summaryrefslogtreecommitdiff
path: root/doc/sed.info
blob: 38235da3b7f8e8bf6b240be859aeb1ff3e3f1aae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
This is ../../doc/sed.info, produced by makeinfo version 4.13 from
../../doc//config.texi.

INFO-DIR-SECTION Text creation and manipulation
START-INFO-DIR-ENTRY
* sed: (sed).                   Stream EDitor.

END-INFO-DIR-ENTRY

   This file documents version 4.2.2 of GNU `sed', a stream editor.

   Copyright (C) 1998, 1999, 2001, 2002, 2003, 2004 Free Software
Foundation, Inc.

   This document is released under the terms of the GNU Free
Documentation License as published by the Free Software Foundation;
either version 1.1, or (at your option) any later version.

   You should have received a copy of the GNU Free Documentation
License along with GNU `sed'; see the file `COPYING.DOC'.  If not,
write to the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02110-1301, USA.

   There are no Cover Texts and no Invariant Sections; this text, along
with its equivalent in the printed manual, constitutes the Title Page.


File: sed.info,  Node: Top,  Next: Introduction,  Up: (dir)

sed, a stream editor
********************

This file documents version 4.2.2 of GNU `sed', a stream editor.

   Copyright (C) 1998, 1999, 2001, 2002, 2003, 2004 Free Software
Foundation, Inc.

   This document is released under the terms of the GNU Free
Documentation License as published by the Free Software Foundation;
either version 1.1, or (at your option) any later version.

   You should have received a copy of the GNU Free Documentation
License along with GNU `sed'; see the file `COPYING.DOC'.  If not,
write to the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02110-1301, USA.

   There are no Cover Texts and no Invariant Sections; this text, along
with its equivalent in the printed manual, constitutes the Title Page.

* Menu:

* Introduction::               Introduction
* Invoking sed::               Invocation
* sed Programs::               `sed' programs
* Examples::                   Some sample scripts
* Limitations::                Limitations and (non-)limitations of GNU `sed'
* Other Resources::            Other resources for learning about `sed'
* Reporting Bugs::             Reporting bugs

* Extended regexps::           `egrep'-style regular expressions

* Concept Index::              A menu with all the topics in this manual.
* Command and Option Index::   A menu with all `sed' commands and
                               command-line options.

--- The detailed node listing ---

sed Programs:
* Execution Cycle::                 How `sed' works
* Addresses::                       Selecting lines with `sed'
* Regular Expressions::             Overview of regular expression syntax
* Common Commands::                 Often used commands
* The "s" Command::                 `sed''s Swiss Army Knife
* Other Commands::                  Less frequently used commands
* Programming Commands::            Commands for `sed' gurus
* Extended Commands::               Commands specific of GNU `sed'
* Escapes::                         Specifying special characters

Examples:
* Centering lines::
* Increment a number::
* Rename files to lower case::
* Print bash environment::
* Reverse chars of lines::
* tac::                             Reverse lines of files
* cat -n::                          Numbering lines
* cat -b::                          Numbering non-blank lines
* wc -c::                           Counting chars
* wc -w::                           Counting words
* wc -l::                           Counting lines
* head::                            Printing the first lines
* tail::                            Printing the last lines
* uniq::                            Make duplicate lines unique
* uniq -d::                         Print duplicated lines of input
* uniq -u::                         Remove all duplicated lines
* cat -s::                          Squeezing blank lines


File: sed.info,  Node: Introduction,  Next: Invoking sed,  Prev: Top,  Up: Top

1 Introduction
**************

`sed' is a stream editor.  A stream editor is used to perform basic text
transformations on an input stream (a file or input from a pipeline).
While in some ways similar to an editor which permits scripted edits
(such as `ed'), `sed' works by making only one pass over the input(s),
and is consequently more efficient.  But it is `sed''s ability to
filter text in a pipeline which particularly distinguishes it from
other types of editors.


File: sed.info,  Node: Invoking sed,  Next: sed Programs,  Prev: Introduction,  Up: Top

2 Invocation
************

Normally `sed' is invoked like this:

     sed SCRIPT INPUTFILE...

   The full format for invoking `sed' is:

     sed OPTIONS... [SCRIPT] [INPUTFILE...]

   If you do not specify INPUTFILE, or if INPUTFILE is `-', `sed'
filters the contents of the standard input.  The SCRIPT is actually the
first non-option parameter, which `sed' specially considers a script
and not an input file if (and only if) none of the other OPTIONS
specifies a script to be executed, that is if neither of the `-e' and
`-f' options is specified.

   `sed' may be invoked with the following command-line options:

`--version'
     Print out the version of `sed' that is being run and a copyright
     notice, then exit.

`--help'
     Print a usage message briefly summarizing these command-line
     options and the bug-reporting address, then exit.

`-n'
`--quiet'
`--silent'
     By default, `sed' prints out the pattern space at the end of each
     cycle through the script (*note How `sed' works: Execution Cycle.).
     These options disable this automatic printing, and `sed' only
     produces output when explicitly told to via the `p' command.

`-e SCRIPT'
`--expression=SCRIPT'
     Add the commands in SCRIPT to the set of commands to be run while
     processing the input.

`-f SCRIPT-FILE'
`--file=SCRIPT-FILE'
     Add the commands contained in the file SCRIPT-FILE to the set of
     commands to be run while processing the input.

`-i[SUFFIX]'
`--in-place[=SUFFIX]'
     This option specifies that files are to be edited in-place.  GNU
     `sed' does this by creating a temporary file and sending output to
     this file rather than to the standard output.(1).

     This option implies `-s'.

     When the end of the file is reached, the temporary file is renamed
     to the output file's original name.  The extension, if supplied,
     is used to modify the name of the old file before renaming the
     temporary file, thereby making a backup copy(2)).

     This rule is followed: if the extension doesn't contain a `*',
     then it is appended to the end of the current filename as a
     suffix; if the extension does contain one or more `*' characters,
     then _each_ asterisk is replaced with the current filename.  This
     allows you to add a prefix to the backup file, instead of (or in
     addition to) a suffix, or even to place backup copies of the
     original files into another directory (provided the directory
     already exists).

     If no extension is supplied, the original file is overwritten
     without making a backup.

`-l N'
`--line-length=N'
     Specify the default line-wrap length for the `l' command.  A
     length of 0 (zero) means to never wrap long lines.  If not
     specified, it is taken to be 70.

`--posix'
     GNU `sed' includes several extensions to POSIX sed.  In order to
     simplify writing portable scripts, this option disables all the
     extensions that this manual documents, including additional
     commands.  Most of the extensions accept `sed' programs that are
     outside the syntax mandated by POSIX, but some of them (such as
     the behavior of the `N' command described in *note Reporting
     Bugs::) actually violate the standard.  If you want to disable
     only the latter kind of extension, you can set the
     `POSIXLY_CORRECT' variable to a non-empty value.

`-b'
`--binary'
     This option is available on every platform, but is only effective
     where the operating system makes a distinction between text files
     and binary files.  When such a distinction is made--as is the case
     for MS-DOS, Windows, Cygwin--text files are composed of lines
     separated by a carriage return _and_ a line feed character, and
     `sed' does not see the ending CR.  When this option is specified,
     `sed' will open input files in binary mode, thus not requesting
     this special processing and considering lines to end at a line
     feed.

`--follow-symlinks'
     This option is available only on platforms that support symbolic
     links and has an effect only if option `-i' is specified.  In this
     case, if the file that is specified on the command line is a
     symbolic link, `sed' will follow the link and edit the ultimate
     destination of the link.  The default behavior is to break the
     symbolic link, so that the link destination will not be modified.

`-r'
`--regexp-extended'
     Use extended regular expressions rather than basic regular
     expressions.  Extended regexps are those that `egrep' accepts;
     they can be clearer because they usually have less backslashes,
     but are a GNU extension and hence scripts that use them are not
     portable.  *Note Extended regular expressions: Extended regexps.

`-s'
`--separate'
     By default, `sed' will consider the files specified on the command
     line as a single continuous long stream.  This GNU `sed' extension
     allows the user to consider them as separate files: range
     addresses (such as `/abc/,/def/') are not allowed to span several
     files, line numbers are relative to the start of each file, `$'
     refers to the last line of each file, and files invoked from the
     `R' commands are rewound at the start of each file.

`-u'
`--unbuffered'
     Buffer both input and output as minimally as practical.  (This is
     particularly useful if the input is coming from the likes of `tail
     -f', and you wish to see the transformed output as soon as
     possible.)

`-z'
`--null-data'
`--zero-terminated'
     Treat the input as a set of lines, each terminated by a zero byte
     (the ASCII `NUL' character) instead of a newline.  This option can
     be used with commands like `sort -z' and `find -print0' to process
     arbitrary file names.

   If no `-e', `-f', `--expression', or `--file' options are given on
the command-line, then the first non-option argument on the command
line is taken to be the SCRIPT to be executed.

