1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
#
# Copyright (C) 2009, 2010 Wayne Meissner
# Copyright (C) 2009 Luc Heinrich
#
# This file is part of ruby-ffi.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of the Ruby FFI project nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
module FFI
# An instance of this class permits to manage {Enum}s. In fact, Enums is a collection of {Enum}s.
class Enums
# @return [nil]
def initialize
@all_enums = Array.new
@tagged_enums = Hash.new
@symbol_map = Hash.new
end
# @param [Enum] enum
# Add an {Enum} to the collection.
def <<(enum)
@all_enums << enum
@tagged_enums[enum.tag] = enum unless enum.tag.nil?
@symbol_map.merge!(enum.symbol_map)
end
# @param query enum tag or part of an enum name
# @return [Enum]
# Find a {Enum} in collection.
def find(query)
if @tagged_enums.has_key?(query)
@tagged_enums[query]
else
@all_enums.detect { |enum| enum.symbols.include?(query) }
end
end
# @param symbol a symbol to find in merge symbol maps of all enums.
# @return a symbol
def __map_symbol(symbol)
@symbol_map[symbol]
end
end
# Represents a C enum.
#
# For a C enum:
# enum fruits {
# apple,
# banana,
# orange,
# pineapple
# };
# are defined this vocabulary:
# * a _symbol_ is a word from the enumeration (ie. _apple_, by example);
# * a _value_ is the value of a symbol in the enumeration (by example, apple has value _0_ and banana _1_).
class Enum
include DataConverter
attr_reader :tag
attr_reader :native_type
# @overload initialize(info, tag=nil)
# @param [nil, Enumerable] info
# @param [nil, Symbol] tag enum tag
# @overload initialize(native_type, info, tag=nil)
# @param [FFI::Type] native_type Native type for new Enum
# @param [nil, Enumerable] info symbols and values for new Enum
# @param [nil, Symbol] tag name of new Enum
def initialize(*args)
@native_type = args.first.kind_of?(FFI::Type) ? args.shift : Type::INT
info, @tag = *args
@kv_map = Hash.new
unless info.nil?
last_cst = nil
value = 0
info.each do |i|
case i
when Symbol
raise ArgumentError, "duplicate enum key" if @kv_map.has_key?(i)
@kv_map[i] = value
last_cst = i
value += 1
when Integer
@kv_map[last_cst] = i
value = i+1
end
end
end
@vk_map = @kv_map.invert
end
# @return [Array] enum symbol names
def symbols
@kv_map.keys
end
# Get a symbol or a value from the enum.
# @overload [](query)
# Get enum value from symbol.
# @param [Symbol] query
# @return [Integer]
# @overload [](query)
# Get enum symbol from value.
# @param [Integer] query
# @return [Symbol]
def [](query)
case query
when Symbol
@kv_map[query]
when Integer
@vk_map[query]
end
end
alias find []
# Get the symbol map.
# @return [Hash]
def symbol_map
@kv_map
end
alias to_h symbol_map
alias to_hash symbol_map
# @param [Symbol, Integer, #to_int] val
# @param ctx unused
# @return [Integer] value of a enum symbol
def to_native(val, ctx)
@kv_map[val] || if val.is_a?(Integer)
val
elsif val.respond_to?(:to_int)
val.to_int
else
raise ArgumentError, "invalid enum value, #{val.inspect}"
end
end
# @param val
# @return symbol name if it exists for +val+.
def from_native(val, ctx)
@vk_map[val] || val
end
end
# Represents a C enum whose values are power of 2
#
# @example
# enum {
# red = (1<<0),
# green = (1<<1),
# blue = (1<<2)
# }
#
# Contrary to classical enums, bitmask values are usually combined
# when used.
class Bitmask < Enum
# @overload initialize(info, tag=nil)
# @param [nil, Enumerable] info symbols and bit rank for new Bitmask
# @param [nil, Symbol] tag name of new Bitmask
# @overload initialize(native_type, info, tag=nil)
# @param [FFI::Type] native_type Native type for new Bitmask
# @param [nil, Enumerable] info symbols and bit rank for new Bitmask
# @param [nil, Symbol] tag name of new Bitmask
def initialize(*args)
@native_type = args.first.kind_of?(FFI::Type) ? args.shift : Type::INT
@signed = [Type::INT8, Type::INT16, Type::INT32, Type::INT64].include?(@native_type)
info, @tag = *args
@kv_map = Hash.new
unless info.nil?
