summaryrefslogtreecommitdiff
path: root/third_party/heimdal/doc/standardisation/draft-brezak-win2k-krb-rc4-hmac-04.txt
blob: 9887873ef06e005262caf428ec8d4da90e8fd83e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923


Kerberos working group                                         M. Swift 
                                                           U.Washington 
Internet Draft                                                J. Brezak 
Document: draft-brezak-win2k-krb-rc4-hmac-04.txt              Microsoft 
Category: Informational                                        May 2002 
 
 
      The Microsoft Windows 2000 RC4-HMAC Kerberos encryption type 
 
 
Status of this Memo 
 
   This document is an Internet-Draft and is in full conformance with 
   all provisions of Section 10 of RFC2026 [1]. Internet-Drafts are 
   working documents of the Internet Engineering Task Force (IETF), its 
   areas, and its working groups. Note that other groups may also 
   distribute working documents as Internet-Drafts. Internet-Drafts are 
   draft documents valid for a maximum of six months and may be 
   updated, replaced, or obsoleted by other documents at any time. It 
   is inappropriate to use Internet- Drafts as reference material or to 
   cite them other than as "work in progress." 
     
   The list of current Internet-Drafts can be accessed at 
   http://www.ietf.org/ietf/1id-abstracts.txt  
    
   The list of Internet-Draft Shadow Directories can be accessed at 
   http://www.ietf.org/shadow.html. 
    
1. Abstract 
    
   The Microsoft Windows 2000 implementation of Kerberos introduces a 
   new encryption type based on the RC4 encryption algorithm and using 
   an MD5 HMAC for checksum. This is offered as an alternative to using 
   the existing DES based encryption types. 
    
   The RC4-HMAC encryption types are used to ease upgrade of existing 
   Windows NT environments, provide strong crypto (128-bit key 
   lengths), and provide exportable (meet United States government 
   export restriction requirements) encryption. 
    
   The Microsoft Windows 2000 implementation of Kerberos contains new 
   encryption and checksum types for two reasons: for export reasons 
   early in the development process, 56 bit DES encryption could not be 
   exported, and because upon upgrade from Windows NT 4.0 to Windows 
   2000, accounts will not have the appropriate DES keying material to 
   do the standard DES encryption. Furthermore, 3DES is not available 
   for export, and there was a desire to use a single flavor of 
   encryption in the product for both US and international products. 
    
   As a result, there are two new encryption types and one new checksum 
   type introduced in Microsoft Windows 2000. 
    
    
2. Conventions used in this document 
  
Swift                  Category - Informational                      1 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
    
   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in 
   this document are to be interpreted as described in RFC-2119 [2]. 
    
3. Key Generation 
    
   On upgrade from existing Windows NT domains, the user accounts would 
   not have a DES based key available to enable the use of DES base 
   encryption types specified in RFC 1510. The key used for RC4-HMAC is 
   the same as the existing Windows NT key (NT Password Hash) for 
   compatibility reasons. Once the account password is changed, the DES 
   based keys are created and maintained. Once the DES keys are 
   available DES based encryption types can be used with Kerberos.  
    
   The RC4-HMAC String to key function is defined as follow: 
    
   String2Key(password) 
    
        K = MD4(UNICODE(password)) 
         
   The RC4-HMAC keys are generated by using the Windows UNICODE version 
   of the password. Each Windows UNICODE character is encoded in 
   little-endian format of 2 octets each. Then performing an MD4 [6] 
   hash operation on just the UNICODE characters of the password (not 
   including the terminating zero octets). 
    
   For an account with a password of "foo", this String2Key("foo") will 
   return: 
    
        0xac, 0x8e, 0x65, 0x7f, 0x83, 0xdf, 0x82, 0xbe, 
        0xea, 0x5d, 0x43, 0xbd, 0xaf, 0x78, 0x00, 0xcc 
    
4. Basic Operations 
    
   The MD5 HMAC function is defined in [3]. It is used in this 
   encryption type for checksum operations. Refer to [3] for details on 
   its operation. In this document this function is referred to as 
   HMAC(Key, Data) returning the checksum using the specified key on 
   the data. 
    
   The basic MD5 hash operation is used in this encryption type and 
   defined in [7]. In this document this function is referred to as 
   MD5(Data) returning the checksum of the data. 
    
