NDEBUG)

  // Current iov that is being written into.
  const struct iovec* curr_iov_;

  // Pointer to current iov's write location.
  char* curr_iov_output_;

  // Remaining bytes to write into curr_iov_output.
  size_t curr_iov_remaining_;

  // Total bytes decompressed into output_iov_ so far.
  size_t total_written_;

  // Maximum number of bytes that will be decompressed into output_iov_.
  size_t output_limit_;

  static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) {
    return reinterpret_cast<char*>(iov->iov_base) + offset;
  }

 public:
  // Does not take ownership of iov. iov must be valid during the
  // entire lifetime of the SnappyIOVecWriter.
  inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
      : output_iov_end_(iov + iov_count),
#if !defined(NDEBUG)
        output_iov_(iov),
#endif  // !defined(NDEBUG)
        curr_iov_(iov),
        curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base)
                                   : nullptr),
        curr_iov_remaining_(iov_count ? iov->iov_len : 0),
        total_written_(0),
        output_limit_(-1) {
  }

  inline void SetExpectedLength(size_t len) { output_limit_ = len; }

  inline bool CheckLength() const { return total_written_ == output_limit_; }

  inline bool Append(const char* ip, size_t len, char**) {
    if (total_written_ + len > output_limit_) {
      return false;
    }

    return AppendNoCheck(ip, len);
  }

  char* GetOutputPtr() { return nullptr; }
  char* GetBase(ptrdiff_t*) { return nullptr; }
  void SetOutputPtr(char* op) {
    // TODO: Switch to [[maybe_unused]] when we can assume C++17.
    (void)op;
  }

  inline bool AppendNoCheck(const char* ip, size_t len) {
    while (len > 0) {
      if (curr_iov_remaining_ == 0) {
        // This iovec is full. Go to the next one.
        if (curr_iov_ + 1 >= output_iov_end_) {
          return false;
        }
        ++curr_iov_;
        curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
        curr_iov_remaining_ = curr_iov_->iov_len;
      }

      const size_t to_write = std::min(len, curr_iov_remaining_);
      std::memcpy(curr_iov_output_, ip, to_write);
      curr_iov_output_ += to_write;
      curr_iov_remaining_ -= to_write;
      total_written_ += to_write;
      ip += to_write;
      len -= to_write;
    }

    return true;
  }

  inline bool TryFastAppend(const char* ip, size_t available, size_t len,
                            char**) {
    const size_t space_left = output_limit_ - total_written_;
    if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
        curr_iov_remaining_ >= 16) {
      // Fast path, used for the majority (about 95%) of invocations.
      UnalignedCopy128(ip, curr_iov_output_);
      curr_iov_output_ += len;
      curr_iov_remaining_ -= len;
      total_written_ += len;
      return true;
    }

    return false;
  }

  inline bool AppendFromSelf(size_t offset, size_t len, char**) {
    // See SnappyArrayWriter::AppendFromSelf for an explanation of
    // the "offset - 1u" trick.
    if (offset - 1u >= total_written_) {
      return false;
    }
    const size_t space_left = output_limit_ - total_written_;
    if (len > space_left) {
      return false;
    }

    // Locate the iovec from which we need to start the copy.
    const iovec* from_iov = curr_iov_;
    size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_;
    while (offset > 0) {
      if (from_iov_offset >= offset) {
        from_iov_offset -= offset;
        break;
      }

      offset -= from_iov_offset;
      --from_iov;
#if !defined(NDEBUG)
      assert(from_iov >= output_iov_);
#endif  // !defined(NDEBUG)
      from_iov_offset = from_iov->iov_len;
    }

    // Copy <len> bytes starting from the iovec pointed to by from_iov_index to
    // the current iovec.
    while (len > 0) {
      assert(from_iov <= curr_iov_);
      if (from_iov != curr_iov_) {
        const size_t to_copy =
            std::min(from_iov->iov_len - from_iov_offset, len);
        AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy);
        len -= to_copy;
        if (len > 0) {
          ++from_iov;
          from_iov_offset = 0;
        }
      } else {
        size_t to_copy = curr_iov_remaining_;
        if (to_copy == 0) {
          // This iovec is full. Go to the next one.
          if (curr_iov_ + 1 >= output_iov_end_) {
            return false;
          }
          ++curr_iov_;
          curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
          curr_iov_remaining_ = curr_iov_->iov_len;
          continue;
        }
        if (to_copy > len) {
          to_copy = len;
        }
        assert(to_copy > 0);

        IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
                        curr_iov_output_, curr_iov_output_ + to_copy,
                        curr_iov_output_ + curr_iov_remaining_);
        curr_iov_output_ += to_copy;
        curr_iov_remaining_ -= to_copy;
        from_iov_offset += to_copy;
        total_written_ += to_copy;
        len -= to_copy;
      }
    }

    return true;
  }

  inline void Flush() {}
};

bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
                          const struct iovec* iov, size_t iov_cnt) {
  ByteArraySource reader(compressed, compressed_length);
  return RawUncompressToIOVec(&reader, iov, iov_cnt);
}

bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
                          size_t iov_cnt) {
  SnappyIOVecWriter output(iov, iov_cnt);
  return InternalUncompress(compressed, &output);
}

// -----------------------------------------------------------------------
// Flat array interfaces
// -----------------------------------------------------------------------

// A type that writes to a flat array.
// Note that this is not a "ByteSink", but a type that matches the
// Writer template argument to SnappyDecompressor::DecompressAllTags().
class SnappyArrayWriter {
 private:
  char* base_;
  char* op_;
  char* op_limit_;
  // If op < op_limit_min_slop_ then it's safe to unconditionally write
  // kSlopBytes starting at op.
  char* op_limit_min_slop_;

 public:
  inline explicit SnappyArrayWriter(char* dst)
      : base_(dst),
        op_(dst),
        op_limit_(dst),
        op_limit_min_slop_(dst) {}  // Safe default see invariant.

  inline void SetExpectedLength(size_t len) {
    op_limit_ = op_ + len;
    // Prevent pointer from being past the buffer.
    op_limit_min_slop_ = op_limit_ - std::min<size_t>(kSlopBytes - 1, len);
  }

  inline bool CheckLength() const { return op_ == op_limit_; }

  char* GetOutputPtr() { return op_; }
  char* GetBase(ptrdiff_t* op_limit_min_slop) {
    *op_limit_min_slop = op_limit_min_slop_ - base_;
    return base_;
  }
  void SetOutputPtr(char* op) { op_ = op; }

  inline bool Append(const char* ip, size_t len, char** op_p) {
    char* op = *op_p;
    const size_t space_left = op_limit_ - op;
    if (space_left < len) return false;
    std::memcpy(op, ip, len);
    *op_p = op + len;
    return true;
  }

  inline bool TryFastAppend(const char* ip, size_t available, size_t len,
                            char** op_p) {
    char* op = *op_p;
    const size_t space_left = op_limit_ - op;
    if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
      // Fast path, used for the majority (about 95%) of invocations.
      UnalignedCopy128(ip, op);
      *op_p = op + len;
      return true;
    } else {
      return false;
    }
  }

  SNAPPY_ATTRIBUTE_ALWAYS_INLINE
  inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) {
    assert(len > 0);
    char* const op = *op_p;
    assert(op >= base_);
    char* const op_end = op + len;

    // Check if we try to append from before the start of the buffer.
    if (SNAPPY_PREDICT_FALSE(static_cast<size_t>(op - base_) < offset))
      return false;

    if (SNAPPY_PREDICT_FALSE((kSlopBytes < 64 && len > kSlopBytes) ||
                            op >= op_limit_min_slop_ || offset < len)) {
      if (op_end > op_limit_ || offset == 0) return false;
      *op_p = IncrementalCopy(op - offset, op, op_end, op_limit_);
      return true;
    }
    std::memmove(op, op - offset, kSlopBytes);
    *op_p = op_end;
    return true;
  }
  inline size_t Produced() const {
    assert(op_ >= base_);
    return op_ - base_;
  }
  inline void Flush() {}
};

bool RawUncompress(const char* compressed, size_t compressed_length,
                   char* uncompressed) {
  ByteArraySource reader(compressed, compressed_length);
  return RawUncompress(&reader, uncompressed);
}

bool RawUncompress(Source* compressed, char* uncompressed) {
  SnappyArrayWriter output(uncompressed);
  return InternalUncompress(compressed, &output);
}

bool Uncompress(const char* compressed, size_t compressed_length,
                std::string* uncompressed) {
  size_t ulength;
  if (!GetUncompressedLength(compressed, compressed_length, &ulength)) {
    return false;
  }
  // On 32-bit builds: max_size() < kuint32max.  Check for that instead
  // of crashing (e.g., consider externally specified compressed data).
  if (ulength > uncompressed->max_size()) {
    return false;
  }
  STLStringResizeUninitialized(uncompressed, ulength);
  return RawUncompress(compressed, compressed_length,
                       string_as_array(uncompressed));
}