   If any command-line parameters remain after processing the above,
these parameters are interpreted as the names of input files to be
processed.  A file name of `-' refers to the standard input stream.
The standard input will be processed if no file names are specified.

   ---------- Footnotes ----------

   (1) This applies to commands such as `=', `a', `c', `i', `l', `p'.
You can still write to the standard output by using the `w' or `W'
commands together with the `/dev/stdout' special file

   (2) Note that GNU `sed' creates the backup file whether or not any
output is actually changed.


File: sed.info,  Node: sed Programs,  Next: Examples,  Prev: Invoking sed,  Up: Top

3 `sed' Programs
****************

A `sed' program consists of one or more `sed' commands, passed in by
one or more of the `-e', `-f', `--expression', and `--file' options, or
the first non-option argument if zero of these options are used.  This
document will refer to "the" `sed' script; this is understood to mean
the in-order catenation of all of the SCRIPTs and SCRIPT-FILEs passed
in.

   Commands within a SCRIPT or SCRIPT-FILE can be separated by
semicolons (`;') or newlines (ASCII 10).  Some commands, due to their
syntax, cannot be followed by semicolons working as command separators
and thus should be terminated with newlines or be placed at the end of
a SCRIPT or SCRIPT-FILE.  Commands can also be preceded with optional
non-significant whitespace characters.

   Each `sed' command consists of an optional address or address range,
followed by a one-character command name and any additional
command-specific code.

* Menu:

* Execution Cycle::          How `sed' works
* Addresses::                Selecting lines with `sed'
* Regular Expressions::      Overview of regular expression syntax
* Common Commands::          Often used commands
* The "s" Command::          `sed''s Swiss Army Knife
* Other Commands::           Less frequently used commands
* Programming Commands::     Commands for `sed' gurus
* Extended Commands::        Commands specific of GNU `sed'
* Escapes::                  Specifying special characters


File: sed.info,  Node: Execution Cycle,  Next: Addresses,  Up: sed Programs

3.1 How `sed' Works
===================

`sed' maintains two data buffers: the active _pattern_ space, and the
auxiliary _hold_ space. Both are initially empty.

   `sed' operates by performing the following cycle on each line of
input: first, `sed' reads one line from the input stream, removes any
trailing newline, and places it in the pattern space.  Then commands
are executed; each command can have an address associated to it:
addresses are a kind of condition code, and a command is only executed
if the condition is verified before the command is to be executed.

   When the end of the script is reached, unless the `-n' option is in
use, the contents of pattern space are printed out to the output
stream, adding back the trailing newline if it was removed.(1) Then the
next cycle starts for the next input line.

   Unless special commands (like `D') are used, the pattern space is
deleted between two cycles. The hold space, on the other hand, keeps
its data between cycles (see commands `h', `H', `x', `g', `G' to move
data between both buffers).

   ---------- Footnotes ----------

   (1) Actually, if `sed' prints a line without the terminating
newline, it will nevertheless print the missing newline as soon as more
text is sent to the same output stream, which gives the "least expected
surprise" even though it does not make commands like `sed -n p' exactly
identical to `cat'.


File: sed.info,  Node: Addresses,  Next: Regular Expressions,  Prev: Execution Cycle,  Up: sed Programs

3.2 Selecting lines with `sed'
==============================

Addresses in a `sed' script can be in any of the following forms:
`NUMBER'
     Specifying a line number will match only that line in the input.
     (Note that `sed' counts lines continuously across all input files
     unless `-i' or `-s' options are specified.)

`FIRST~STEP'
     This GNU extension matches every STEPth line starting with line
     FIRST.  In particular, lines will be selected when there exists a
     non-negative N such that the current line-number equals FIRST + (N
     * STEP).  Thus, to select the odd-numbered lines, one would use
     `1~2'; to pick every third line starting with the second, `2~3'
     would be used; to pick every fifth line starting with the tenth,
     use `10~5'; and `50~0' is just an obscure way of saying `50'.

`$'
     This address matches the last line of the last file of input, or
     the last line of each file when the `-i' or `-s' options are
     specified.

`/REGEXP/'
     This will select any line which matches the regular expression
     REGEXP.  If REGEXP itself includes any `/' characters, each must
     be escaped by a backslash (`\').

     The empty regular expression `//' repeats the last regular
     expression match (the same holds if the empty regular expression is
     passed to the `s' command).  Note that modifiers to regular
     expressions are evaluated when the regular expression is compiled,
     thus it is invalid to specify them together with the empty regular
     expression.

`\%REGEXP%'
     (The `%' may be replaced by any other single character.)

     This also matches the regular expression REGEXP, but allows one to
     use a different delimiter than `/'.  This is particularly useful
     if the REGEXP itself contains a lot of slashes, since it avoids
     the tedious escaping of every `/'.  If REGEXP itself includes any
     delimiter characters, each must be escaped by a backslash (`\').

`/REGEXP/I'
`\%REGEXP%I'
     The `I' modifier to regular-expression matching is a GNU extension
     which causes the REGEXP to be matched in a case-insensitive manner.

`/REGEXP/M'
`\%REGEXP%M'
     The `M' modifier to regular-expression matching is a GNU `sed'
     extension which directs GNU `sed' to match the regular expression
     in `multi-line' mode.  The modifier causes `^' and `$' to match
     respectively (in addition to the normal behavior) the empty string
     after a newline, and the empty string before a newline.  There are
     special character sequences (`\`' and `\'') which always match the
     beginning or the end of the buffer.  In addition, the period
     character does not match a new-line character in multi-line mode.


   If no addresses are given, then all lines are matched; if one
address is given, then only lines matching that address are matched.

   An address range can be specified by specifying two addresses
separated by a comma (`,').  An address range matches lines starting
from where the first address matches, and continues until the second
address matches (inclusively).

   If the second address is a REGEXP, then checking for the ending
match will start with the line _following_ the line which matched the
first address: a range will always span at least two lines (except of
course if the input stream ends).

   If the second address is a NUMBER less than (or equal to) the line
matching the first address, then only the one line is matched.

   GNU `sed' also supports some special two-address forms; all these
are GNU extensions:
`0,/REGEXP/'
     A line number of `0' can be used in an address specification like
     `0,/REGEXP/' so that `sed' will try to match REGEXP in the first
     input line too.  In other words, `0,/REGEXP/' is similar to
     `1,/REGEXP/', except that if ADDR2 matches the very first line of
     input the `0,/REGEXP/' form will consider it to end the range,
     whereas the `1,/REGEXP/' form will match the beginning of its
     range and hence make the range span up to the _second_ occurrence
     of the regular expression.

     Note that this is the only place where the `0' address makes
     sense; there is no 0-th line and commands which are given the `0'
     address in any other way will give an error.

`ADDR1,+N'
     Matches ADDR1 and the N lines following ADDR1.

`ADDR1,~N'
     Matches ADDR1 and the lines following ADDR1 until the next line
     whose input line number is a multiple of N.

   Appending the `!' character to the end of an address specification
negates the sense of the match.  That is, if the `!' character follows
an address range, then only lines which do _not_ match the address range
will be selected.  This also works for singleton addresses, and,
perhaps perversely, for the null address.


File: sed.info,  Node: Regular Expressions,  Next: Common Commands,  Prev: Addresses,  Up: sed Programs

3.3 Overview of Regular Expression Syntax
=========================================

To know how to use `sed', people should understand regular expressions
("regexp" for short).  A regular expression is a pattern that is
matched against a subject string from left to right.  Most characters
are "ordinary": they stand for themselves in a pattern, and match the
corresponding characters in the subject.  As a trivial example, the
pattern

     The quick brown fox

matches a portion of a subject string that is identical to itself.  The
power of regular expressions comes from the ability to include
alternatives and repetitions in the pattern.  These are encoded in the
pattern by the use of "special characters", which do not stand for
themselves but instead are interpreted in some special way.  Here is a
brief description of regular expression syntax as used in `sed'.

`CHAR'
     A single ordinary character matches itself.

`*'
     Matches a sequence of zero or more instances of matches for the
     preceding regular expression, which must be an ordinary character,
     a special character preceded by `\', a `.', a grouped regexp (see
     below), or a bracket expression.  As a GNU extension, a postfixed
     regular expression can also be followed by `*'; for example, `a**'
     is equivalent to `a*'.  POSIX 1003.1-2001 says that `*' stands for
     itself when it appears at the start of a regular expression or
     subexpression, but many nonGNU implementations do not support this
     and portable scripts should instead use `\*' in these contexts.

`\+'
     As `*', but matches one or more.  It is a GNU extension.

`\?'
     As `*', but only matches zero or one.  It is a GNU extension.

`\{I\}'
     As `*', but matches exactly I sequences (I is a decimal integer;
     for portability, keep it between 0 and 255 inclusive).

`\{I,J\}'
     Matches between I and J, inclusive, sequences.

