summaryrefslogtreecommitdiff
path: root/ext/objspace/objspace.c
blob: 6d5f6c073ae3dcd05687fb9f1391f2a69c75e164 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
/**********************************************************************

  objspace.c - ObjectSpace extender for MRI.

  $Author$
  created at: Wed Jun 17 07:39:17 2009

  NOTE: This extension library is only expected to exist with C Ruby.

  All the files in this distribution are covered under the Ruby's
  license (see the file COPYING).

**********************************************************************/

#include "gc.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/compilers.h"
#include "internal/hash.h"
#include "internal/imemo.h"
#include "node.h"
#include "ruby/io.h"
#include "ruby/re.h"
#include "ruby/st.h"
#include "symbol.h"

/*
 *  call-seq:
 *    ObjectSpace.memsize_of(obj) -> Integer
 *
 *  Return consuming memory size of obj.
 *
 *  Note that the return size is incomplete.  You need to deal with this
 *  information as only a *HINT*. Especially, the size of +T_DATA+ may not be
 *  correct.
 *
 *  This method is only expected to work with C Ruby.
 *
 *  From Ruby 2.2, memsize_of(obj) returns a memory size includes
 *  sizeof(RVALUE).
 */

static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
    return SIZET2NUM(rb_obj_memsize_of(obj));
}

struct total_data {
    size_t total;
    VALUE klass;
};

static int
total_i(void *vstart, void *vend, size_t stride, void *ptr)
{
    VALUE v;
    struct total_data *data = (struct total_data *)ptr;

    for (v = (VALUE)vstart; v != (VALUE)vend; v += stride) {
	if (RBASIC(v)->flags) {
	    switch (BUILTIN_TYPE(v)) {
	      case T_NONE:
	      case T_IMEMO:
	      case T_ICLASS:
	      case T_NODE:
	      case T_ZOMBIE:
		continue;
	      default:
		if (data->klass == 0 || rb_obj_is_kind_of(v, data->klass)) {
		    data->total += rb_obj_memsize_of(v);
		}
	    }
	}
    }

    return 0;
}

/*
 *  call-seq:
 *    ObjectSpace.memsize_of_all([klass]) -> Integer
 *
 *  Return consuming memory size of all living objects.
 *
 *  If +klass+ (should be Class object) is given, return the total memory size
 *  of instances of the given class.
 *
 *  Note that the returned size is incomplete. You need to deal with this
 *  information as only a *HINT*. Especially, the size of +T_DATA+ may not be
 *  correct.
 *
 *  Note that this method does *NOT* return total malloc'ed memory size.
 *
 *  This method can be defined by the following Ruby code:
 *
 *	def memsize_of_all klass = false
 *  	  total = 0
 *  	  ObjectSpace.each_object{|e|
 *  	    total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass)
 *  	  }
 *  	  total
 *  	end
 *
 *  This method is only expected to work with C Ruby.
 */

static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
    struct total_data data = {0, 0};

    if (argc > 0) {
	rb_scan_args(argc, argv, "01", &data.klass);
    }

    rb_objspace_each_objects(total_i, &data);
    return SIZET2NUM(data.total);
}

static int
set_zero_i(st_data_t key, st_data_t val, st_data_t arg)
{
    VALUE k = (VALUE)key;
    VALUE hash = (VALUE)arg;
    rb_hash_aset(hash, k, INT2FIX(0));
    return ST_CONTINUE;
}

static VALUE
setup_hash(int argc, VALUE *argv)
{
    VALUE hash;

    if (rb_scan_args(argc, argv, "01", &hash) == 1) {
        if (!RB_TYPE_P(hash, T_HASH))
            rb_raise(rb_eTypeError, "non-hash given");
    }

    if (hash == Qnil) {
        hash = rb_hash_new();
    }
    else if (!RHASH_EMPTY_P(hash)) {
        st_foreach(RHASH_TBL(hash), set_zero_i, hash);
    }

