summaryrefslogtreecommitdiff
path: root/deps/jemalloc/test/unit/fxp.c
blob: 27f1097687782f5edcb879d6d1bc3d9a062d3bcf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#include "test/jemalloc_test.h"

#include "jemalloc/internal/fxp.h"

static double
fxp2double(fxp_t a) {
	double intpart = (double)(a >> 16);
	double fracpart = (double)(a & ((1U << 16) - 1)) / (1U << 16);
	return intpart + fracpart;
}

/* Is a close to b? */
static bool
double_close(double a, double b) {
	/*
	 * Our implementation doesn't try for precision.  Correspondingly, don't
	 * enforce it too strenuously here; accept values that are close in
	 * either relative or absolute terms.
	 */
	return fabs(a - b) < 0.01 || fabs(a - b) / a < 0.01;
}

static bool
fxp_close(fxp_t a, fxp_t b) {
	return double_close(fxp2double(a), fxp2double(b));
}

static fxp_t
xparse_fxp(const char *str) {
	fxp_t result;
	bool err = fxp_parse(&result, str, NULL);
	assert_false(err, "Invalid fxp string: %s", str);
	return result;
}

static void
expect_parse_accurate(const char *str, const char *parse_str) {
	double true_val = strtod(str, NULL);
	fxp_t fxp_val;
	char *end;
	bool err = fxp_parse(&fxp_val, parse_str, &end);
	expect_false(err, "Unexpected parse failure");
	expect_ptr_eq(parse_str + strlen(str), end,
	    "Didn't parse whole string");
	expect_true(double_close(fxp2double(fxp_val), true_val),
	    "Misparsed %s", str);
}

static void
parse_valid_trial(const char *str) {
	/* The value it parses should be correct. */
	expect_parse_accurate(str, str);
	char buf[100];
	snprintf(buf, sizeof(buf), "%swith_some_trailing_text", str);
	expect_parse_accurate(str, buf);
	snprintf(buf, sizeof(buf), "%s with a space", str);
	expect_parse_accurate(str, buf);
	snprintf(buf, sizeof(buf), "%s,in_a_malloc_conf_string:1", str);
	expect_parse_accurate(str, buf);
}

TEST_BEGIN(test_parse_valid) {
	parse_valid_trial("0");
	parse_valid_trial("1");
	parse_valid_trial("2");
	parse_valid_trial("100");
	parse_valid_trial("345");
	parse_valid_trial("00000000123");
	parse_valid_trial("00000000987");

	parse_valid_trial("0.0");
	parse_valid_trial("0.00000000000456456456");
	parse_valid_trial("100.00000000000456456456");

	parse_valid_trial("123.1");
	parse_valid_trial("123.01");
	parse_valid_trial("123.001");
	parse_valid_trial("123.0001");
	parse_valid_trial("123.00001");
	parse_valid_trial("123.000001");
	parse_valid_trial("123.0000001");

	parse_valid_trial(".0");
	parse_valid_trial(".1");
	parse_valid_trial(".01");
	parse_valid_trial(".001");
	parse_valid_trial(".0001");
	parse_valid_trial(".00001");
	parse_valid_trial(".000001");

	parse_valid_trial(".1");
	parse_valid_trial(".10");
	parse_valid_trial(".100");
	parse_valid_trial(".1000");
	parse_valid_trial(".100000");
}
TEST_END

static void
expect_parse_failure(const char *str) {
	fxp_t result = FXP_INIT_INT(333);
	char *end = (void *)0x123;
	bool err = fxp_parse(&result, str, &end);
	expect_true(err, "Expected a parse error on: %s", str);
	expect_ptr_eq((void *)0x123, end,
	    "Parse error shouldn't change results");
	expect_u32_eq(result, FXP_INIT_INT(333),
	    "Parse error shouldn't change results");
}

TEST_BEGIN(test_parse_invalid) {
	expect_parse_failure("123.");
	expect_parse_failure("3.a");
	expect_parse_failure(".a");
	expect_parse_failure("a.1");
	expect_parse_failure("a");
	/* A valid string, but one that overflows. */
	expect_parse_failure("123456789");
	expect_parse_failure("0000000123456789");
	expect_parse_failure("1000000");
}
TEST_END

static void
expect_init_percent(unsigned percent, const char *str) {
	fxp_t result_init = FXP_INIT_PERCENT(percent);
	fxp_t result_parse = xparse_fxp(str);
	expect_u32_eq(result_init, result_parse,
	    "Expect representations of FXP_INIT_PERCENT(%u) and "
	    "fxp_parse(\"%s\") to be equal; got %x and %x",
	    percent, str, result_init, result_parse);