   RC4 is a stream cipher licensed by RSA Data Security [RSADSI]. A       
   compatible cipher is described in [8]. In this document the function 
   is referred to as RC4(Key, Data) returning the encrypted data using 
   the specified key on the data. 
    
   These encryption types use key derivation. With each message, the 
   message type (T) is used as a component of the keying material. This 
   table summarizes the different key derivation values used in the 
  
Swift                  Category - Informational                      2 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
   various operations. Note that these differ from the key derivations 
   used in other Kerberos encryption types. T = the message type, 
   encoded as a little-endian four byte integer. 
    
    
        1.  AS-REQ PA-ENC-TIMESTAMP padata timestamp, encrypted with 
        the client key (T=1) 
        2.  AS-REP Ticket and TGS-REP Ticket (includes TGS session key 
        or application session key), encrypted with the service key 
        (T=2) 
        3.  AS-REP encrypted part (includes TGS session key or 
        application session key), encrypted with the client key (T=8) 
        4.  TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with the 
        TGS session key (T=4) 
        5.  TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with the 
        TGS authenticator subkey (T=5) 
        6.  TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator cksum, keyed 
        with the TGS session key (T=6) 
        7.  TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator (includes 
        TGS authenticator subkey), encrypted with the TGS session key 
        (T=7) 
        8.  TGS-REP encrypted part (includes application session key), 
        encrypted with the TGS session key (T=8) 
        9.  TGS-REP encrypted part (includes application session key), 
        encrypted with the TGS authenticator subkey (T=8) 
        10.  AP-REQ Authenticator cksum, keyed with the application 
        session key (T=10) 
        11.  AP-REQ Authenticator (includes application authenticator 
        subkey), encrypted with the application session key (T=11) 
        12.  AP-REP encrypted part (includes application session 
        subkey), encrypted with the application session key (T=12) 
        13.  KRB-PRIV encrypted part, encrypted with a key chosen by 
        the application. Also for data encrypted with GSS Wrap (T=13) 
        14.  KRB-CRED encrypted part, encrypted with a key chosen by 
        the application (T=14) 
        15.  KRB-SAFE cksum, keyed with a key chosen by the 
        application. Also for data signed in GSS MIC (T=15) 
    
        Relative to RFC-1964 key uses: 
         
        T = 0 in the generation of sequence number for the MIC token  
        T = 0 in the generation of sequence number for the WRAP token  
        T = 0 in the generation of encrypted data for the WRAPPED token 
    
   All strings in this document are ASCII unless otherwise specified. 
   The lengths of ASCII encoded character strings include the trailing 
   terminator character (0). 
    
   The concat(a,b,c,...) function will return the logical concatenation 
   (left to right) of the values of the arguments. 
    
   The nonce(n) function returns a pseudo-random number of "n" octets. 
    
  
Swift                  Category - Informational                      3 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
5. Checksum Types 
    
   There is one checksum type used in this encryption type. The 
   Kerberos constant for this type is: 
        #define KERB_CHECKSUM_HMAC_MD5 (-138) 
    
   The function is defined as follows: 
    
   K - is the Key 
   T - the message type, encoded as a little-endian four byte integer 
    
   CHKSUM(K, T, data) 
    
        Ksign = HMAC(K, "signaturekey")  //includes zero octet at end 
        tmp = MD5(concat(T, data)) 
        CHKSUM = HMAC(Ksign, tmp) 
    
    
6. Encryption Types 
    
   There are two encryption types used in these encryption types. The 
   Kerberos constants for these types are: 
        #define KERB_ETYPE_RC4_HMAC             23 
        #define KERB_ETYPE_RC4_HMAC_EXP         24 
    
   The basic encryption function is defined as follow: 
    
   T = the message type, encoded as a little-endian four byte integer. 
    
        OCTET L40[14] = "fortybits"; 
        OCTET SK = "signaturekey"; 
         
   The header field on the encrypted data in KDC messages is: 
    
        typedef struct _RC4_MDx_HEADER { 
            OCTET Checksum[16]; 
            OCTET Confounder[8]; 
        } RC4_MDx_HEADER, *PRC4_MDx_HEADER; 
         
         
        ENCRYPT (K, export, T, data) 
        { 
            struct EDATA { 
                struct HEADER { 
                        OCTET Checksum[16]; 
                        OCTET Confounder[8]; 
                } Header; 
                OCTET Data[0]; 
            } edata; 
         
            if (export){ 
                *((DWORD *)(L40+10)) = T; 
                HMAC (K, L40, 10 + 4, K1); 
  