    return hash;
}

static int
cos_i(void *vstart, void *vend, size_t stride, void *data)
{
    size_t *counts = (size_t *)data;
    VALUE v = (VALUE)vstart;

    for (;v != (VALUE)vend; v += stride) {
	if (RBASIC(v)->flags) {
	    counts[BUILTIN_TYPE(v)] += rb_obj_memsize_of(v);
	}
    }
    return 0;
}

static VALUE
type2sym(enum ruby_value_type i)
{
    VALUE type;
    switch (i) {
#define CASE_TYPE(t) case t: type = ID2SYM(rb_intern(#t)); break;
	CASE_TYPE(T_NONE);
	CASE_TYPE(T_OBJECT);
	CASE_TYPE(T_CLASS);
	CASE_TYPE(T_MODULE);
	CASE_TYPE(T_FLOAT);
	CASE_TYPE(T_STRING);
	CASE_TYPE(T_REGEXP);
	CASE_TYPE(T_ARRAY);
	CASE_TYPE(T_HASH);
	CASE_TYPE(T_STRUCT);
	CASE_TYPE(T_BIGNUM);
	CASE_TYPE(T_FILE);
	CASE_TYPE(T_DATA);
	CASE_TYPE(T_MATCH);
	CASE_TYPE(T_COMPLEX);
	CASE_TYPE(T_RATIONAL);
	CASE_TYPE(T_NIL);
	CASE_TYPE(T_TRUE);
	CASE_TYPE(T_FALSE);
	CASE_TYPE(T_SYMBOL);
	CASE_TYPE(T_FIXNUM);
	CASE_TYPE(T_UNDEF);
	CASE_TYPE(T_IMEMO);
	CASE_TYPE(T_NODE);
	CASE_TYPE(T_ICLASS);
        CASE_TYPE(T_MOVED);
	CASE_TYPE(T_ZOMBIE);
#undef CASE_TYPE
      default: rb_bug("type2sym: unknown type (%d)", i);
    }
    return type;
}

/*
 *  call-seq:
 *    ObjectSpace.count_objects_size([result_hash]) -> hash
 *
 *  Counts objects size (in bytes) for each type.
 *
 *  Note that this information is incomplete.  You need to deal with
 *  this information as only a *HINT*.  Especially, total size of
 *  T_DATA may be wrong.
 *
 *  It returns a hash as:
 *    {:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}
 *
 *  If the optional argument, result_hash, is given,
 *  it is overwritten and returned.
 *  This is intended to avoid probe effect.
 *
 *  The contents of the returned hash is implementation defined.
 *  It may be changed in future.
 *
 *  This method is only expected to work with C Ruby.
 */

static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
    size_t counts[T_MASK+1];
    size_t total = 0;
    enum ruby_value_type i;
    VALUE hash = setup_hash(argc, argv);

    for (i = 0; i <= T_MASK; i++) {
	counts[i] = 0;
    }

    rb_objspace_each_objects(cos_i, &counts[0]);

    for (i = 0; i <= T_MASK; i++) {
	if (counts[i]) {
	    VALUE type = type2sym(i);
	    total += counts[i];
	    rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
	}
    }
    rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
    return hash;
}

struct dynamic_symbol_counts {
    size_t mortal;
    size_t immortal;
};

static int
cs_i(void *vstart, void *vend, size_t stride, void *n)
{
    struct dynamic_symbol_counts *counts = (struct dynamic_symbol_counts *)n;
    VALUE v = (VALUE)vstart;

    for (; v != (VALUE)vend; v += stride) {
	if (RBASIC(v)->flags && BUILTIN_TYPE(v) == T_SYMBOL) {
	    ID id = RSYMBOL(v)->id;
	    if ((id & ~ID_SCOPE_MASK) == 0) {
		counts->mortal++;
	    }
	    else {
		counts->immortal++;
	    }
	}
    }

    return 0;
}

size_t rb_sym_immortal_count(void);