`\{I,\}'
     Matches more than or equal to I sequences.

`\(REGEXP\)'
     Groups the inner REGEXP as a whole, this is used to:

        * Apply postfix operators, like `\(abcd\)*': this will search
          for zero or more whole sequences of `abcd', while `abcd*'
          would search for `abc' followed by zero or more occurrences
          of `d'.  Note that support for `\(abcd\)*' is required by
          POSIX 1003.1-2001, but many non-GNU implementations do not
          support it and hence it is not universally portable.

        * Use back references (see below).

`.'
     Matches any character, including newline.

`^'
     Matches the null string at beginning of the pattern space, i.e.
     what appears after the circumflex must appear at the beginning of
     the pattern space.

     In most scripts, pattern space is initialized to the content of
     each line (*note How `sed' works: Execution Cycle.).  So, it is a
     useful simplification to think of `^#include' as matching only
     lines where `#include' is the first thing on line--if there are
     spaces before, for example, the match fails.  This simplification
     is valid as long as the original content of pattern space is not
     modified, for example with an `s' command.

     `^' acts as a special character only at the beginning of the
     regular expression or subexpression (that is, after `\(' or `\|').
     Portable scripts should avoid `^' at the beginning of a
     subexpression, though, as POSIX allows implementations that treat
     `^' as an ordinary character in that context.

`$'
     It is the same as `^', but refers to end of pattern space.  `$'
     also acts as a special character only at the end of the regular
     expression or subexpression (that is, before `\)' or `\|'), and
     its use at the end of a subexpression is not portable.

`[LIST]'
`[^LIST]'
     Matches any single character in LIST: for example, `[aeiou]'
     matches all vowels.  A list may include sequences like
     `CHAR1-CHAR2', which matches any character between (inclusive)
     CHAR1 and CHAR2.

     A leading `^' reverses the meaning of LIST, so that it matches any
     single character _not_ in LIST.  To include `]' in the list, make
     it the first character (after the `^' if needed), to include `-'
     in the list, make it the first or last; to include `^' put it
     after the first character.

     The characters `$', `*', `.', `[', and `\' are normally not
     special within LIST.  For example, `[\*]' matches either `\' or
     `*', because the `\' is not special here.  However, strings like
     `[.ch.]', `[=a=]', and `[:space:]' are special within LIST and
     represent collating symbols, equivalence classes, and character
     classes, respectively, and `[' is therefore special within LIST
     when it is followed by `.', `=', or `:'.  Also, when not in
     `POSIXLY_CORRECT' mode, special escapes like `\n' and `\t' are
     recognized within LIST.  *Note Escapes::.

`REGEXP1\|REGEXP2'
     Matches either REGEXP1 or REGEXP2.  Use parentheses to use complex
     alternative regular expressions.  The matching process tries each
     alternative in turn, from left to right, and the first one that
     succeeds is used.  It is a GNU extension.

`REGEXP1REGEXP2'
     Matches the concatenation of REGEXP1 and REGEXP2.  Concatenation
     binds more tightly than `\|', `^', and `$', but less tightly than
     the other regular expression operators.

`\DIGIT'
     Matches the DIGIT-th `\(...\)' parenthesized subexpression in the
     regular expression.  This is called a "back reference".
     Subexpressions are implicity numbered by counting occurrences of
     `\(' left-to-right.

`\n'
     Matches the newline character.

`\CHAR'
     Matches CHAR, where CHAR is one of `$', `*', `.', `[', `\', or `^'.
     Note that the only C-like backslash sequences that you can
     portably assume to be interpreted are `\n' and `\\'; in particular
     `\t' is not portable, and matches a `t' under most implementations
     of `sed', rather than a tab character.


   Note that the regular expression matcher is greedy, i.e., matches
are attempted from left to right and, if two or more matches are
possible starting at the same character, it selects the longest.

Examples:
`abcdef'
     Matches `abcdef'.

`a*b'
     Matches zero or more `a's followed by a single `b'.  For example,
     `b' or `aaaaab'.

`a\?b'
     Matches `b' or `ab'.

`a\+b\+'
     Matches one or more `a's followed by one or more `b's: `ab' is the
     shortest possible match, but other examples are `aaaab' or
     `abbbbb' or `aaaaaabbbbbbb'.

`.*'
`.\+'
     These two both match all the characters in a string; however, the
     first matches every string (including the empty string), while the
     second matches only strings containing at least one character.

`^main.*(.*)'
     This matches a string starting with `main', followed by an opening
     and closing parenthesis.  The `n', `(' and `)' need not be
     adjacent.

`^#'
     This matches a string beginning with `#'.

`\\$'
     This matches a string ending with a single backslash.  The regexp
     contains two backslashes for escaping.

`\$'
     Instead, this matches a string consisting of a single dollar sign,
     because it is escaped.

`[a-zA-Z0-9]'
     In the C locale, this matches any ASCII letters or digits.

`[^ tab]\+'
     (Here `tab' stands for a single tab character.)  This matches a
     string of one or more characters, none of which is a space or a
     tab.  Usually this means a word.

`^\(.*\)\n\1$'
     This matches a string consisting of two equal substrings separated
     by a newline.

`.\{9\}A$'
     This matches nine characters followed by an `A'.

`^.\{15\}A'
     This matches the start of a string that contains 16 characters,
     the last of which is an `A'.



File: sed.info,  Node: Common Commands,  Next: The "s" Command,  Prev: Regular Expressions,  Up: sed Programs

3.4 Often-Used Commands
=======================

If you use `sed' at all, you will quite likely want to know these
commands.

`#'
     [No addresses allowed.]

     The `#' character begins a comment; the comment continues until
     the next newline.

     If you are concerned about portability, be aware that some
     implementations of `sed' (which are not POSIX conformant) may only
     support a single one-line comment, and then only when the very
     first character of the script is a `#'.

     Warning: if the first two characters of the `sed' script are `#n',
     then the `-n' (no-autoprint) option is forced.  If you want to put
     a comment in the first line of your script and that comment begins
     with the letter `n' and you do not want this behavior, then be
     sure to either use a capital `N', or place at least one space
     before the `n'.

`q [EXIT-CODE]'
     This command only accepts a single address.

     Exit `sed' without processing any more commands or input.  Note
     that the current pattern space is printed if auto-print is not
     disabled with the `-n' options.  The ability to return an exit
     code from the `sed' script is a GNU `sed' extension.

`d'
     Delete the pattern space; immediately start next cycle.

`p'
     Print out the pattern space (to the standard output).  This
     command is usually only used in conjunction with the `-n'
     command-line option.

`n'
     If auto-print is not disabled, print the pattern space, then,
     regardless, replace the pattern space with the next line of input.
     If there is no more input then `sed' exits without processing any
     more commands.

`{ COMMANDS }'
     A group of commands may be enclosed between `{' and `}' characters.
     This is particularly useful when you want a group of commands to
     be triggered by a single address (or address-range) match.



File: sed.info,  Node: The "s" Command,  Next: Other Commands,  Prev: Common Commands,  Up: sed Programs

3.5 The `s' Command
===================

The syntax of the `s' (as in substitute) command is
`s/REGEXP/REPLACEMENT/FLAGS'.  The `/' characters may be uniformly
replaced by any other single character within any given `s' command.
The `/' character (or whatever other character is used in its stead)
can appear in the REGEXP or REPLACEMENT only if it is preceded by a `\'
character.

   The `s' command is probably the most important in `sed' and has a
lot of different options.  Its basic concept is simple: the `s' command
attempts to match the pattern space against the supplied REGEXP; if the
match is successful, then that portion of the pattern space which was
matched is replaced with REPLACEMENT.

   The REPLACEMENT can contain `\N' (N being a number from 1 to 9,
inclusive) references, which refer to the portion of the match which is
contained between the Nth `\(' and its matching `\)'.  Also, the
REPLACEMENT can contain unescaped `&' characters which reference the
whole matched portion of the pattern space.  Finally, as a GNU `sed'
extension, you can include a special sequence made of a backslash and
one of the letters `L', `l', `U', `u', or `E'.  The meaning is as
follows:

`\L'
     Turn the replacement to lowercase until a `\U' or `\E' is found,

`\l'
     Turn the next character to lowercase,

`\U'
     Turn the replacement to uppercase until a `\L' or `\E' is found,

`\u'
     Turn the next character to uppercase,

`\E'
     Stop case conversion started by `\L' or `\U'.

   When the `g' flag is being used, case conversion does not propagate
from one occurrence of the regular expression to another.  For example,
when the following command is executed with `a-b-' in pattern space:
     s/\(b\?\)-/x\u\1/g

the output is `axxB'.  When replacing the first `-', the `\u' sequence
only affects the empty replacement of `\1'.  It does not affect the `x'
character that is added to pattern space when replacing `b-' with `xB'.

