summaryrefslogtreecommitdiff
path: root/deps/jemalloc/include/jemalloc/internal/sz.h
blob: 3c0fc1da33a641ab4d538c222b96ca2930c1caf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#ifndef JEMALLOC_INTERNAL_SIZE_H
#define JEMALLOC_INTERNAL_SIZE_H

#include "jemalloc/internal/bit_util.h"
#include "jemalloc/internal/pages.h"
#include "jemalloc/internal/sc.h"
#include "jemalloc/internal/util.h"

/*
 * sz module: Size computations.
 *
 * Some abbreviations used here:
 *   p: Page
 *   ind: Index
 *   s, sz: Size
 *   u: Usable size
 *   a: Aligned
 *
 * These are not always used completely consistently, but should be enough to
 * interpret function names.  E.g. sz_psz2ind converts page size to page size
 * index; sz_sa2u converts a (size, alignment) allocation request to the usable
 * size that would result from such an allocation.
 */

/* Page size index type. */
typedef unsigned pszind_t;

/* Size class index type. */
typedef unsigned szind_t;

/*
 * sz_pind2sz_tab encodes the same information as could be computed by
 * sz_pind2sz_compute().
 */
extern size_t sz_pind2sz_tab[SC_NPSIZES + 1];
/*
 * sz_index2size_tab encodes the same information as could be computed (at
 * unacceptable cost in some code paths) by sz_index2size_compute().
 */
extern size_t sz_index2size_tab[SC_NSIZES];
/*
 * sz_size2index_tab is a compact lookup table that rounds request sizes up to
 * size classes.  In order to reduce cache footprint, the table is compressed,
 * and all accesses are via sz_size2index().
 */
extern uint8_t sz_size2index_tab[];

/*
 * Padding for large allocations: PAGE when opt_cache_oblivious == true (to
 * enable cache index randomization); 0 otherwise.
 */
extern size_t sz_large_pad;

extern void sz_boot(const sc_data_t *sc_data, bool cache_oblivious);

JEMALLOC_ALWAYS_INLINE pszind_t
sz_psz2ind(size_t psz) {
	assert(psz > 0);
	if (unlikely(psz > SC_LARGE_MAXCLASS)) {
		return SC_NPSIZES;
	}
	/* x is the lg of the first base >= psz. */
	pszind_t x = lg_ceil(psz);
	/*
	 * sc.h introduces a lot of size classes. These size classes are divided
	 * into different size class groups. There is a very special size class
	 * group, each size class in or after it is an integer multiple of PAGE.
	 * We call it first_ps_rg. It means first page size regular group. The
	 * range of first_ps_rg is (base, base * 2], and base == PAGE *
	 * SC_NGROUP. off_to_first_ps_rg begins from 1, instead of 0. e.g.
	 * off_to_first_ps_rg is 1 when psz is (PAGE * SC_NGROUP + 1).
	 */
	pszind_t off_to_first_ps_rg = (x < SC_LG_NGROUP + LG_PAGE) ?
	    0 : x - (SC_LG_NGROUP + LG_PAGE);

	/*
	 * Same as sc_s::lg_delta.
	 * Delta for off_to_first_ps_rg == 1 is PAGE,
	 * for each increase in offset, it's multiplied by two.
	 * Therefore, lg_delta = LG_PAGE + (off_to_first_ps_rg - 1).
	 */
	pszind_t lg_delta = (off_to_first_ps_rg == 0) ?
	    LG_PAGE : LG_PAGE + (off_to_first_ps_rg - 1);

	/*
	 * Let's write psz in binary, e.g. 0011 for 0x3, 0111 for 0x7.
	 * The leftmost bits whose len is lg_base decide the base of psz.
	 * The rightmost bits whose len is lg_delta decide (pgz % PAGE).
	 * The middle bits whose len is SC_LG_NGROUP decide ndelta.
	 * ndelta is offset to the first size class in the size class group,
	 * starts from 1.
	 * If you don't know lg_base, ndelta or lg_delta, see sc.h.
	 * |xxxxxxxxxxxxxxxxxxxx|------------------------|yyyyyyyyyyyyyyyyyyyyy|
	 * |<-- len: lg_base -->|<-- len: SC_LG_NGROUP-->|<-- len: lg_delta -->|
	 *                      |<--      ndelta      -->|
	 * rg_inner_off = ndelta - 1
	 * Why use (psz - 1)?
	 * To handle case: psz % (1 << lg_delta) == 0.
	 */
	pszind_t rg_inner_off = (((psz - 1)) >> lg_delta) & (SC_NGROUP - 1);

	pszind_t base_ind = off_to_first_ps_rg << SC_LG_NGROUP;
	pszind_t ind = base_ind + rg_inner_off;
	return ind;
}

static inline size_t
sz_pind2sz_compute(pszind_t pind) {
	if (unlikely(pind == SC_NPSIZES)) {
		return SC_LARGE_MAXCLASS + PAGE;
	}
	size_t grp = pind >> SC_LG_NGROUP;
	size_t mod = pind & ((ZU(1) << SC_LG_NGROUP) - 1);

	size_t grp_size_mask = ~((!!grp)-1);
	size_t grp_size = ((ZU(1) << (LG_PAGE + (SC_LG_NGROUP-1))) << grp)
	    & grp_size_mask;

	size_t shift = (grp == 0) ? 1 : grp;
	size_t lg_delta = shift + (LG_PAGE-1);
	size_t mod_size = (mod+1) << lg_delta;

	size_t sz = grp_size + mod_size;
	return sz;
}

static inline size_t
sz_pind2sz_lookup(pszind_t pind) {
	size_t ret = (size_t)sz_pind2sz_tab[pind];
	assert(ret == sz_pind2sz_compute(pind));
	return ret;
}