/*
 *  call-seq:
 *     ObjectSpace.count_symbols([result_hash]) -> hash
 *
 *  Counts symbols for each Symbol type.
 *
 *  This method is only for MRI developers interested in performance and memory
 *  usage of Ruby programs.
 *
 *  If the optional argument, result_hash, is given, it is overwritten and
 *  returned. This is intended to avoid probe effect.
 *
 *  Note:
 *  The contents of the returned hash is implementation defined.
 *  It may be changed in future.
 *
 *  This method is only expected to work with C Ruby.
 *
 *  On this version of MRI, they have 3 types of Symbols (and 1 total counts).
 *
 *   * mortal_dynamic_symbol: GC target symbols (collected by GC)
 *   * immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
 *   * immortal_static_symbol: Immortal symbols (do not collected by GC)
 *   * immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)
 */

static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
    struct dynamic_symbol_counts dynamic_counts = {0, 0};
    VALUE hash = setup_hash(argc, argv);

    size_t immortal_symbols = rb_sym_immortal_count();
    rb_objspace_each_objects(cs_i, &dynamic_counts);

    rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")),   SIZET2NUM(dynamic_counts.mortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")),  SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")),         SIZET2NUM(immortal_symbols));

    return hash;
}

static int
cn_i(void *vstart, void *vend, size_t stride, void *n)
{
    size_t *nodes = (size_t *)n;
    VALUE v = (VALUE)vstart;

    for (; v != (VALUE)vend; v += stride) {
	if (RBASIC(v)->flags && BUILTIN_TYPE(v) == T_NODE) {
	    size_t s = nd_type((NODE *)v);
	    nodes[s]++;
	}
    }

    return 0;
}

/*
 *  call-seq:
 *     ObjectSpace.count_nodes([result_hash]) -> hash
 *
 *  Counts nodes for each node type.
 *
 *  This method is only for MRI developers interested in performance and memory
 *  usage of Ruby programs.
 *
 *  It returns a hash as:
 *
 *	{:NODE_METHOD=>2027, :NODE_FBODY=>1927, :NODE_CFUNC=>1798, ...}
 *
 *  If the optional argument, result_hash, is given, it is overwritten and
 *  returned. This is intended to avoid probe effect.
 *
 *  Note:
 *  The contents of the returned hash is implementation defined.
 *  It may be changed in future.
 *
 *  This method is only expected to work with C Ruby.
 */

static VALUE
count_nodes(int argc, VALUE *argv, VALUE os)
{
    size_t nodes[NODE_LAST+1];
    enum node_type i;
    VALUE hash = setup_hash(argc, argv);

    for (i = 0; i <= NODE_LAST; i++) {
	nodes[i] = 0;
    }

    rb_objspace_each_objects(cn_i, &nodes[0]);