// A Writer that drops everything on the floor and just does validation
class SnappyDecompressionValidator {
 private:
  size_t expected_;
  size_t produced_;

 public:
  inline SnappyDecompressionValidator() : expected_(0), produced_(0) {}
  inline void SetExpectedLength(size_t len) { expected_ = len; }
  size_t GetOutputPtr() { return produced_; }
  size_t GetBase(ptrdiff_t* op_limit_min_slop) {
    *op_limit_min_slop = std::numeric_limits<ptrdiff_t>::max() - kSlopBytes + 1;
    return 1;
  }
  void SetOutputPtr(size_t op) { produced_ = op; }
  inline bool CheckLength() const { return expected_ == produced_; }
  inline bool Append(const char* ip, size_t len, size_t* produced) {
    // TODO: Switch to [[maybe_unused]] when we can assume C++17.
    (void)ip;

    *produced += len;
    return *produced <= expected_;
  }
  inline bool TryFastAppend(const char* ip, size_t available, size_t length,
                            size_t* produced) {
    // TODO: Switch to [[maybe_unused]] when we can assume C++17.
    (void)ip;
    (void)available;
    (void)length;
    (void)produced;

    return false;
  }
  inline bool AppendFromSelf(size_t offset, size_t len, size_t* produced) {
    // See SnappyArrayWriter::AppendFromSelf for an explanation of
    // the "offset - 1u" trick.
    if (*produced <= offset - 1u) return false;
    *produced += len;
    return *produced <= expected_;
  }
  inline void Flush() {}
};

bool IsValidCompressedBuffer(const char* compressed, size_t compressed_length) {
  ByteArraySource reader(compressed, compressed_length);
  SnappyDecompressionValidator writer;
  return InternalUncompress(&reader, &writer);
}

bool IsValidCompressed(Source* compressed) {
  SnappyDecompressionValidator writer;
  return InternalUncompress(compressed, &writer);
}

void RawCompress(const char* input, size_t input_length, char* compressed,
                 size_t* compressed_length) {
  ByteArraySource reader(input, input_length);
  UncheckedByteArraySink writer(compressed);
  Compress(&reader, &writer);

  // Compute how many bytes were added
  *compressed_length = (writer.CurrentDestination() - compressed);
}

void RawCompressFromIOVec(const struct iovec* iov, size_t uncompressed_length,
                          char* compressed, size_t* compressed_length) {
  SnappyIOVecReader reader(iov, uncompressed_length);
  UncheckedByteArraySink writer(compressed);
  Compress(&reader, &writer);

  // Compute how many bytes were added.
  *compressed_length = writer.CurrentDestination() - compressed;
}

size_t Compress(const char* input, size_t input_length,
                std::string* compressed) {
  // Pre-grow the buffer to the max length of the compressed output
  STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));

  size_t compressed_length;
  RawCompress(input, input_length, string_as_array(compressed),
              &compressed_length);
  compressed->erase(compressed_length);
  return compressed_length;
}

size_t CompressFromIOVec(const struct iovec* iov, size_t iov_cnt,
                         std::string* compressed) {
  // Compute the number of bytes to be compressed.
  size_t uncompressed_length = 0;
  for (size_t i = 0; i < iov_cnt; ++i) {
    uncompressed_length += iov[i].iov_len;
  }

  // Pre-grow the buffer to the max length of the compressed output.
  STLStringResizeUninitialized(compressed, MaxCompressedLength(
      uncompressed_length));

  size_t compressed_length;
  RawCompressFromIOVec(iov, uncompressed_length, string_as_array(compressed),
                       &compressed_length);
  compressed->erase(compressed_length);
  return compressed_length;
}