Swift                  Category - Informational                      4 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
            } 
            else 
            { 
                HMAC (K, &T, 4, K1); 
            } 
            memcpy (K2, K1, 16); 
            if (export) memset (K1+7, 0xAB, 9); 
         
            nonce (edata.Confounder, 8); 
            memcpy (edata.Data, data); 
         
            edata.Checksum = HMAC (K2, edata); 
            K3 = HMAC (K1, edata.Checksum); 
         
            RC4 (K3, edata.Confounder); 
            RC4 (K3, data.Data); 
        }         
         
        DECRYPT (K, export, T, edata) 
        { 
            // edata looks like 
            struct EDATA { 
                struct HEADER { 
                        OCTET Checksum[16]; 
                        OCTET Confounder[8]; 
                } Header; 
                OCTET Data[0]; 
            } edata; 
         
            if (export){ 
                *((DWORD *)(L40+10)) = T; 
                HMAC (K, L40, 14, K1); 
            } 
            else 
            { 
                HMAC (K, &T, 4, K1); 
            } 
            memcpy (K2, K1, 16); 
            if (export) memset (K1+7, 0xAB, 9); 
         
            K3 = HMAC (K1, edata.Checksum); 
         
            RC4 (K3, edata.Confounder); 
            RC4 (K3, edata.Data); 
         
                
            // verify generated and received checksums 
            checksum = HMAC (K2, concat(edata.Confounder, edata.Data)); 
            if (checksum != edata.Checksum)  
                printf("CHECKSUM ERROR  !!!!!!\n"); 
        } 
    

  
Swift                  Category - Informational                      5 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
   The KDC message is encrypted using the ENCRYPT function not 
   including the Checksum in the RC4_MDx_HEADER. 
    
   The character constant "fortybits" evolved from the time when a 40-
   bit key length was all that was exportable from the United States. 
   It is now used to recognize that the key length is of "exportable" 
   length. In this description, the key size is actually 56-bits. 
    
7. Key Strength Negotiation 
    
   A Kerberos client and server can negotiate over key length if they 
   are using mutual authentication. If the client is unable to perform 
   full strength encryption, it may propose a key in the "subkey" field 
   of the authenticator, using a weaker encryption type. The server 
   must then either return the same key or suggest its own key in the 
   subkey field of the AP reply message. The key used to encrypt data 
   is derived from the key returned by the server. If the client is 
   able to perform strong encryption but the server is not, it may 
   propose a subkey in the AP reply without first being sent a subkey 
   in the authenticator. 
 
8. GSSAPI Kerberos V5 Mechanism Type  
 
8.1 Mechanism Specific Changes 
    
   The GSSAPI per-message tokens also require new checksum and 
   encryption types. The GSS-API per-message tokens are adapted to 
   support these new encryption types (See [5] Section 1.2.2). 
    
   The only support quality of protection is: 
        #define GSS_KRB5_INTEG_C_QOP_DEFAULT    0x0 
    
   When using this RC4 based encryption type, the sequence number is 
   always sent in big-endian rather than little-endian order. 
    
   The Windows 2000 implementation also defines new GSSAPI flags in the 
   initial token passed when initializing a security context. These 
   flags are passed in the checksum field of the authenticator (See [5] 
   Section 1.1.1). 
    
   GSS_C_DCE_STYLE - This flag was added for use with Microsoft's 
   implementation of DCE RPC, which initially expected three legs of 
   authentication. Setting this flag causes an extra AP reply to be 
   sent from the client back to the server after receiving the serverĘs 
   AP reply. In addition, the context negotiation tokens do not have 
   GSSAPI per message tokens - they are raw AP messages that do not 
   include object identifiers. 
        #define GSS_C_DCE_STYLE                 0x1000 
    
   GSS_C_IDENTIFY_FLAG - This flag allows the client to indicate to the 
   server that it should only allow the server application to identify 
   the client by name and ID, but not to impersonate the client. 
        #define GSS_C_IDENTIFY_FLAG             0x2000 
  
Swift                  Category - Informational                      6 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
         
   GSS_C_EXTENDED_ERROR_FLAG - Setting this flag indicates that the 
   client wants to be informed of extended error information. In 
   particular, Windows 2000 status codes may be returned in the data 
   field of a Kerberos error message. This allows the client to 
   understand a server failure more precisely. In addition, the server 
   may return errors to the client that are normally handled at the 
   application layer in the server, in order to let the client try to 
   recover. After receiving an error message, the client may attempt to 
   resubmit an AP request. 
        #define GSS_C_EXTENDED_ERROR_FLAG       0x4000 
    
   These flags are only used if a client is aware of these conventions 
   when using the SSPI on the Windows platform; they are not generally 
   used by default. 
    