    for (i=0; i<NODE_LAST; i++) {
	if (nodes[i] != 0) {
	    VALUE node;
	    switch (i) {
#define COUNT_NODE(n) case n: node = ID2SYM(rb_intern(#n)); goto set
		COUNT_NODE(NODE_SCOPE);
		COUNT_NODE(NODE_BLOCK);
		COUNT_NODE(NODE_IF);
		COUNT_NODE(NODE_UNLESS);
		COUNT_NODE(NODE_CASE);
		COUNT_NODE(NODE_CASE2);
                COUNT_NODE(NODE_CASE3);
		COUNT_NODE(NODE_WHEN);
                COUNT_NODE(NODE_IN);
		COUNT_NODE(NODE_WHILE);
		COUNT_NODE(NODE_UNTIL);
		COUNT_NODE(NODE_ITER);
		COUNT_NODE(NODE_FOR);
		COUNT_NODE(NODE_FOR_MASGN);
		COUNT_NODE(NODE_BREAK);
		COUNT_NODE(NODE_NEXT);
		COUNT_NODE(NODE_REDO);
		COUNT_NODE(NODE_RETRY);
		COUNT_NODE(NODE_BEGIN);
		COUNT_NODE(NODE_RESCUE);
		COUNT_NODE(NODE_RESBODY);
		COUNT_NODE(NODE_ENSURE);
		COUNT_NODE(NODE_AND);
		COUNT_NODE(NODE_OR);
		COUNT_NODE(NODE_MASGN);
		COUNT_NODE(NODE_LASGN);
		COUNT_NODE(NODE_DASGN);
		COUNT_NODE(NODE_DASGN_CURR);
		COUNT_NODE(NODE_GASGN);
		COUNT_NODE(NODE_IASGN);
		COUNT_NODE(NODE_CDECL);
		COUNT_NODE(NODE_CVASGN);
		COUNT_NODE(NODE_OP_ASGN1);
		COUNT_NODE(NODE_OP_ASGN2);
		COUNT_NODE(NODE_OP_ASGN_AND);
		COUNT_NODE(NODE_OP_ASGN_OR);
		COUNT_NODE(NODE_OP_CDECL);
		COUNT_NODE(NODE_CALL);
		COUNT_NODE(NODE_OPCALL);
		COUNT_NODE(NODE_FCALL);
		COUNT_NODE(NODE_VCALL);
		COUNT_NODE(NODE_QCALL);
		COUNT_NODE(NODE_SUPER);
		COUNT_NODE(NODE_ZSUPER);
		COUNT_NODE(NODE_LIST);
		COUNT_NODE(NODE_ZLIST);
		COUNT_NODE(NODE_VALUES);
		COUNT_NODE(NODE_HASH);
		COUNT_NODE(NODE_RETURN);
		COUNT_NODE(NODE_YIELD);
		COUNT_NODE(NODE_LVAR);
		COUNT_NODE(NODE_DVAR);
		COUNT_NODE(NODE_GVAR);
		COUNT_NODE(NODE_IVAR);
		COUNT_NODE(NODE_CONST);
		COUNT_NODE(NODE_CVAR);
		COUNT_NODE(NODE_NTH_REF);
		COUNT_NODE(NODE_BACK_REF);
		COUNT_NODE(NODE_MATCH);
		COUNT_NODE(NODE_MATCH2);
		COUNT_NODE(NODE_MATCH3);
		COUNT_NODE(NODE_LIT);
		COUNT_NODE(NODE_STR);
		COUNT_NODE(NODE_DSTR);
		COUNT_NODE(NODE_XSTR);
		COUNT_NODE(NODE_DXSTR);
		COUNT_NODE(NODE_EVSTR);
		COUNT_NODE(NODE_DREGX);
		COUNT_NODE(NODE_ONCE);
		COUNT_NODE(NODE_ARGS);
		COUNT_NODE(NODE_ARGS_AUX);
		COUNT_NODE(NODE_OPT_ARG);
		COUNT_NODE(NODE_KW_ARG);
		COUNT_NODE(NODE_POSTARG);
		COUNT_NODE(NODE_ARGSCAT);
		COUNT_NODE(NODE_ARGSPUSH);
		COUNT_NODE(NODE_SPLAT);
		COUNT_NODE(NODE_BLOCK_PASS);
		COUNT_NODE(NODE_DEFN);
		COUNT_NODE(NODE_DEFS);
		COUNT_NODE(NODE_ALIAS);
		COUNT_NODE(NODE_VALIAS);
		COUNT_NODE(NODE_UNDEF);
		COUNT_NODE(NODE_CLASS);
		COUNT_NODE(NODE_MODULE);
		COUNT_NODE(NODE_SCLASS);
		COUNT_NODE(NODE_COLON2);
		COUNT_NODE(NODE_COLON3);
		COUNT_NODE(NODE_DOT2);
		COUNT_NODE(NODE_DOT3);
		COUNT_NODE(NODE_FLIP2);
		COUNT_NODE(NODE_FLIP3);
		COUNT_NODE(NODE_SELF);
		COUNT_NODE(NODE_NIL);
		COUNT_NODE(NODE_TRUE);
		COUNT_NODE(NODE_FALSE);
		COUNT_NODE(NODE_ERRINFO);
		COUNT_NODE(NODE_DEFINED);
		COUNT_NODE(NODE_POSTEXE);
		COUNT_NODE(NODE_DSYM);
		COUNT_NODE(NODE_ATTRASGN);
		COUNT_NODE(NODE_LAMBDA);
                COUNT_NODE(NODE_ARYPTN);
                COUNT_NODE(NODE_HSHPTN);
#undef COUNT_NODE
	      case NODE_LAST: break;
	    }
	    UNREACHABLE;
	  set:
	    rb_hash_aset(hash, node, SIZET2NUM(nodes[i]));
	}
    }
    return hash;
}