   On the other hand, `\l' and `\u' do affect the remainder of the
replacement text if they are followed by an empty substitution.  With
`a-b-' in pattern space, the following command:
     s/\(b\?\)-/\u\1x/g

will replace `-' with `X' (uppercase) and `b-' with `Bx'.  If this
behavior is undesirable, you can prevent it by adding a `\E'
sequence--after `\1' in this case.

   To include a literal `\', `&', or newline in the final replacement,
be sure to precede the desired `\', `&', or newline in the REPLACEMENT
with a `\'.

   The `s' command can be followed by zero or more of the following
FLAGS:

`g'
     Apply the replacement to _all_ matches to the REGEXP, not just the
     first.

`NUMBER'
     Only replace the NUMBERth match of the REGEXP.

     Note: the POSIX standard does not specify what should happen when
     you mix the `g' and NUMBER modifiers, and currently there is no
     widely agreed upon meaning across `sed' implementations.  For GNU
     `sed', the interaction is defined to be: ignore matches before the
     NUMBERth, and then match and replace all matches from the NUMBERth
     on.

`p'
     If the substitution was made, then print the new pattern space.

     Note: when both the `p' and `e' options are specified, the
     relative ordering of the two produces very different results.  In
     general, `ep' (evaluate then print) is what you want, but
     operating the other way round can be useful for debugging.  For
     this reason, the current version of GNU `sed' interprets specially
     the presence of `p' options both before and after `e', printing
     the pattern space before and after evaluation, while in general
     flags for the `s' command show their effect just once.  This
     behavior, although documented, might change in future versions.

`w FILE-NAME'
     If the substitution was made, then write out the result to the
     named file.  As a GNU `sed' extension, two special values of
     FILE-NAME are supported: `/dev/stderr', which writes the result to
     the standard error, and `/dev/stdout', which writes to the standard
     output.(1)

`e'
     This command allows one to pipe input from a shell command into
     pattern space.  If a substitution was made, the command that is
     found in pattern space is executed and pattern space is replaced
     with its output.  A trailing newline is suppressed; results are
     undefined if the command to be executed contains a NUL character.
     This is a GNU `sed' extension.

`I'
`i'
     The `I' modifier to regular-expression matching is a GNU extension
     which makes `sed' match REGEXP in a case-insensitive manner.

`M'
`m'
     The `M' modifier to regular-expression matching is a GNU `sed'
     extension which directs GNU `sed' to match the regular expression
     in `multi-line' mode.  The modifier causes `^' and `$' to match
     respectively (in addition to the normal behavior) the empty string
     after a newline, and the empty string before a newline.  There are
     special character sequences (`\`' and `\'') which always match the
     beginning or the end of the buffer.  In addition, the period
     character does not match a new-line character in multi-line mode.


   ---------- Footnotes ----------

   (1) This is equivalent to `p' unless the `-i' option is being used.


File: sed.info,  Node: Other Commands,  Next: Programming Commands,  Prev: The "s" Command,  Up: sed Programs

3.6 Less Frequently-Used Commands
=================================

Though perhaps less frequently used than those in the previous section,
some very small yet useful `sed' scripts can be built with these
commands.

`y/SOURCE-CHARS/DEST-CHARS/'
     (The `/' characters may be uniformly replaced by any other single
     character within any given `y' command.)

     Transliterate any characters in the pattern space which match any
     of the SOURCE-CHARS with the corresponding character in DEST-CHARS.

     Instances of the `/' (or whatever other character is used in its
     stead), `\', or newlines can appear in the SOURCE-CHARS or
     DEST-CHARS lists, provide that each instance is escaped by a `\'.
     The SOURCE-CHARS and DEST-CHARS lists _must_ contain the same
     number of characters (after de-escaping).

`a\'
`TEXT'
     As a GNU extension, this command accepts two addresses.

     Queue the lines of text which follow this command (each but the
     last ending with a `\', which are removed from the output) to be
     output at the end of the current cycle, or when the next input
     line is read.

     Escape sequences in TEXT are processed, so you should use `\\' in
     TEXT to print a single backslash.

     As a GNU extension, if between the `a' and the newline there is
     other than a whitespace-`\' sequence, then the text of this line,
     starting at the first non-whitespace character after the `a', is
     taken as the first line of the TEXT block.  (This enables a
     simplification in scripting a one-line add.)  This extension also
     works with the `i' and `c' commands.

`i\'
`TEXT'
     As a GNU extension, this command accepts two addresses.

     Immediately output the lines of text which follow this command
     (each but the last ending with a `\', which are removed from the
     output).

`c\'
`TEXT'
     Delete the lines matching the address or address-range, and output
     the lines of text which follow this command (each but the last
     ending with a `\', which are removed from the output) in place of
     the last line (or in place of each line, if no addresses were
     specified).  A new cycle is started after this command is done,
     since the pattern space will have been deleted.

`='
     As a GNU extension, this command accepts two addresses.

     Print out the current input line number (with a trailing newline).

`l N'
     Print the pattern space in an unambiguous form: non-printable
     characters (and the `\' character) are printed in C-style escaped
     form; long lines are split, with a trailing `\' character to
     indicate the split; the end of each line is marked with a `$'.

     N specifies the desired line-wrap length; a length of 0 (zero)
     means to never wrap long lines.  If omitted, the default as
     specified on the command line is used.  The N parameter is a GNU
     `sed' extension.

`r FILENAME'
     As a GNU extension, this command accepts two addresses.

     Queue the contents of FILENAME to be read and inserted into the
     output stream at the end of the current cycle, or when the next
     input line is read.  Note that if FILENAME cannot be read, it is
     treated as if it were an empty file, without any error indication.

     As a GNU `sed' extension, the special value `/dev/stdin' is
     supported for the file name, which reads the contents of the
     standard input.

`w FILENAME'
     Write the pattern space to FILENAME.  As a GNU `sed' extension,
     two special values of FILE-NAME are supported: `/dev/stderr',
     which writes the result to the standard error, and `/dev/stdout',
     which writes to the standard output.(1)

     The file will be created (or truncated) before the first input
     line is read; all `w' commands (including instances of the `w' flag
     on successful `s' commands) which refer to the same FILENAME are
     output without closing and reopening the file.

`D'
     If pattern space contains no newline, start a normal new cycle as
     if the `d' command was issued.  Otherwise, delete text in the
     pattern space up to the first newline, and restart cycle with the
     resultant pattern space, without reading a new line of input.

`N'
     Add a newline to the pattern space, then append the next line of
     input to the pattern space.  If there is no more input then `sed'
     exits without processing any more commands.

`P'
     Print out the portion of the pattern space up to the first newline.

`h'
     Replace the contents of the hold space with the contents of the
     pattern space.

`H'
     Append a newline to the contents of the hold space, and then
     append the contents of the pattern space to that of the hold space.

`g'
     Replace the contents of the pattern space with the contents of the
     hold space.

`G'
     Append a newline to the contents of the pattern space, and then
     append the contents of the hold space to that of the pattern space.

`x'
     Exchange the contents of the hold and pattern spaces.


   ---------- Footnotes ----------

   (1) This is equivalent to `p' unless the `-i' option is being used.


File: sed.info,  Node: Programming Commands,  Next: Extended Commands,  Prev: Other Commands,  Up: sed Programs

3.7 Commands for `sed' gurus
============================

In most cases, use of these commands indicates that you are probably
better off programming in something like `awk' or Perl.  But
occasionally one is committed to sticking with `sed', and these
commands can enable one to write quite convoluted scripts.

`: LABEL'
     [No addresses allowed.]

     Specify the location of LABEL for branch commands.  In all other
     respects, a no-op.

`b LABEL'
     Unconditionally branch to LABEL.  The LABEL may be omitted, in
     which case the next cycle is started.

`t LABEL'
     Branch to LABEL only if there has been a successful `s'ubstitution
     since the last input line was read or conditional branch was taken.
     The LABEL may be omitted, in which case the next cycle is started.



File: sed.info,  Node: Extended Commands,  Next: Escapes,  Prev: Programming Commands,  Up: sed Programs

3.8 Commands Specific to GNU `sed'
==================================

These commands are specific to GNU `sed', so you must use them with
care and only when you are sure that hindering portability is not evil.
They allow you to check for GNU `sed' extensions or to do tasks that
are required quite often, yet are unsupported by standard `sed's.

`e [COMMAND]'
     This command allows one to pipe input from a shell command into
     pattern space.  Without parameters, the `e' command executes the
     command that is found in pattern space and replaces the pattern
     space with the output; a trailing newline is suppressed.

     If a parameter is specified, instead, the `e' command interprets
     it as a command and sends its output to the output stream.  The
     command can run across multiple lines, all but the last ending with
     a back-slash.

     In both cases, the results are undefined if the command to be
     executed contains a NUL character.

     Note that, unlike the `r' command, the output of the command will
     be printed immediately; the `r' command instead delays the output
     to the end of the current cycle.