   When NetBIOS addresses are used in the GSSAPI, they are identified 
   by the GSS_C_AF_NETBIOS value. This value is defined as: 
        #define GSS_C_AF_NETBIOS                0x14 
   NetBios addresses are 16-octet addresses typically composed of 1 to 
   15 characters, trailing blank (ASCII char 20) filled, with a 16-th 
   octet of 0x0. 
    
8.2 GSSAPI MIC Semantics 
    
   The GSSAPI checksum type and algorithm is defined in Section 5. Only 
   the first 8 octets of the checksum are used. The resulting checksum 
   is stored in the SGN_CKSUM field (See [5] Section 1.2) for 
   GSS_GetMIC() and GSS_Wrap(conf_flag=FALSE). 
    
   The GSS_GetMIC token has the following format: 
    
      Byte no         Name       Description 
       0..1           TOK_ID     Identification field. 
                                 Tokens emitted by GSS_GetMIC() contain 
                                 the hex value 01 01 in this field. 
       2..3           SGN_ALG    Integrity algorithm indicator. 
                                 11 00 - HMAC 
       4..7           Filler     Contains ff ff ff ff 
       8..15          SND_SEQ    Sequence number field. 
       16..23         SGN_CKSUM  Checksum of "to-be-signed data", 
                                 calculated according to algorithm 
                                 specified in SGN_ALG field. 
    
   The MIC mechanism used for GSS MIC based messages is as follow: 
    
        GetMIC(Kss, direction, export, seq_num, data) 
        { 
                struct Token { 
                       struct Header { 
                              OCTET TOK_ID[2]; 
                              OCTET SGN_ALG[2]; 
                              OCTET Filler[4]; 
  
Swift                  Category - Informational                      7 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
                       }; 
                       OCTET SND_SEQ[8]; 
                       OCTET SGN_CKSUM[8]; 
                } Token; 
         
         
                Token.TOK_ID = 01 01; 
                Token.SGN_SLG = 11 00; 
                Token.Filler = ff ff ff ff; 
         
                // Create the sequence number 
         
                if (direction == sender_is_initiator) 
                { 
                        memset(Token.SEND_SEQ+4, 0xff, 4) 
                } 
                else if (direction == sender_is_acceptor) 
                { 
                        memset(Token.SEND_SEQ+4, 0, 4) 
                } 
                Token.SEND_SEQ[0] = (seq_num & 0xff000000) >> 24; 
                Token.SEND_SEQ[1] = (seq_num & 0x00ff0000) >> 16; 
                Token.SEND_SEQ[2] = (seq_num & 0x0000ff00) >> 8; 
                Token.SEND_SEQ[3] = (seq_num & 0x000000ff); 
         
                // Derive signing key from session key 
         
                Ksign = HMAC(Kss, "signaturekey"); 
                                  // length includes terminating null 
         
                // Generate checksum of message - SGN_CKSUM 
                //   Key derivation salt = 15 
         
                Sgn_Cksum = MD5((int32)15, Token.Header, data); 
         
                // Save first 8 octets of HMAC Sgn_Cksum 
         
                Sgn_Cksum = HMAC(Ksign, Sgn_Cksum); 
                memcpy(Token.SGN_CKSUM, Sgn_Cksum, 8); 
         
                // Encrypt the sequence number 
         
                // Derive encryption key for the sequence number 
                //   Key derivation salt = 0 
         
                if (exportable) 
                { 
                        Kseq = HMAC(Kss, "fortybits", (int32)0); 
                                     // len includes terminating null 
                        memset(Kseq+7, 0xab, 7) 
                } 
                else 
                { 
  
Swift                  Category - Informational                      8 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
                        Kseq = HMAC(Kss, (int32)0); 
                } 
                Kseq = HMAC(Kseq, Token.SGN_CKSUM); 
         
                // Encrypt the sequence number 
         
                RC4(Kseq, Token.SND_SEQ); 
        } 
    
8.3 GSSAPI WRAP Semantics 
    
   There are two encryption keys for GSSAPI message tokens, one that is 
   128 bits in strength, and one that is 56 bits in strength as defined 
   in Section 6. 
    