// -----------------------------------------------------------------------
// Sink interface
// -----------------------------------------------------------------------

// A type that decompresses into a Sink. The template parameter
// Allocator must export one method "char* Allocate(int size);", which
// allocates a buffer of "size" and appends that to the destination.
template <typename Allocator>
class SnappyScatteredWriter {
  Allocator allocator_;

  // We need random access into the data generated so far.  Therefore
  // we keep track of all of the generated data as an array of blocks.
  // All of the blocks except the last have length kBlockSize.
  std::vector<char*> blocks_;
  size_t expected_;

  // Total size of all fully generated blocks so far
  size_t full_size_;

  // Pointer into current output block
  char* op_base_;   // Base of output block
  char* op_ptr_;    // Pointer to next unfilled byte in block
  char* op_limit_;  // Pointer just past block
  // If op < op_limit_min_slop_ then it's safe to unconditionally write
  // kSlopBytes starting at op.
  char* op_limit_min_slop_;

  inline size_t Size() const { return full_size_ + (op_ptr_ - op_base_); }

  bool SlowAppend(const char* ip, size_t len);
  bool SlowAppendFromSelf(size_t offset, size_t len);

 public:
  inline explicit SnappyScatteredWriter(const Allocator& allocator)
      : allocator_(allocator),
        full_size_(0),
        op_base_(NULL),
        op_ptr_(NULL),
        op_limit_(NULL),
        op_limit_min_slop_(NULL) {}
  char* GetOutputPtr() { return op_ptr_; }
  char* GetBase(ptrdiff_t* op_limit_min_slop) {
    *op_limit_min_slop = op_limit_min_slop_ - op_base_;
    return op_base_;
  }
  void SetOutputPtr(char* op) { op_ptr_ = op; }

  inline void SetExpectedLength(size_t len) {
    assert(blocks_.empty());
    expected_ = len;
  }

  inline bool CheckLength() const { return Size() == expected_; }

  // Return the number of bytes actually uncompressed so far
  inline size_t Produced() const { return Size(); }

  inline bool Append(const char* ip, size_t len, char** op_p) {
    char* op = *op_p;
    size_t avail = op_limit_ - op;
    if (len <= avail) {
      // Fast path
      std::memcpy(op, ip, len);
      *op_p = op + len;
      return true;
    } else {
      op_ptr_ = op;
      bool res = SlowAppend(ip, len);
      *op_p = op_ptr_;
      return res;
    }
  }

  inline bool TryFastAppend(const char* ip, size_t available, size_t length,
                            char** op_p) {
    char* op = *op_p;
    const int space_left = op_limit_ - op;
    if (length <= 16 && available >= 16 + kMaximumTagLength &&
        space_left >= 16) {
      // Fast path, used for the majority (about 95%) of invocations.
      UnalignedCopy128(ip, op);
      *op_p = op + length;
      return true;
    } else {
      return false;
    }
  }

  inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) {
    char* op = *op_p;
    assert(op >= op_base_);
    // Check if we try to append from before the start of the buffer.
    if (SNAPPY_PREDICT_FALSE((kSlopBytes < 64 && len > kSlopBytes) ||
                            static_cast<size_t>(op - op_base_) < offset ||
                            op >= op_limit_min_slop_ || offset < len)) {
      if (offset == 0) return false;
      if (SNAPPY_PREDICT_FALSE(static_cast<size_t>(op - op_base_) < offset ||
                              op + len > op_limit_)) {
        op_ptr_ = op;
        bool res = SlowAppendFromSelf(offset, len);
        *op_p = op_ptr_;
        return res;
      }
      *op_p = IncrementalCopy(op - offset, op, op + len, op_limit_);
      return true;
    }
    // Fast path
    char* const op_end = op + len;
    std::memmove(op, op - offset, kSlopBytes);
    *op_p = op_end;
    return true;
  }

  // Called at the end of the decompress. We ask the allocator
  // write all blocks to the sink.
  inline void Flush() { allocator_.Flush(Produced()); }
};

template <typename Allocator>
bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
  size_t avail = op_limit_ - op_ptr_;
  while (len > avail) {
    // Completely fill this block
    std::memcpy(op_ptr_, ip, avail);
    op_ptr_ += avail;
    assert(op_limit_ - op_ptr_ == 0);
    full_size_ += (op_ptr_ - op_base_);
    len -= avail;
    ip += avail;