static int
cto_i(void *vstart, void *vend, size_t stride, void *data)
{
    VALUE hash = (VALUE)data;
    VALUE v = (VALUE)vstart;

    for (; v != (VALUE)vend; v += stride) {
	if (RBASIC(v)->flags && BUILTIN_TYPE(v) == T_DATA) {
	    VALUE counter;
	    VALUE key = RBASIC(v)->klass;

	    if (key == 0) {
		const char *name = rb_objspace_data_type_name(v);
		if (name == 0) name = "unknown";
		key = ID2SYM(rb_intern(name));
	    }

	    counter = rb_hash_aref(hash, key);
	    if (NIL_P(counter)) {
		counter = INT2FIX(1);
	    }
	    else {
		counter = INT2FIX(FIX2INT(counter) + 1);
	    }

	    rb_hash_aset(hash, key, counter);
	}
    }

    return 0;
}

/*
 *  call-seq:
 *     ObjectSpace.count_tdata_objects([result_hash]) -> hash
 *
 *  Counts objects for each +T_DATA+ type.
 *
 *  This method is only for MRI developers interested in performance and memory
 *  usage of Ruby programs.
 *
 *  It returns a hash as:
 *
 *	{RubyVM::InstructionSequence=>504, :parser=>5, :barrier=>6,
 *  	 :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99,
 *  	 ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1,
 *  	 Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2}
 *  	# T_DATA objects existing at startup on r32276.
 *
 *  If the optional argument, result_hash, is given, it is overwritten and
 *  returned. This is intended to avoid probe effect.
 *
 *  The contents of the returned hash is implementation specific and may change
 *  in the future.
 *
 *  In this version, keys are Class object or Symbol object.
 *
 *  If object is kind of normal (accessible) object, the key is Class object.
 *  If object is not a kind of normal (internal) object, the key is symbol
 *  name, registered by rb_data_type_struct.
 *
 *  This method is only expected to work with C Ruby.
 */

static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
    VALUE hash = setup_hash(argc, argv);
    rb_objspace_each_objects(cto_i, (void *)hash);
    return hash;
}

static ID imemo_type_ids[IMEMO_MASK+1];

static int
count_imemo_objects_i(void *vstart, void *vend, size_t stride, void *data)
{
    VALUE hash = (VALUE)data;
    VALUE v = (VALUE)vstart;

    for (; v != (VALUE)vend; v += stride) {
	if (RBASIC(v)->flags && BUILTIN_TYPE(v) == T_IMEMO) {
	    VALUE counter;
	    VALUE key = ID2SYM(imemo_type_ids[imemo_type(v)]);

	    counter = rb_hash_aref(hash, key);

	    if (NIL_P(counter)) {
		counter = INT2FIX(1);
	    }
	    else {
		counter = INT2FIX(FIX2INT(counter) + 1);
	    }