`F'
     Print out the file name of the current input file (with a trailing
     newline).

`L N'
     This GNU `sed' extension fills and joins lines in pattern space to
     produce output lines of (at most) N characters, like `fmt' does;
     if N is omitted, the default as specified on the command line is
     used.  This command is considered a failed experiment and unless
     there is enough request (which seems unlikely) will be removed in
     future versions.

`Q [EXIT-CODE]'
     This command only accepts a single address.

     This command is the same as `q', but will not print the contents
     of pattern space.  Like `q', it provides the ability to return an
     exit code to the caller.

     This command can be useful because the only alternative ways to
     accomplish this apparently trivial function are to use the `-n'
     option (which can unnecessarily complicate your script) or
     resorting to the following snippet, which wastes time by reading
     the whole file without any visible effect:

          :eat
          $d       Quit silently on the last line
          N        Read another line, silently
          g        Overwrite pattern space each time to save memory
          b eat

`R FILENAME'
     Queue a line of FILENAME to be read and inserted into the output
     stream at the end of the current cycle, or when the next input
     line is read.  Note that if FILENAME cannot be read, or if its end
     is reached, no line is appended, without any error indication.

     As with the `r' command, the special value `/dev/stdin' is
     supported for the file name, which reads a line from the standard
     input.

`T LABEL'
     Branch to LABEL only if there have been no successful
     `s'ubstitutions since the last input line was read or conditional
     branch was taken. The LABEL may be omitted, in which case the next
     cycle is started.

`v VERSION'
     This command does nothing, but makes `sed' fail if GNU `sed'
     extensions are not supported, simply because other versions of
     `sed' do not implement it.  In addition, you can specify the
     version of `sed' that your script requires, such as `4.0.5'.  The
     default is `4.0' because that is the first version that
     implemented this command.

     This command enables all GNU extensions even if `POSIXLY_CORRECT'
     is set in the environment.

`W FILENAME'
     Write to the given filename the portion of the pattern space up to
     the first newline.  Everything said under the `w' command about
     file handling holds here too.

`z'
     This command empties the content of pattern space.  It is usually
     the same as `s/.*//', but is more efficient and works in the
     presence of invalid multibyte sequences in the input stream.
     POSIX mandates that such sequences are _not_ matched by `.', so
     that there is no portable way to clear `sed''s buffers in the
     middle of the script in most multibyte locales (including UTF-8
     locales).


File: sed.info,  Node: Escapes,  Prev: Extended Commands,  Up: sed Programs

3.9 GNU Extensions for Escapes in Regular Expressions
=====================================================

Until this chapter, we have only encountered escapes of the form `\^',
which tell `sed' not to interpret the circumflex as a special
character, but rather to take it literally.  For example, `\*' matches
a single asterisk rather than zero or more backslashes.

   This chapter introduces another kind of escape(1)--that is, escapes
that are applied to a character or sequence of characters that
ordinarily are taken literally, and that `sed' replaces with a special
character.  This provides a way of encoding non-printable characters in
patterns in a visible manner.  There is no restriction on the
appearance of non-printing characters in a `sed' script but when a
script is being prepared in the shell or by text editing, it is usually
easier to use one of the following escape sequences than the binary
character it represents:

   The list of these escapes is:

`\a'
     Produces or matches a BEL character, that is an "alert" (ASCII 7).

`\f'
     Produces or matches a form feed (ASCII 12).

`\n'
     Produces or matches a newline (ASCII 10).

`\r'
     Produces or matches a carriage return (ASCII 13).

`\t'
     Produces or matches a horizontal tab (ASCII 9).

`\v'
     Produces or matches a so called "vertical tab" (ASCII 11).

`\cX'
     Produces or matches `CONTROL-X', where X is any character.  The
     precise effect of `\cX' is as follows: if X is a lower case
     letter, it is converted to upper case.  Then bit 6 of the
     character (hex 40) is inverted.  Thus `\cz' becomes hex 1A, but
     `\c{' becomes hex 3B, while `\c;' becomes hex 7B.

`\dXXX'
     Produces or matches a character whose decimal ASCII value is XXX.

`\oXXX'
     Produces or matches a character whose octal ASCII value is XXX.

`\xXX'
     Produces or matches a character whose hexadecimal ASCII value is
     XX.

   `\b' (backspace) was omitted because of the conflict with the
existing "word boundary" meaning.

   Other escapes match a particular character class and are valid only
in regular expressions:

`\w'
     Matches any "word" character.  A "word" character is any letter or
     digit or the underscore character.

`\W'
     Matches any "non-word" character.

`\b'
     Matches a word boundary; that is it matches if the character to
     the left is a "word" character and the character to the right is a
     "non-word" character, or vice-versa.

`\B'
     Matches everywhere but on a word boundary; that is it matches if
     the character to the left and the character to the right are
     either both "word" characters or both "non-word" characters.

`\`'
     Matches only at the start of pattern space.  This is different
     from `^' in multi-line mode.

`\''
     Matches only at the end of pattern space.  This is different from
     `$' in multi-line mode.


   ---------- Footnotes ----------

   (1) All the escapes introduced here are GNU extensions, with the
exception of `\n'.  In basic regular expression mode, setting
`POSIXLY_CORRECT' disables them inside bracket expressions.


File: sed.info,  Node: Examples,  Next: Limitations,  Prev: sed Programs,  Up: Top

4 Some Sample Scripts
*********************

Here are some `sed' scripts to guide you in the art of mastering `sed'.

* Menu:

Some exotic examples:
* Centering lines::
* Increment a number::
* Rename files to lower case::
* Print bash environment::
* Reverse chars of lines::

Emulating standard utilities:
* tac::                             Reverse lines of files
* cat -n::                          Numbering lines
* cat -b::                          Numbering non-blank lines
* wc -c::                           Counting chars
* wc -w::                           Counting words
* wc -l::                           Counting lines
* head::                            Printing the first lines
* tail::                            Printing the last lines
* uniq::                            Make duplicate lines unique
* uniq -d::                         Print duplicated lines of input
* uniq -u::                         Remove all duplicated lines
* cat -s::                          Squeezing blank lines


File: sed.info,  Node: Centering lines,  Next: Increment a number,  Up: Examples

4.1 Centering Lines
===================

This script centers all lines of a file on a 80 columns width.  To
change that width, the number in `\{...\}' must be replaced, and the
number of added spaces also must be changed.

   Note how the buffer commands are used to separate parts in the
regular expressions to be matched--this is a common technique.

     #!/usr/bin/sed -f

     # Put 80 spaces in the buffer
     1 {
       x
       s/^$/          /
       s/^.*$/&&&&&&&&/
       x
     }

     # del leading and trailing spaces
     y/tab/ /
     s/^ *//
     s/ *$//

     # add a newline and 80 spaces to end of line
     G

     # keep first 81 chars (80 + a newline)
     s/^\(.\{81\}\).*$/\1/

     # \2 matches half of the spaces, which are moved to the beginning
     s/^\(.*\)\n\(.*\)\2/\2\1/


File: sed.info,  Node: Increment a number,  Next: Rename files to lower case,  Prev: Centering lines,  Up: Examples

4.2 Increment a Number
======================

This script is one of a few that demonstrate how to do arithmetic in
`sed'.  This is indeed possible,(1) but must be done manually.

   To increment one number you just add 1 to last digit, replacing it
by the following digit.  There is one exception: when the digit is a
nine the previous digits must be also incremented until you don't have
a nine.

   This solution by Bruno Haible is very clever and smart because it
uses a single buffer; if you don't have this limitation, the algorithm
used in *note Numbering lines: cat -n, is faster.  It works by
replacing trailing nines with an underscore, then using multiple `s'
commands to increment the last digit, and then again substituting
underscores with zeros.

     #!/usr/bin/sed -f

     /[^0-9]/ d

     # replace all trailing 9s by _ (any other character except digits, could
     # be used)
     :d
     s/9\(_*\)$/_\1/
     td

     # incr last digit only.  The first line adds a most-significant
     # digit of 1 if we have to add a digit.

     s/^\(_*\)$/1\1/; tn
     s/8\(_*\)$/9\1/; tn
     s/7\(_*\)$/8\1/; tn
     s/6\(_*\)$/7\1/; tn
     s/5\(_*\)$/6\1/; tn
     s/4\(_*\)$/5\1/; tn
     s/3\(_*\)$/4\1/; tn
     s/2\(_*\)$/3\1/; tn
     s/1\(_*\)$/2\1/; tn
     s/0\(_*\)$/1\1/; tn

     :n
     y/_/0/

   ---------- Footnotes ----------

   (1) `sed' guru Greg Ubben wrote an implementation of the `dc' RPN
calculator!  It is distributed together with sed.