   All padding is rounded up to 1 byte. One byte is needed to say that 
   there is 1 byte of padding. The DES based mechanism type uses 8 byte 
   padding. See [5] Section 1.2.2.3. 
    
   The RC4-HMAC GSS_Wrap() token has the following format: 
    
   Byte no            Name         Description 
       0..1           TOK_ID       Identification field. 
                                   Tokens emitted by GSS_Wrap() contain 
                                   the hex value 02 01 in this field. 
       2..3           SGN_ALG      Checksum algorithm indicator. 
                                   11 00 - HMAC 
       4..5           SEAL_ALG     ff ff - none 
                                   00 00 - DES-CBC 
                                   10 00 - RC4 
       6..7           Filler       Contains ff ff 
       8..15          SND_SEQ      Encrypted sequence number field. 
       16..23         SGN_CKSUM    Checksum of plaintext padded data, 
                                   calculated according to algorithm 
                                   specified in SGN_ALG field. 
       24..31         Confounder   Random confounder 
       32..last       Data         encrypted or plaintext padded data 
    
   The encryption mechanism used for GSS wrap based messages is as 
   follow: 
    
    
        WRAP(Kss, encrypt, direction, export, seq_num, data) 
        { 
                struct Token {          // 32 octets 
                       struct Header { 
                              OCTET TOK_ID[2]; 
                              OCTET SGN_ALG[2]; 
                              OCTET SEAL_ALG[2]; 
                              OCTET Filler[2]; 
                       }; 
                       OCTET SND_SEQ[8]; 
                       OCTET SGN_CKSUM[8]; 
  
Swift                  Category - Informational                      9 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
                       OCTET Confounder[8]; 
                } Token; 
         
         
                Token.TOK_ID = 02 01; 
                Token.SGN_SLG = 11 00; 
                Token.SEAL_ALG = (no_encrypt)? ff ff : 10 00; 
                Token.Filler = ff ff; 
         
                // Create the sequence number 
         
                if (direction == sender_is_initiator) 
                { 
                        memset(&Token.SEND_SEQ[4], 0xff, 4) 
                } 
                else if (direction == sender_is_acceptor) 
                { 
                        memset(&Token.SEND_SEQ[4], 0, 4) 
                } 
                Token.SEND_SEQ[0] = (seq_num & 0xff000000) >> 24; 
                Token.SEND_SEQ[1] = (seq_num & 0x00ff0000) >> 16; 
                Token.SEND_SEQ[2] = (seq_num & 0x0000ff00) >> 8; 
                Token.SEND_SEQ[3] = (seq_num & 0x000000ff); 
                         
                // Generate random confounder 
         
                nonce(&Token.Confounder, 8); 
         
                // Derive signing key from session key 
         
                Ksign = HMAC(Kss, "signaturekey"); 
         
                // Generate checksum of message -  
                //  SGN_CKSUM + Token.Confounder 
                //   Key derivation salt = 15 
         
                Sgn_Cksum = MD5((int32)15, Token.Header, 
                                Token.Confounder); 
         
                // Derive encryption key for data 
                //   Key derivation salt = 0 
         
                for (i = 0; i < 16; i++) Klocal[i] = Kss[i] ^ 0xF0;     
        // XOR 
                if (exportable) 
                { 
                        Kcrypt = HMAC(Klocal, "fortybits", (int32)0); 
                                    // len includes terminating null 
                        memset(Kcrypt+7, 0xab, 7); 
                } 
                else 
                { 
                        Kcrypt = HMAC(Klocal, (int32)0); 
  
Swift                  Category - Informational                     10 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
                } 
         
                // new encryption key salted with seq 
         
                Kcrypt = HMAC(Kcrypt, (int32)seq); 
         
                // Encrypt confounder (if encrypting) 
         
                if (encrypt) 
                        RC4(Kcrypt, Token.Confounder); 
         
                // Sum the data buffer 
         
                Sgn_Cksum += MD5(data);         // Append to checksum 
         
                // Encrypt the data (if encrypting) 
         
                if (encrypt) 
                        RC4(Kcrypt, data); 
         
                // Save first 8 octets of HMAC Sgn_Cksum 
         
                Sgn_Cksum = HMAC(Ksign, Sgn_Cksum); 
                memcpy(Token.SGN_CKSUM, Sgn_Cksum, 8); 
         