	    rb_hash_aset(hash, key, counter);
	}
    }

    return 0;
}

/*
 *  call-seq:
 *     ObjectSpace.count_imemo_objects([result_hash]) -> hash
 *
 *  Counts objects for each +T_IMEMO+ type.
 *
 *  This method is only for MRI developers interested in performance and memory
 *  usage of Ruby programs.
 *
 *  It returns a hash as:
 *
 *       {:imemo_ifunc=>8,
 *        :imemo_svar=>7,
 *        :imemo_cref=>509,
 *        :imemo_memo=>1,
 *        :imemo_throw_data=>1}
 *
 *  If the optional argument, result_hash, is given, it is overwritten and
 *  returned. This is intended to avoid probe effect.
 *
 *  The contents of the returned hash is implementation specific and may change
 *  in the future.
 *
 *  In this version, keys are symbol objects.
 *
 *  This method is only expected to work with C Ruby.
 */

static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
    VALUE hash = setup_hash(argc, argv);

    if (imemo_type_ids[0] == 0) {
        imemo_type_ids[0] = rb_intern("imemo_env");
	imemo_type_ids[1] = rb_intern("imemo_cref");
	imemo_type_ids[2] = rb_intern("imemo_svar");
	imemo_type_ids[3] = rb_intern("imemo_throw_data");
	imemo_type_ids[4] = rb_intern("imemo_ifunc");
	imemo_type_ids[5] = rb_intern("imemo_memo");
	imemo_type_ids[6] = rb_intern("imemo_ment");
	imemo_type_ids[7] = rb_intern("imemo_iseq");
	imemo_type_ids[8] = rb_intern("imemo_tmpbuf");
        imemo_type_ids[9] = rb_intern("imemo_ast");
        imemo_type_ids[10] = rb_intern("imemo_parser_strterm");
    }

    rb_objspace_each_objects(count_imemo_objects_i, (void *)hash);

    return hash;
}

static void
iow_mark(void *ptr)
{
    rb_gc_mark((VALUE)ptr);
}

static size_t
iow_size(const void *ptr)
{
    VALUE obj = (VALUE)ptr;
    return rb_obj_memsize_of(obj);
}

static const rb_data_type_t iow_data_type = {
    "ObjectSpace::InternalObjectWrapper",
    {iow_mark, 0, iow_size,},
    0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};

static VALUE rb_mInternalObjectWrapper;

static VALUE
iow_newobj(VALUE obj)
{
    return TypedData_Wrap_Struct(rb_mInternalObjectWrapper, &iow_data_type, (void *)obj);
}

/* Returns the type of the internal object. */
static VALUE
iow_type(VALUE self)
{
    VALUE obj = (VALUE)DATA_PTR(self);
    return type2sym(BUILTIN_TYPE(obj));
}

/* See Object#inspect. */
static VALUE
iow_inspect(VALUE self)
{
    VALUE obj = (VALUE)DATA_PTR(self);
    VALUE type = type2sym(BUILTIN_TYPE(obj));

    return rb_sprintf("#<InternalObject:%p %"PRIsVALUE">", (void *)obj, rb_sym2str(type));
}

/* Returns the Object#object_id of the internal object. */
static VALUE
iow_internal_object_id(VALUE self)
{
    VALUE obj = (VALUE)DATA_PTR(self);
    return rb_obj_id(obj);
}

struct rof_data {
    st_table *refs;
    VALUE internals;
};

static void
reachable_object_from_i(VALUE obj, void *data_ptr)
{
    struct rof_data *data = (struct rof_data *)data_ptr;
    VALUE key = obj;
    VALUE val = obj;

    if (rb_objspace_markable_object_p(obj)) {
	if (rb_objspace_internal_object_p(obj)) {
	    val = iow_newobj(obj);
	    rb_ary_push(data->internals, val);
	}
	st_insert(data->refs, key, val);
    }
}

static int
collect_values(st_data_t key, st_data_t value, st_data_t data)
{
    VALUE ary = (VALUE)data;
    rb_ary_push(ary, (VALUE)value);
    return ST_CONTINUE;
}