}

/*
 * Every other test uses either parsing or FXP_INIT_INT; it gets tested in those
 * ways.  We need a one-off for the percent-based initialization, though.
 */
TEST_BEGIN(test_init_percent) {
	expect_init_percent(100, "1");
	expect_init_percent(75, ".75");
	expect_init_percent(1, ".01");
	expect_init_percent(50, ".5");
}
TEST_END

static void
expect_add(const char *astr, const char *bstr, const char* resultstr) {
	fxp_t a = xparse_fxp(astr);
	fxp_t b = xparse_fxp(bstr);
	fxp_t result = xparse_fxp(resultstr);
	expect_true(fxp_close(fxp_add(a, b), result),
	    "Expected %s + %s == %s", astr, bstr, resultstr);
}

TEST_BEGIN(test_add_simple) {
	expect_add("0", "0", "0");
	expect_add("0", "1", "1");
	expect_add("1", "1", "2");
	expect_add("1.5", "1.5", "3");
	expect_add("0.1", "0.1", "0.2");
	expect_add("123", "456", "579");
}
TEST_END

static void
expect_sub(const char *astr, const char *bstr, const char* resultstr) {
	fxp_t a = xparse_fxp(astr);
	fxp_t b = xparse_fxp(bstr);
	fxp_t result = xparse_fxp(resultstr);
	expect_true(fxp_close(fxp_sub(a, b), result),
	    "Expected %s - %s == %s", astr, bstr, resultstr);
}

TEST_BEGIN(test_sub_simple) {
	expect_sub("0", "0", "0");
	expect_sub("1", "0", "1");
	expect_sub("1", "1", "0");
	expect_sub("3.5", "1.5", "2");
	expect_sub("0.3", "0.1", "0.2");
	expect_sub("456", "123", "333");
}
TEST_END

static void
expect_mul(const char *astr, const char *bstr, const char* resultstr) {
	fxp_t a = xparse_fxp(astr);
	fxp_t b = xparse_fxp(bstr);
	fxp_t result = xparse_fxp(resultstr);
	expect_true(fxp_close(fxp_mul(a, b), result),
	    "Expected %s * %s == %s", astr, bstr, resultstr);
}

TEST_BEGIN(test_mul_simple) {
	expect_mul("0", "0", "0");
	expect_mul("1", "0", "0");
	expect_mul("1", "1", "1");
	expect_mul("1.5", "1.5", "2.25");
	expect_mul("100.0", "10", "1000");
	expect_mul(".1", "10", "1");
}
TEST_END

static void
expect_div(const char *astr, const char *bstr, const char* resultstr) {
	fxp_t a = xparse_fxp(astr);
	fxp_t b = xparse_fxp(bstr);
	fxp_t result = xparse_fxp(resultstr);
	expect_true(fxp_close(fxp_div(a, b), result),
	    "Expected %s / %s == %s", astr, bstr, resultstr);
}

TEST_BEGIN(test_div_simple) {
	expect_div("1", "1", "1");
	expect_div("0", "1", "0");
	expect_div("2", "1", "2");
	expect_div("3", "2", "1.5");
	expect_div("3", "1.5", "2");
	expect_div("10", ".1", "100");
	expect_div("123", "456", ".2697368421");
}
TEST_END

static void
expect_round(const char *str, uint32_t rounded_down, uint32_t rounded_nearest) {
	fxp_t fxp = xparse_fxp(str);
	uint32_t fxp_rounded_down = fxp_round_down(fxp);
	uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp);
	expect_u32_eq(rounded_down, fxp_rounded_down,
	    "Mistake rounding %s down", str);
	expect_u32_eq(rounded_nearest, fxp_rounded_nearest,
	    "Mistake rounding %s to nearest", str);
}

TEST_BEGIN(test_round_simple) {
	expect_round("1.5", 1, 2);
	expect_round("0", 0, 0);
	expect_round("0.1", 0, 0);
	expect_round("0.4", 0, 0);
	expect_round("0.40000", 0, 0);
	expect_round("0.5", 0, 1);
	expect_round("0.6", 0, 1);
	expect_round("123", 123, 123);
	expect_round("123.4", 123, 123);
	expect_round("123.5", 123, 124);
}
TEST_END

static void
expect_mul_frac(size_t a, const char *fracstr, size_t expected) {
	fxp_t frac = xparse_fxp(fracstr);
	size_t result = fxp_mul_frac(a, frac);
	expect_true(double_close(expected, result),
	    "Expected %zu * %s == %zu (fracmul); got %zu", a, fracstr,
	    expected, result);
}