File: sed.info,  Node: Rename files to lower case,  Next: Print bash environment,  Prev: Increment a number,  Up: Examples

4.3 Rename Files to Lower Case
==============================

This is a pretty strange use of `sed'.  We transform text, and
transform it to be shell commands, then just feed them to shell.  Don't
worry, even worse hacks are done when using `sed'; I have seen a script
converting the output of `date' into a `bc' program!

   The main body of this is the `sed' script, which remaps the name
from lower to upper (or vice-versa) and even checks out if the remapped
name is the same as the original name.  Note how the script is
parameterized using shell variables and proper quoting.

     #! /bin/sh
     # rename files to lower/upper case...
     #
     # usage:
     #    move-to-lower *
     #    move-to-upper *
     # or
     #    move-to-lower -R .
     #    move-to-upper -R .
     #

     help()
     {
             cat << eof
     Usage: $0 [-n] [-r] [-h] files...

     -n      do nothing, only see what would be done
     -R      recursive (use find)
     -h      this message
     files   files to remap to lower case

     Examples:
            $0 -n *        (see if everything is ok, then...)
            $0 *

            $0 -R .

     eof
     }

     apply_cmd='sh'
     finder='echo "$@" | tr " " "\n"'
     files_only=

     while :
     do
         case "$1" in
             -n) apply_cmd='cat' ;;
             -R) finder='find "$@" -type f';;
             -h) help ; exit 1 ;;
             *) break ;;
         esac
         shift
     done

     if [ -z "$1" ]; then
             echo Usage: $0 [-h] [-n] [-r] files...
             exit 1
     fi

     LOWER='abcdefghijklmnopqrstuvwxyz'
     UPPER='ABCDEFGHIJKLMNOPQRSTUVWXYZ'

     case `basename $0` in
             *upper*) TO=$UPPER; FROM=$LOWER ;;
             *)       FROM=$UPPER; TO=$LOWER ;;
     esac

     eval $finder | sed -n '

     # remove all trailing slashes
     s/\/*$//

     # add ./ if there is no path, only a filename
     /\//! s/^/.\//

     # save path+filename
     h

     # remove path
     s/.*\///

     # do conversion only on filename
     y/'$FROM'/'$TO'/

     # now line contains original path+file, while
     # hold space contains the new filename
     x

     # add converted file name to line, which now contains
     # path/file-name\nconverted-file-name
     G

     # check if converted file name is equal to original file name,
     # if it is, do not print anything
     /^.*\/\(.*\)\n\1/b

     # escape special characters for the shell
     s/["$`\\]/\\&/g

     # now, transform path/fromfile\n, into
     # mv path/fromfile path/tofile and print it
     s/^\(.*\/\)\(.*\)\n\(.*\)$/mv "\1\2" "\1\3"/p

     ' | $apply_cmd


File: sed.info,  Node: Print bash environment,  Next: Reverse chars of lines,  Prev: Rename files to lower case,  Up: Examples

4.4 Print `bash' Environment
============================

This script strips the definition of the shell functions from the
output of the `set' Bourne-shell command.

     #!/bin/sh

     set | sed -n '
     :x

     # if no occurrence of "=()" print and load next line
     /=()/! { p; b; }
     / () $/! { p; b; }

     # possible start of functions section
     # save the line in case this is a var like FOO="() "
     h

     # if the next line has a brace, we quit because
     # nothing comes after functions
     n
     /^{/ q

     # print the old line
     x; p

     # work on the new line now
     x; bx
     '


File: sed.info,  Node: Reverse chars of lines,  Next: tac,  Prev: Print bash environment,  Up: Examples

4.5 Reverse Characters of Lines
===============================

This script can be used to reverse the position of characters in lines.
The technique moves two characters at a time, hence it is faster than
more intuitive implementations.

   Note the `tx' command before the definition of the label.  This is
often needed to reset the flag that is tested by the `t' command.

   Imaginative readers will find uses for this script.  An example is
reversing the output of `banner'.(1)

     #!/usr/bin/sed -f

     /../! b

     # Reverse a line.  Begin embedding the line between two newlines
     s/^.*$/\
     &\
     /

     # Move first character at the end.  The regexp matches until
     # there are zero or one characters between the markers
     tx
     :x
     s/\(\n.\)\(.*\)\(.\n\)/\3\2\1/
     tx

     # Remove the newline markers
     s/\n//g

   ---------- Footnotes ----------

   (1) This requires another script to pad the output of banner; for
example

     #! /bin/sh

     banner -w $1 $2 $3 $4 |
       sed -e :a -e '/^.\{0,'$1'\}$/ { s/$/ /; ba; }' |
       ~/sedscripts/reverseline.sed


File: sed.info,  Node: tac,  Next: cat -n,  Prev: Reverse chars of lines,  Up: Examples

4.6 Reverse Lines of Files
==========================

This one begins a series of totally useless (yet interesting) scripts
emulating various Unix commands.  This, in particular, is a `tac'
workalike.

   Note that on implementations other than GNU `sed' this script might
easily overflow internal buffers.

     #!/usr/bin/sed -nf

     # reverse all lines of input, i.e. first line became last, ...

     # from the second line, the buffer (which contains all previous lines)
     # is *appended* to current line, so, the order will be reversed
     1! G

     # on the last line we're done -- print everything
     $ p

     # store everything on the buffer again
     h


File: sed.info,  Node: cat -n,  Next: cat -b,  Prev: tac,  Up: Examples

4.7 Numbering Lines
===================

This script replaces `cat -n'; in fact it formats its output exactly
like GNU `cat' does.

   Of course this is completely useless and for two reasons:  first,
because somebody else did it in C, second, because the following
Bourne-shell script could be used for the same purpose and would be
much faster:

     #! /bin/sh
     sed -e "=" $@ | sed -e '
       s/^/      /
       N
       s/^ *\(......\)\n/\1  /
     '

   It uses `sed' to print the line number, then groups lines two by two
using `N'.  Of course, this script does not teach as much as the one
presented below.

   The algorithm used for incrementing uses both buffers, so the line
is printed as soon as possible and then discarded.  The number is split
so that changing digits go in a buffer and unchanged ones go in the
other; the changed digits are modified in a single step (using a `y'
command).  The line number for the next line is then composed and
stored in the hold space, to be used in the next iteration.

     #!/usr/bin/sed -nf

     # Prime the pump on the first line
     x
     /^$/ s/^.*$/1/

     # Add the correct line number before the pattern
     G
     h

     # Format it and print it
     s/^/      /
     s/^ *\(......\)\n/\1  /p

     # Get the line number from hold space; add a zero
     # if we're going to add a digit on the next line
     g
     s/\n.*$//
     /^9*$/ s/^/0/

     # separate changing/unchanged digits with an x
     s/.9*$/x&/

     # keep changing digits in hold space
     h
     s/^.*x//
     y/0123456789/1234567890/
     x

     # keep unchanged digits in pattern space
     s/x.*$//

     # compose the new number, remove the newline implicitly added by G
     G
     s/\n//
     h


File: sed.info,  Node: cat -b,  Next: wc -c,  Prev: cat -n,  Up: Examples

4.8 Numbering Non-blank Lines
=============================

Emulating `cat -b' is almost the same as `cat -n'--we only have to
select which lines are to be numbered and which are not.

   The part that is common to this script and the previous one is not
commented to show how important it is to comment `sed' scripts
properly...

     #!/usr/bin/sed -nf

     /^$/ {
       p
       b
     }

     # Same as cat -n from now
     x
     /^$/ s/^.*$/1/
     G
     h
     s/^/      /
     s/^ *\(......\)\n/\1  /p
     x
     s/\n.*$//
     /^9*$/ s/^/0/
     s/.9*$/x&/
     h
     s/^.*x//
     y/0123456789/1234567890/
     x
     s/x.*$//
     G
     s/\n//
     h


File: sed.info,  Node: wc -c,  Next: wc -w,  Prev: cat -b,  Up: Examples

4.9 Counting Characters
=======================

This script shows another way to do arithmetic with `sed'.  In this
case we have to add possibly large numbers, so implementing this by
successive increments would not be feasible (and possibly even more
complicated to contrive than this script).

   The approach is to map numbers to letters, kind of an abacus
implemented with `sed'.  `a's are units, `b's are tens and so on: we
simply add the number of characters on the current line as units, and
then propagate the carry to tens, hundreds, and so on.

   As usual, running totals are kept in hold space.

   On the last line, we convert the abacus form back to decimal.  For
the sake of variety, this is done with a loop rather than with some 80
`s' commands(1): first we convert units, removing `a's from the number;
then we rotate letters so that tens become `a's, and so on until no
more letters remain.