                // Derive encryption key for the sequence number 
                //   Key derivation salt = 0 
         
                if (exportable) 
                { 
                        Kseq = HMAC(Kss, "fortybits", (int32)0); 
                                      // len includes terminating null 
                        memset(Kseq+7, 0xab, 7) 
                } 
                else 
                { 
                        Kseq = HMAC(Kss, (int32)0); 
                } 
                Kseq = HMAC(Kseq, Token.SGN_CKSUM); 
         
                // Encrypt the sequence number 
         
                RC4(Kseq, Token.SND_SEQ); 
         
                // Encrypted message = Token + Data 
        } 
    
   The character constant "fortybits" evolved from the time when a 40-
   bit key length was all that was exportable from the United States. 
   It is now used to recognize that the key length is of "exportable" 
   length. In this description, the key size is actually 56-bits. 
    
9. Security Considerations 
  
Swift                  Category - Informational                     11 








                Windows 2000 RC4-HMAC Kerberos E-Type        May 2002 
 
 
 
   Care must be taken in implementing this encryption type because it 
   uses a stream cipher. If a different IV isn't used in each direction 
   when using a session key, the encryption is weak. By using the 
   sequence number as an IV, this is avoided. 
    
10. Acknowledgements 
    
   We would like to thank Salil Dangi and Sam Hartman for the valuable 
   input in refining the descriptions of the functions and their input. 
     
11. References 
 
   1  Bradner, S., "The Internet Standards Process -- Revision 3", BCP 
      9, RFC 2026, October 1996. 
    
   2  Bradner, S., "Key words for use in RFCs to Indicate Requirement 
      Levels", BCP 14, RFC 2119, March 1997 
    
   3  Krawczyk, H., Bellare, M., Canetti, R.,"HMAC: Keyed-Hashing for 
      Message Authentication", RFC 2104, February 1997 
    
   4  Kohl, J., Neuman, C., "The Kerberos Network Authentication 
      Service (V5)", RFC 1510, September 1993 
 
   5  Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC-1964, 
      June 1996 
 
   6  R. Rivest, "The MD4 Message-Digest Algorithm", RFC-1320, April 
      1992 
 
   7  R. Rivest, "The MD5 Message-Digest Algorithm", RFC-1321, April 
      1992 
 
   8  Thayer, R. and K. Kaukonen, "A Stream Cipher Encryption             
      Algorithm", Work in Progress. 
 
   9  RC4 is a proprietary encryption algorithm available under license 
      from RSA Data Security Inc.  For licensing information, contact: 
       
         RSA Data Security, Inc. 
         100 Marine Parkway 
         Redwood City, CA 94065-1031 
 
   10 Neuman, C., Kohl, J., Ts'o, T., "The Kerberos Network 
      Authentication Service (V5)", draft-ietf-cat-kerberos-revisions-
      04.txt, June 25, 1999 
 
    
12. Author's Addresses 
    
   Mike Swift 
   Dept. of Computer Science 
  
Swift                  Category - Informational                     12 








                Windows 2000 RC4-HMAC Kerberos E-Type    October 1999 
 
 
   Sieg Hall 
   University of Washington 
   Seattle, WA 98105 
   Email: mikesw@cs.washington.edu  
    
   John Brezak 
   Microsoft 
   One Microsoft Way 
   Redmond, Washington 
   Email: jbrezak@microsoft.com 
    
    









































  
Swift                  Category - Informational                     13 








                Windows 2000 RC4-HMAC Kerberos E-Type    October 1999 
 
 
    
13. Full Copyright Statement 
 
   "Copyright (C) The Internet Society (2000). All Rights Reserved. 
    
   This document and translations of it may be copied and          
   furnished to others, and derivative works that comment on or          
   otherwise explain it or assist in its implementation may be          
   prepared, copied, published and distributed, in whole or in          
   part, without restriction of any kind, provided that the above          
   copyright notice and this paragraph are included on all such          
   copies and derivative works.  However, this document itself may          
   not be modified in any way, such as by removing the copyright          
   notice or references to the Internet Society or other Internet          
   organizations, except as needed for the purpose of developing          
   Internet standards in which case the procedures for copyrights          
   defined in the Internet Standards process must be followed, or          
   as required to translate it into languages other than English. 
    
   The limited permissions granted above are perpetual and will          
   not be revoked by the Internet Society or its successors or          
   assigns. 
    






























  
Swift                  Category - Informational                     14