TEST_BEGIN(test_mul_frac_simple) {
	expect_mul_frac(SIZE_MAX, "1.0", SIZE_MAX);
	expect_mul_frac(SIZE_MAX, ".75", SIZE_MAX / 4 * 3);
	expect_mul_frac(SIZE_MAX, ".5", SIZE_MAX / 2);
	expect_mul_frac(SIZE_MAX, ".25", SIZE_MAX / 4);
	expect_mul_frac(1U << 16, "1.0", 1U << 16);
	expect_mul_frac(1U << 30, "0.5", 1U << 29);
	expect_mul_frac(1U << 30, "0.25", 1U << 28);
	expect_mul_frac(1U << 30, "0.125", 1U << 27);
	expect_mul_frac((1U << 30) + 1, "0.125", 1U << 27);
	expect_mul_frac(100, "0.25", 25);
	expect_mul_frac(1000 * 1000, "0.001", 1000);
}
TEST_END

static void
expect_print(const char *str) {
	fxp_t fxp = xparse_fxp(str);
	char buf[FXP_BUF_SIZE];
	fxp_print(fxp, buf);
	expect_d_eq(0, strcmp(str, buf), "Couldn't round-trip print %s", str);
}

TEST_BEGIN(test_print_simple) {
	expect_print("0.0");
	expect_print("1.0");
	expect_print("2.0");
	expect_print("123.0");
	/*
	 * We hit the possibility of roundoff errors whenever the fractional
	 * component isn't a round binary number; only check these here (we
	 * round-trip properly in the stress test).
	 */
	expect_print("1.5");
	expect_print("3.375");
	expect_print("0.25");
	expect_print("0.125");
	/* 1 / 2**14 */
	expect_print("0.00006103515625");
}
TEST_END

TEST_BEGIN(test_stress) {
	const char *numbers[] = {
		"0.0", "0.1", "0.2", "0.3", "0.4",
		"0.5", "0.6", "0.7", "0.8", "0.9",

		"1.0", "1.1", "1.2", "1.3", "1.4",
		"1.5", "1.6", "1.7", "1.8", "1.9",

		"2.0", "2.1", "2.2", "2.3", "2.4",
		"2.5", "2.6", "2.7", "2.8", "2.9",

		"17.0", "17.1", "17.2", "17.3", "17.4",
		"17.5", "17.6", "17.7", "17.8", "17.9",

		"18.0", "18.1", "18.2", "18.3", "18.4",
		"18.5", "18.6", "18.7", "18.8", "18.9",

		"123.0", "123.1", "123.2", "123.3", "123.4",
		"123.5", "123.6", "123.7", "123.8", "123.9",

		"124.0", "124.1", "124.2", "124.3", "124.4",
		"124.5", "124.6", "124.7", "124.8", "124.9",

		"125.0", "125.1", "125.2", "125.3", "125.4",
		"125.5", "125.6", "125.7", "125.8", "125.9"};
	size_t numbers_len = sizeof(numbers)/sizeof(numbers[0]);
	for (size_t i = 0; i < numbers_len; i++) {
		fxp_t fxp_a = xparse_fxp(numbers[i]);
		double double_a = strtod(numbers[i], NULL);

		uint32_t fxp_rounded_down = fxp_round_down(fxp_a);
		uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp_a);
		uint32_t double_rounded_down = (uint32_t)double_a;
		uint32_t double_rounded_nearest = (uint32_t)round(double_a);

		expect_u32_eq(double_rounded_down, fxp_rounded_down,
		    "Incorrectly rounded down %s", numbers[i]);
		expect_u32_eq(double_rounded_nearest, fxp_rounded_nearest,
		    "Incorrectly rounded-to-nearest %s", numbers[i]);

		for (size_t j = 0; j < numbers_len; j++) {
			fxp_t fxp_b = xparse_fxp(numbers[j]);
			double double_b = strtod(numbers[j], NULL);

			fxp_t fxp_sum = fxp_add(fxp_a, fxp_b);
			double double_sum = double_a + double_b;
			expect_true(
			    double_close(fxp2double(fxp_sum), double_sum),
			    "Miscomputed %s + %s", numbers[i], numbers[j]);

			if (double_a > double_b) {
				fxp_t fxp_diff = fxp_sub(fxp_a, fxp_b);
				double double_diff = double_a - double_b;
				expect_true(
				    double_close(fxp2double(fxp_diff),
				    double_diff),
				    "Miscomputed %s - %s", numbers[i],
				    numbers[j]);
			}

			fxp_t fxp_prod = fxp_mul(fxp_a, fxp_b);
			double double_prod = double_a * double_b;
			expect_true(
			    double_close(fxp2double(fxp_prod), double_prod),
			    "Miscomputed %s * %s", numbers[i], numbers[j]);

			if (double_b != 0.0) {
				fxp_t fxp_quot = fxp_div(fxp_a, fxp_b);
				double double_quot = double_a / double_b;
				expect_true(
				    double_close(fxp2double(fxp_quot),
				    double_quot),
				    "Miscomputed %s / %s", numbers[i],
				    numbers[j]);
			}
		}
	}
}
TEST_END

int
main(void) {
	return test_no_reentrancy(
	    test_parse_valid,
	    test_parse_invalid,
	    test_init_percent,
	    test_add_simple,
	    test_sub_simple,
	    test_mul_simple,
	    test_div_simple,
	    test_round_simple,
	    test_mul_frac_simple,
	    test_print_simple,
	    test_stress);
}