    // Bounds check
    if (full_size_ + len > expected_) return false;

    // Make new block
    size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_);
    op_base_ = allocator_.Allocate(bsize);
    op_ptr_ = op_base_;
    op_limit_ = op_base_ + bsize;
    op_limit_min_slop_ = op_limit_ - std::min<size_t>(kSlopBytes - 1, bsize);

    blocks_.push_back(op_base_);
    avail = bsize;
  }

  std::memcpy(op_ptr_, ip, len);
  op_ptr_ += len;
  return true;
}

template <typename Allocator>
bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
                                                         size_t len) {
  // Overflow check
  // See SnappyArrayWriter::AppendFromSelf for an explanation of
  // the "offset - 1u" trick.
  const size_t cur = Size();
  if (offset - 1u >= cur) return false;
  if (expected_ - cur < len) return false;

  // Currently we shouldn't ever hit this path because Compress() chops the
  // input into blocks and does not create cross-block copies. However, it is
  // nice if we do not rely on that, since we can get better compression if we
  // allow cross-block copies and thus might want to change the compressor in
  // the future.
  // TODO Replace this with a properly optimized path. This is not
  // triggered right now. But this is so super slow, that it would regress
  // performance unacceptably if triggered.
  size_t src = cur - offset;
  char* op = op_ptr_;
  while (len-- > 0) {
    char c = blocks_[src >> kBlockLog][src & (kBlockSize - 1)];
    if (!Append(&c, 1, &op)) {
      op_ptr_ = op;
      return false;
    }
    src++;
  }
  op_ptr_ = op;
  return true;
}

class SnappySinkAllocator {
 public:
  explicit SnappySinkAllocator(Sink* dest) : dest_(dest) {}
  ~SnappySinkAllocator() {}

  char* Allocate(int size) {
    Datablock block(new char[size], size);
    blocks_.push_back(block);
    return block.data;
  }

  // We flush only at the end, because the writer wants
  // random access to the blocks and once we hand the
  // block over to the sink, we can't access it anymore.
  // Also we don't write more than has been actually written
  // to the blocks.
  void Flush(size_t size) {
    size_t size_written = 0;
    for (Datablock& block : blocks_) {
      size_t block_size = std::min<size_t>(block.size, size - size_written);
      dest_->AppendAndTakeOwnership(block.data, block_size,
                                    &SnappySinkAllocator::Deleter, NULL);
      size_written += block_size;
    }
    blocks_.clear();
  }

 private:
  struct Datablock {
    char* data;
    size_t size;
    Datablock(char* p, size_t s) : data(p), size(s) {}
  };

  static void Deleter(void* arg, const char* bytes, size_t size) {
    // TODO: Switch to [[maybe_unused]] when we can assume C++17.
    (void)arg;
    (void)size;

    delete[] bytes;
  }

  Sink* dest_;
  std::vector<Datablock> blocks_;

  // Note: copying this object is allowed
};

size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
  SnappySinkAllocator allocator(uncompressed);
  SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
  InternalUncompress(compressed, &writer);
  return writer.Produced();
}

bool Uncompress(Source* compressed, Sink* uncompressed) {
  // Read the uncompressed length from the front of the compressed input
  SnappyDecompressor decompressor(compressed);
  uint32_t uncompressed_len = 0;
  if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
    return false;
  }

  char c;
  size_t allocated_size;
  char* buf = uncompressed->GetAppendBufferVariable(1, uncompressed_len, &c, 1,
                                                    &allocated_size);

  const size_t compressed_len = compressed->Available();
  // If we can get a flat buffer, then use it, otherwise do block by block
  // uncompression
  if (allocated_size >= uncompressed_len) {
    SnappyArrayWriter writer(buf);
    bool result = InternalUncompressAllTags(&decompressor, &writer,
                                            compressed_len, uncompressed_len);
    uncompressed->Append(buf, writer.Produced());
    return result;
  } else {
    SnappySinkAllocator allocator(uncompressed);
    SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
    return InternalUncompressAllTags(&decompressor, &writer, compressed_len,
                                     uncompressed_len);
  }
}

}  // namespace snappy