last_cst = nil
value = 0
info.each do |i|
case i
when Symbol
raise ArgumentError, "duplicate bitmask key" if @kv_map.has_key?(i)
@kv_map[i] = 1 << value
last_cst = i
value += 1
when Integer
raise ArgumentError, "bitmask index should be positive" if i<0
@kv_map[last_cst] = 1 << i
value = i+1
end
end
end
@vk_map = @kv_map.invert
end
# Get a symbol list or a value from the bitmask
# @overload [](*query)
# Get bitmask value from symbol list
# @param [Symbol] query
# @return [Integer]
# @overload [](query)
# Get bitmask value from symbol array
# @param [Array<Symbol>] query
# @return [Integer]
# @overload [](*query)
# Get a list of bitmask symbols corresponding to
# the or reduction of a list of integer
# @param [Integer] query
# @return [Array<Symbol>]
# @overload [](query)
# Get a list of bitmask symbols corresponding to
# the or reduction of a list of integer
# @param [Array<Integer>] query
# @return [Array<Symbol>]
def [](*query)
flat_query = query.flatten
raise ArgumentError, "query should be homogeneous, #{query.inspect}" unless flat_query.all? { |o| o.is_a?(Symbol) } || flat_query.all? { |o| o.is_a?(Integer) || o.respond_to?(:to_int) }
case flat_query[0]
when Symbol
flat_query.inject(0) do |val, o|
v = @kv_map[o]
if v then val | v else val end
end
when Integer, ->(o) { o.respond_to?(:to_int) }
val = flat_query.inject(0) { |mask, o| mask |= o.to_int }
@kv_map.select { |_, v| v & val != 0 }.keys
end
end
# Get the native value of a bitmask
# @overload to_native(query, ctx)
# @param [Symbol, Integer, #to_int] query
# @param ctx unused
# @return [Integer] value of a bitmask
# @overload to_native(query, ctx)
# @param [Array<Symbol, Integer, #to_int>] query
# @param ctx unused
# @return [Integer] value of a bitmask
def to_native(query, ctx)
return 0 if query.nil?
flat_query = [query].flatten
res = flat_query.inject(0) do |val, o|
case o
when Symbol
v = @kv_map[o]
raise ArgumentError, "invalid bitmask value, #{o.inspect}" unless v
val | v
when Integer
val | o
when ->(obj) { obj.respond_to?(:to_int) }
val | o.to_int
else
raise ArgumentError, "invalid bitmask value, #{o.inspect}"
end
end
# Take two's complement of positive values bigger than the max value
# for the type when native type is signed.
if @signed && res >= (1 << (@native_type.size * 8 - 1))
res = -(-res & ((1 << (@native_type.size * 8)) - 1))
end
res
end
# @param [Integer] val
# @param ctx unused
# @return [Array<Symbol, Integer>] list of symbol names corresponding to val, plus an optional remainder if some bits don't match any constant
def from_native(val, ctx)
flags = @kv_map.select { |_, v| v & val != 0 }
list = flags.keys
# force an unsigned value of the correct size
val &= (1 << (@native_type.size * 8)) - 1 if @signed
# If there are unmatch flags,
# return them in an integer,
# else information can be lost.
# Similar to Enum behavior.
remainder = val ^ flags.values.reduce(0, :|)
list.push remainder unless remainder == 0
return list
end
end
end
|