/*
 *  call-seq:
 *     ObjectSpace.reachable_objects_from(obj) -> array or nil
 *
 *  [MRI specific feature] Return all reachable objects from `obj'.
 *
 *  This method returns all reachable objects from `obj'.
 *
 *  If `obj' has two or more references to the same object `x', then returned
 *  array only includes one `x' object.
 *
 *  If `obj' is a non-markable (non-heap management) object such as true,
 *  false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
 *
 *  If `obj' has references to an internal object, then it returns instances of
 *  ObjectSpace::InternalObjectWrapper class. This object contains a reference
 *  to an internal object and you can check the type of internal object with
 *  `type' method.
 *
 *  If `obj' is instance of ObjectSpace::InternalObjectWrapper class, then this
 *  method returns all reachable object from an internal object, which is
 *  pointed by `obj'.
 *
 *  With this method, you can find memory leaks.
 *
 *  This method is only expected to work except with C Ruby.
 *
 *  Example:
 *    ObjectSpace.reachable_objects_from(['a', 'b', 'c'])
 *    #=> [Array, 'a', 'b', 'c']
 *
 *    ObjectSpace.reachable_objects_from(['a', 'a', 'a'])
 *    #=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id
 *
 *    ObjectSpace.reachable_objects_from([v = 'a', v, v])
 *    #=> [Array, 'a']
 *
 *    ObjectSpace.reachable_objects_from(1)
 *    #=> nil # 1 is not markable (heap managed) object
 *
 */

static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
    if (rb_objspace_markable_object_p(obj)) {
	VALUE ret = rb_ary_new();
	struct rof_data data;

	if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	    obj = (VALUE)DATA_PTR(obj);
	}

	data.refs = st_init_numtable();
	data.internals = rb_ary_new();

	rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);

	st_foreach(data.refs, collect_values, (st_data_t)ret);
	return ret;
    }
    else {
	return Qnil;
    }
}

struct rofr_data {
    VALUE categories;
    const char *last_category;
    VALUE last_category_str;
    VALUE last_category_objects;
};

static void
reachable_object_from_root_i(const char *category, VALUE obj, void *ptr)
{
    struct rofr_data *data = (struct rofr_data *)ptr;
    VALUE category_str;
    VALUE category_objects;

    if (category == data->last_category) {
	category_str = data->last_category_str;
	category_objects = data->last_category_objects;
    }
    else {
	data->last_category = category;
	category_str = data->last_category_str = rb_str_new2(category);
	category_objects = data->last_category_objects = rb_ident_hash_new();
	if (!NIL_P(rb_hash_lookup(data->categories, category_str))) {
	    rb_bug("reachable_object_from_root_i: category should insert at once");
	}
	rb_hash_aset(data->categories, category_str, category_objects);
    }

    if (rb_objspace_markable_object_p(obj) &&
	obj != data->categories &&
	obj != data->last_category_objects) {
	if (rb_objspace_internal_object_p(obj)) {
	    obj = iow_newobj(obj);
	}
	rb_hash_aset(category_objects, obj, obj);
    }
}

static int
collect_values_of_values(VALUE category, VALUE category_objects, VALUE categories)
{
    VALUE ary = rb_ary_new();
    rb_hash_foreach(category_objects, collect_values, ary);
    rb_hash_aset(categories, category, ary);
    return ST_CONTINUE;
}

/*
 *  call-seq:
 *     ObjectSpace.reachable_objects_from_root -> hash
 *
 *  [MRI specific feature] Return all reachable objects from root.
 */
static VALUE
reachable_objects_from_root(VALUE self)
{
    struct rofr_data data;
    VALUE hash = data.categories = rb_ident_hash_new();
    data.last_category = 0;

    rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
    rb_hash_foreach(hash, collect_values_of_values, hash);

    return hash;
}

static VALUE
wrap_klass_iow(VALUE klass)
{
    if (!RTEST(klass)) {
	return Qnil;
    }
    else if (RB_TYPE_P(klass, T_ICLASS)) {
	return iow_newobj(klass);
    }
    else {
	return klass;
    }
}