     #!/usr/bin/sed -nf

     # Add n+1 a's to hold space (+1 is for the newline)
     s/./a/g
     H
     x
     s/\n/a/

     # Do the carry.  The t's and b's are not necessary,
     # but they do speed up the thing
     t a
     : a;  s/aaaaaaaaaa/b/g; t b; b done
     : b;  s/bbbbbbbbbb/c/g; t c; b done
     : c;  s/cccccccccc/d/g; t d; b done
     : d;  s/dddddddddd/e/g; t e; b done
     : e;  s/eeeeeeeeee/f/g; t f; b done
     : f;  s/ffffffffff/g/g; t g; b done
     : g;  s/gggggggggg/h/g; t h; b done
     : h;  s/hhhhhhhhhh//g

     : done
     $! {
       h
       b
     }

     # On the last line, convert back to decimal

     : loop
     /a/! s/[b-h]*/&0/
     s/aaaaaaaaa/9/
     s/aaaaaaaa/8/
     s/aaaaaaa/7/
     s/aaaaaa/6/
     s/aaaaa/5/
     s/aaaa/4/
     s/aaa/3/
     s/aa/2/
     s/a/1/

     : next
     y/bcdefgh/abcdefg/
     /[a-h]/ b loop
     p

   ---------- Footnotes ----------

   (1) Some implementations have a limit of 199 commands per script


File: sed.info,  Node: wc -w,  Next: wc -l,  Prev: wc -c,  Up: Examples

4.10 Counting Words
===================

This script is almost the same as the previous one, once each of the
words on the line is converted to a single `a' (in the previous script
each letter was changed to an `a').

   It is interesting that real `wc' programs have optimized loops for
`wc -c', so they are much slower at counting words rather than
characters.  This script's bottleneck, instead, is arithmetic, and
hence the word-counting one is faster (it has to manage smaller
numbers).

   Again, the common parts are not commented to show the importance of
commenting `sed' scripts.

     #!/usr/bin/sed -nf

     # Convert words to a's
     s/[ tab][ tab]*/ /g
     s/^/ /
     s/ [^ ][^ ]*/a /g
     s/ //g

     # Append them to hold space
     H
     x
     s/\n//

     # From here on it is the same as in wc -c.
     /aaaaaaaaaa/! bx;   s/aaaaaaaaaa/b/g
     /bbbbbbbbbb/! bx;   s/bbbbbbbbbb/c/g
     /cccccccccc/! bx;   s/cccccccccc/d/g
     /dddddddddd/! bx;   s/dddddddddd/e/g
     /eeeeeeeeee/! bx;   s/eeeeeeeeee/f/g
     /ffffffffff/! bx;   s/ffffffffff/g/g
     /gggggggggg/! bx;   s/gggggggggg/h/g
     s/hhhhhhhhhh//g
     :x
     $! { h; b; }
     :y
     /a/! s/[b-h]*/&0/
     s/aaaaaaaaa/9/
     s/aaaaaaaa/8/
     s/aaaaaaa/7/
     s/aaaaaa/6/
     s/aaaaa/5/
     s/aaaa/4/
     s/aaa/3/
     s/aa/2/
     s/a/1/
     y/bcdefgh/abcdefg/
     /[a-h]/ by
     p


File: sed.info,  Node: wc -l,  Next: head,  Prev: wc -w,  Up: Examples

4.11 Counting Lines
===================

No strange things are done now, because `sed' gives us `wc -l'
functionality for free!!! Look:

     #!/usr/bin/sed -nf
     $=


File: sed.info,  Node: head,  Next: tail,  Prev: wc -l,  Up: Examples

4.12 Printing the First Lines
=============================

This script is probably the simplest useful `sed' script.  It displays
the first 10 lines of input; the number of displayed lines is right
before the `q' command.

     #!/usr/bin/sed -f
     10q


File: sed.info,  Node: tail,  Next: uniq,  Prev: head,  Up: Examples

4.13 Printing the Last Lines
============================

Printing the last N lines rather than the first is more complex but
indeed possible.  N is encoded in the second line, before the bang
character.

   This script is similar to the `tac' script in that it keeps the
final output in the hold space and prints it at the end:

     #!/usr/bin/sed -nf

     1! {; H; g; }
     1,10 !s/[^\n]*\n//
     $p
     h

   Mainly, the scripts keeps a window of 10 lines and slides it by
adding a line and deleting the oldest (the substitution command on the
second line works like a `D' command but does not restart the loop).

   The "sliding window" technique is a very powerful way to write
efficient and complex `sed' scripts, because commands like `P' would
require a lot of work if implemented manually.

   To introduce the technique, which is fully demonstrated in the rest
of this chapter and is based on the `N', `P' and `D' commands, here is
an implementation of `tail' using a simple "sliding window."

   This looks complicated but in fact the working is the same as the
last script: after we have kicked in the appropriate number of lines,
however, we stop using the hold space to keep inter-line state, and
instead use `N' and `D' to slide pattern space by one line:

     #!/usr/bin/sed -f

     1h
     2,10 {; H; g; }
     $q
     1,9d
     N
     D

   Note how the first, second and fourth line are inactive after the
first ten lines of input.  After that, all the script does is: exiting
on the last line of input, appending the next input line to pattern
space, and removing the first line.


File: sed.info,  Node: uniq,  Next: uniq -d,  Prev: tail,  Up: Examples

4.14 Make Duplicate Lines Unique
================================

This is an example of the art of using the `N', `P' and `D' commands,
probably the most difficult to master.

     #!/usr/bin/sed -f
     h

     :b
     # On the last line, print and exit
     $b
     N
     /^\(.*\)\n\1$/ {
         # The two lines are identical.  Undo the effect of
         # the n command.
         g
         bb
     }

     # If the `N' command had added the last line, print and exit
     $b

     # The lines are different; print the first and go
     # back working on the second.
     P
     D

   As you can see, we mantain a 2-line window using `P' and `D'.  This
technique is often used in advanced `sed' scripts.


File: sed.info,  Node: uniq -d,  Next: uniq -u,  Prev: uniq,  Up: Examples

4.15 Print Duplicated Lines of Input
====================================

This script prints only duplicated lines, like `uniq -d'.

     #!/usr/bin/sed -nf

     $b
     N
     /^\(.*\)\n\1$/ {
         # Print the first of the duplicated lines
         s/.*\n//
         p

         # Loop until we get a different line
         :b
         $b
         N
         /^\(.*\)\n\1$/ {
             s/.*\n//
             bb
         }
     }

     # The last line cannot be followed by duplicates
     $b

     # Found a different one.  Leave it alone in the pattern space
     # and go back to the top, hunting its duplicates
     D


File: sed.info,  Node: uniq -u,  Next: cat -s,  Prev: uniq -d,  Up: Examples

4.16 Remove All Duplicated Lines
================================

This script prints only unique lines, like `uniq -u'.

     #!/usr/bin/sed -f

     # Search for a duplicate line --- until that, print what you find.
     $b
     N
     /^\(.*\)\n\1$/ ! {
         P
         D
     }

     :c
     # Got two equal lines in pattern space.  At the
     # end of the file we simply exit
     $d

     # Else, we keep reading lines with `N' until we
     # find a different one
     s/.*\n//
     N
     /^\(.*\)\n\1$/ {
         bc
     }

     # Remove the last instance of the duplicate line
     # and go back to the top
     D


File: sed.info,  Node: cat -s,  Prev: uniq -u,  Up: Examples

4.17 Squeezing Blank Lines
==========================

As a final example, here are three scripts, of increasing complexity
and speed, that implement the same function as `cat -s', that is
squeezing blank lines.

   The first leaves a blank line at the beginning and end if there are
some already.

     #!/usr/bin/sed -f

     # on empty lines, join with next
     # Note there is a star in the regexp
     :x
     /^\n*$/ {
     N
     bx
     }

     # now, squeeze all '\n', this can be also done by:
     # s/^\(\n\)*/\1/
     s/\n*/\
     /

   This one is a bit more complex and removes all empty lines at the
beginning.  It does leave a single blank line at end if one was there.

     #!/usr/bin/sed -f

     # delete all leading empty lines
     1,/^./{
     /./!d
     }

     # on an empty line we remove it and all the following
     # empty lines, but one
     :x
     /./!{
     N
     s/^\n$//
     tx
     }

   This removes leading and trailing blank lines.  It is also the
fastest.  Note that loops are completely done with `n' and `b', without
relying on `sed' to restart the the script automatically at the end of
a line.

     #!/usr/bin/sed -nf

     # delete all (leading) blanks
     /./!d

     # get here: so there is a non empty
     :x
     # print it
     p
     # get next
     n
     # got chars? print it again, etc...
     /./bx

     # no, don't have chars: got an empty line
     :z
     # get next, if last line we finish here so no trailing
     # empty lines are written
     n
     # also empty? then ignore it, and get next... this will
     # remove ALL empty lines
     /./!bz

     # all empty lines were deleted/ignored, but we have a non empty.  As
     # what we want to do is to squeeze, insert a blank line artificially
     i\

     bx


File: sed.info,  Node: Limitations,  Next: Other Resources,  Prev: Examples,  Up: Top

5 GNU `sed''s Limitations and Non-limitations
*********************************************

For those who want to write portable `sed' scripts, be aware that some
implementations have been known to limit line lengths (for the pattern
and hold spaces) to be no more than 4000 bytes.  The POSIX standard
specifies that conforming `sed' implementations shall support at least
8192 byte line lengths.  GNU `sed' has no built-in limit on line length;
as long as it can `malloc()' more (virtual) memory, you can feed or
construct lines as long as you like.