/*
 *  call-seq:
 *     ObjectSpace.internal_class_of(obj) -> Class or Module
 *
 *  [MRI specific feature] Return internal class of obj.
 *  obj can be an instance of InternalObjectWrapper.
 *
 *  Note that you should not use this method in your application.
 */
static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
    VALUE klass;

    if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	obj = (VALUE)DATA_PTR(obj);
    }

    klass = CLASS_OF(obj);
    return wrap_klass_iow(klass);
}

/*
 *  call-seq:
 *     ObjectSpace.internal_super_of(cls) -> Class or Module
 *
 *  [MRI specific feature] Return internal super class of cls (Class or Module).
 *  obj can be an instance of InternalObjectWrapper.
 *
 *  Note that you should not use this method in your application.
 */
static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
    VALUE super;

    if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	obj = (VALUE)DATA_PTR(obj);
    }

    switch (OBJ_BUILTIN_TYPE(obj)) {
      case T_MODULE:
      case T_CLASS:
      case T_ICLASS:
	super = RCLASS_SUPER(obj);
	break;
      default:
	rb_raise(rb_eArgError, "class or module is expected");
    }

    return wrap_klass_iow(super);
}

void Init_object_tracing(VALUE rb_mObjSpace);
void Init_objspace_dump(VALUE rb_mObjSpace);

/*
 * Document-module: ObjectSpace
 *
 * The objspace library extends the ObjectSpace module and adds several
 * methods to get internal statistic information about
 * object/memory management.
 *
 * You need to <code>require 'objspace'</code> to use this extension module.
 *
 * Generally, you *SHOULD NOT* use this library if you do not know
 * about the MRI implementation.  Mainly, this library is for (memory)
 * profiler developers and MRI developers who need to know about MRI
 * memory usage.
 */

void
Init_objspace(void)
{
#undef rb_intern
    VALUE rb_mObjSpace;
#if 0
    rb_mObjSpace = rb_define_module("ObjectSpace"); /* let rdoc know */
#endif
    rb_mObjSpace = rb_const_get(rb_cObject, rb_intern("ObjectSpace"));

    rb_define_module_function(rb_mObjSpace, "memsize_of", memsize_of_m, 1);
    rb_define_module_function(rb_mObjSpace, "memsize_of_all", memsize_of_all_m, -1);

    rb_define_module_function(rb_mObjSpace, "count_objects_size", count_objects_size, -1);
    rb_define_module_function(rb_mObjSpace, "count_symbols", count_symbols, -1);
    rb_define_module_function(rb_mObjSpace, "count_nodes", count_nodes, -1);
    rb_define_module_function(rb_mObjSpace, "count_tdata_objects", count_tdata_objects, -1);
    rb_define_module_function(rb_mObjSpace, "count_imemo_objects", count_imemo_objects, -1);

    rb_define_module_function(rb_mObjSpace, "reachable_objects_from", reachable_objects_from, 1);
    rb_define_module_function(rb_mObjSpace, "reachable_objects_from_root", reachable_objects_from_root, 0);

    rb_define_module_function(rb_mObjSpace, "internal_class_of", objspace_internal_class_of, 1);
    rb_define_module_function(rb_mObjSpace, "internal_super_of", objspace_internal_super_of, 1);

    /*
     * This class is used as a return value from
     * ObjectSpace::reachable_objects_from.
     *
     * When ObjectSpace::reachable_objects_from returns an object with
     * references to an internal object, an instance of this class is returned.
     *
     * You can use the #type method to check the type of the internal object.
     */
    rb_mInternalObjectWrapper = rb_define_class_under(rb_mObjSpace, "InternalObjectWrapper", rb_cObject);
    rb_define_method(rb_mInternalObjectWrapper, "type", iow_type, 0);
    rb_define_method(rb_mInternalObjectWrapper, "inspect", iow_inspect, 0);
    rb_define_method(rb_mInternalObjectWrapper, "internal_object_id", iow_internal_object_id, 0);

    Init_object_tracing(rb_mObjSpace);
    Init_objspace_dump(rb_mObjSpace);
}