   However, recursion is used to handle subpatterns and indefinite
repetition.  This means that the available stack space may limit the
size of the buffer that can be processed by certain patterns.


File: sed.info,  Node: Other Resources,  Next: Reporting Bugs,  Prev: Limitations,  Up: Top

6 Other Resources for Learning About `sed'
******************************************

In addition to several books that have been written about `sed' (either
specifically or as chapters in books which discuss shell programming),
one can find out more about `sed' (including suggestions of a few
books) from the FAQ for the `sed-users' mailing list, available from:
     `http://sed.sourceforge.net/sedfaq.html'

   Also of interest are
`http://www.student.northpark.edu/pemente/sed/index.htm' and
`http://sed.sf.net/grabbag', which include `sed' tutorials and other
`sed'-related goodies.

   The `sed-users' mailing list itself maintained by Sven Guckes.  To
subscribe, visit `http://groups.yahoo.com' and search for the
`sed-users' mailing list.


File: sed.info,  Node: Reporting Bugs,  Next: Extended regexps,  Prev: Other Resources,  Up: Top

7 Reporting Bugs
****************

Email bug reports to <bug-sed@gnu.org>.  Also, please include the
output of `sed --version' in the body of your report if at all possible.

   Please do not send a bug report like this:

     while building frobme-1.3.4
     $ configure
     error--> sed: file sedscr line 1: Unknown option to 's'

   If GNU `sed' doesn't configure your favorite package, take a few
extra minutes to identify the specific problem and make a stand-alone
test case.  Unlike other programs such as C compilers, making such test
cases for `sed' is quite simple.

   A stand-alone test case includes all the data necessary to perform
the test, and the specific invocation of `sed' that causes the problem.
The smaller a stand-alone test case is, the better.  A test case should
not involve something as far removed from `sed' as "try to configure
frobme-1.3.4".  Yes, that is in principle enough information to look
for the bug, but that is not a very practical prospect.

   Here are a few commonly reported bugs that are not bugs.

`N' command on the last line
     Most versions of `sed' exit without printing anything when the `N'
     command is issued on the last line of a file.  GNU `sed' prints
     pattern space before exiting unless of course the `-n' command
     switch has been specified.  This choice is by design.

     For example, the behavior of
          sed N foo bar
     would depend on whether foo has an even or an odd number of
     lines(1).  Or, when writing a script to read the next few lines
     following a pattern match, traditional implementations of `sed'
     would force you to write something like
          /foo/{ $!N; $!N; $!N; $!N; $!N; $!N; $!N; $!N; $!N }
     instead of just
          /foo/{ N;N;N;N;N;N;N;N;N; }

     In any case, the simplest workaround is to use `$d;N' in scripts
     that rely on the traditional behavior, or to set the
     `POSIXLY_CORRECT' variable to a non-empty value.

Regex syntax clashes (problems with backslashes)
     `sed' uses the POSIX basic regular expression syntax.  According to
     the standard, the meaning of some escape sequences is undefined in
     this syntax;  notable in the case of `sed' are `\|', `\+', `\?',
     `\`', `\'', `\<', `\>', `\b', `\B', `\w', and `\W'.

     As in all GNU programs that use POSIX basic regular expressions,
     `sed' interprets these escape sequences as special characters.
     So, `x\+' matches one or more occurrences of `x'.  `abc\|def'
     matches either `abc' or `def'.

     This syntax may cause problems when running scripts written for
     other `sed's.  Some `sed' programs have been written with the
     assumption that `\|' and `\+' match the literal characters `|' and
     `+'.  Such scripts must be modified by removing the spurious
     backslashes if they are to be used with modern implementations of
     `sed', like GNU `sed'.

     On the other hand, some scripts use s|abc\|def||g to remove
     occurrences of _either_ `abc' or `def'.  While this worked until
     `sed' 4.0.x, newer versions interpret this as removing the string
     `abc|def'.  This is again undefined behavior according to POSIX,
     and this interpretation is arguably more robust: older `sed's, for
     example, required that the regex matcher parsed `\/' as `/' in the
     common case of escaping a slash, which is again undefined
     behavior; the new behavior avoids this, and this is good because
     the regex matcher is only partially under our control.

     In addition, this version of `sed' supports several escape
     characters (some of which are multi-character) to insert
     non-printable characters in scripts (`\a', `\c', `\d', `\o', `\r',
     `\t', `\v', `\x').  These can cause similar problems with scripts
     written for other `sed's.

`-i' clobbers read-only files
     In short, `sed -i' will let you delete the contents of a read-only
     file, and in general the `-i' option (*note Invocation: Invoking
     sed.) lets you clobber protected files.  This is not a bug, but
     rather a consequence of how the Unix filesystem works.

     The permissions on a file say what can happen to the data in that
     file, while the permissions on a directory say what can happen to
     the list of files in that directory.  `sed -i' will not ever open
     for writing  a file that is already on disk.  Rather, it will work
     on a temporary file that is finally renamed to the original name:
     if you rename or delete files, you're actually modifying the
     contents of the directory, so the operation depends on the
     permissions of the directory, not of the file.  For this same
     reason, `sed' does not let you use `-i' on a writeable file in a
     read-only directory, and will break hard or symbolic links when
     `-i' is used on such a file.

`0a' does not work (gives an error)
     There is no line 0.  0 is a special address that is only used to
     treat addresses like `0,/RE/' as active when the script starts: if
     you write `1,/abc/d' and the first line includes the word `abc',
     then that match would be ignored because address ranges must span
     at least two lines (barring the end of the file); but what you
     probably wanted is to delete every line up to the first one
     including `abc', and this is obtained with `0,/abc/d'.

`[a-z]' is case insensitive
     You are encountering problems with locales.  POSIX mandates that
     `[a-z]' uses the current locale's collation order - in C parlance,
     that means using `strcoll(3)' instead of `strcmp(3)'.  Some
     locales have a case-insensitive collation order, others don't.

     Another problem is that `[a-z]' tries to use collation symbols.
     This only happens if you are on the GNU system, using GNU libc's
     regular expression matcher instead of compiling the one supplied
     with GNU sed.  In a Danish locale, for example, the regular
     expression `^[a-z]$' matches the string `aa', because this is a
     single collating symbol that comes after `a' and before `b'; `ll'
     behaves similarly in Spanish locales, or `ij' in Dutch locales.

     To work around these problems, which may cause bugs in shell
     scripts, set the `LC_COLLATE' and `LC_CTYPE' environment variables
     to `C'.

`s/.*//' does not clear pattern space
     This happens if your input stream includes invalid multibyte
     sequences.  POSIX mandates that such sequences are _not_ matched
     by `.', so that `s/.*//' will not clear pattern space as you would
     expect.  In fact, there is no way to clear sed's buffers in the
     middle of the script in most multibyte locales (including UTF-8
     locales).  For this reason, GNU `sed' provides a `z' command (for
     `zap') as an extension.

     To work around these problems, which may cause bugs in shell
     scripts, set the `LC_COLLATE' and `LC_CTYPE' environment variables
     to `C'.

   ---------- Footnotes ----------

   (1) which is the actual "bug" that prompted the change in behavior


File: sed.info,  Node: Extended regexps,  Next: Concept Index,  Prev: Reporting Bugs,  Up: Top

Appendix A Extended regular expressions
***************************************

The only difference between basic and extended regular expressions is in
the behavior of a few characters: `?', `+', parentheses, braces (`{}'),
and `|'.  While basic regular expressions require these to be escaped
if you want them to behave as special characters, when using extended
regular expressions you must escape them if you want them _to match a
literal character_.  `|' is special here because `\|' is a GNU
extension - standard basic regular expressions do not provide its
functionality.

Examples:
`abc?'
     becomes `abc\?' when using extended regular expressions.  It
     matches the literal string `abc?'.

`c\+'
     becomes `c+' when using extended regular expressions.  It matches
     one or more `c's.

`a\{3,\}'
     becomes `a{3,}' when using extended regular expressions.  It
     matches three or more `a's.

`\(abc\)\{2,3\}'
     becomes `(abc){2,3}' when using extended regular expressions.  It
     matches either `abcabc' or `abcabcabc'.

`\(abc*\)\1'
     becomes `(abc*)\1' when using extended regular expressions.
     Backreferences must still be escaped when using extended regular
     expressions.


File: sed.info,  Node: Concept Index,  Next: Command and Option Index,  Prev: Extended regexps,  Up: Top

Concept Index
*************

This is a general index of all issues discussed in this manual, with the
exception of the `sed' commands and command-line options.