static inline size_t
sz_pind2sz(pszind_t pind) {
	assert(pind < SC_NPSIZES + 1);
	return sz_pind2sz_lookup(pind);
}

static inline size_t
sz_psz2u(size_t psz) {
	if (unlikely(psz > SC_LARGE_MAXCLASS)) {
		return SC_LARGE_MAXCLASS + PAGE;
	}
	size_t x = lg_floor((psz<<1)-1);
	size_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ?
	    LG_PAGE : x - SC_LG_NGROUP - 1;
	size_t delta = ZU(1) << lg_delta;
	size_t delta_mask = delta - 1;
	size_t usize = (psz + delta_mask) & ~delta_mask;
	return usize;
}

static inline szind_t
sz_size2index_compute(size_t size) {
	if (unlikely(size > SC_LARGE_MAXCLASS)) {
		return SC_NSIZES;
	}

	if (size == 0) {
		return 0;
	}
#if (SC_NTINY != 0)
	if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) {
		szind_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1;
		szind_t lg_ceil = lg_floor(pow2_ceil_zu(size));
		return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
	}
#endif
	{
		szind_t x = lg_floor((size<<1)-1);
		szind_t shift = (x < SC_LG_NGROUP + LG_QUANTUM) ? 0 :
		    x - (SC_LG_NGROUP + LG_QUANTUM);
		szind_t grp = shift << SC_LG_NGROUP;

		szind_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
		    ? LG_QUANTUM : x - SC_LG_NGROUP - 1;

		size_t delta_inverse_mask = ZU(-1) << lg_delta;
		szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
		    ((ZU(1) << SC_LG_NGROUP) - 1);

		szind_t index = SC_NTINY + grp + mod;
		return index;
	}
}

JEMALLOC_ALWAYS_INLINE szind_t
sz_size2index_lookup_impl(size_t size) {
	assert(size <= SC_LOOKUP_MAXCLASS);
	return sz_size2index_tab[(size + (ZU(1) << SC_LG_TINY_MIN) - 1)
	    >> SC_LG_TINY_MIN];
}

JEMALLOC_ALWAYS_INLINE szind_t
sz_size2index_lookup(size_t size) {
	szind_t ret = sz_size2index_lookup_impl(size);
	assert(ret == sz_size2index_compute(size));
	return ret;
}

JEMALLOC_ALWAYS_INLINE szind_t
sz_size2index(size_t size) {
	if (likely(size <= SC_LOOKUP_MAXCLASS)) {
		return sz_size2index_lookup(size);
	}
	return sz_size2index_compute(size);
}

static inline size_t
sz_index2size_compute(szind_t index) {
#if (SC_NTINY > 0)
	if (index < SC_NTINY) {
		return (ZU(1) << (SC_LG_TINY_MAXCLASS - SC_NTINY + 1 + index));
	}
#endif
	{
		size_t reduced_index = index - SC_NTINY;
		size_t grp = reduced_index >> SC_LG_NGROUP;
		size_t mod = reduced_index & ((ZU(1) << SC_LG_NGROUP) -
		    1);

		size_t grp_size_mask = ~((!!grp)-1);
		size_t grp_size = ((ZU(1) << (LG_QUANTUM +
		    (SC_LG_NGROUP-1))) << grp) & grp_size_mask;

		size_t shift = (grp == 0) ? 1 : grp;
		size_t lg_delta = shift + (LG_QUANTUM-1);
		size_t mod_size = (mod+1) << lg_delta;

		size_t usize = grp_size + mod_size;
		return usize;
	}
}

JEMALLOC_ALWAYS_INLINE size_t
sz_index2size_lookup_impl(szind_t index) {
	return sz_index2size_tab[index];
}

JEMALLOC_ALWAYS_INLINE size_t
sz_index2size_lookup(szind_t index) {
	size_t ret = sz_index2size_lookup_impl(index);
	assert(ret == sz_index2size_compute(index));
	return ret;
}

JEMALLOC_ALWAYS_INLINE size_t
sz_index2size(szind_t index) {
	assert(index < SC_NSIZES);
	return sz_index2size_lookup(index);
}

JEMALLOC_ALWAYS_INLINE void
sz_size2index_usize_fastpath(size_t size, szind_t *ind, size_t *usize) {
	*ind = sz_size2index_lookup_impl(size);
	*usize = sz_index2size_lookup_impl(*ind);
}

JEMALLOC_ALWAYS_INLINE size_t
sz_s2u_compute(size_t size) {
	if (unlikely(size > SC_LARGE_MAXCLASS)) {
		return 0;
	}

	if (size == 0) {
		size++;
	}
#if (SC_NTINY > 0)
	if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) {
		size_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1;
		size_t lg_ceil = lg_floor(pow2_ceil_zu(size));
		return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
		    (ZU(1) << lg_ceil));
	}
#endif
	{
		size_t x = lg_floor((size<<1)-1);
		size_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
		    ?  LG_QUANTUM : x - SC_LG_NGROUP - 1;
		size_t delta = ZU(1) << lg_delta;
		size_t delta_mask = delta - 1;
		size_t usize = (size + delta_mask) & ~delta_mask;
		return usize;
	}
}

JEMALLOC_ALWAYS_INLINE size_t
sz_s2u_lookup(size_t size) {
	size_t ret = sz_index2size_lookup(sz_size2index_lookup(size));

	assert(ret == sz_s2u_compute(size));
	return ret;
}

/*
 * Compute usable size that would result from allocating an object with the
 * specified size.
 */
JEMALLOC_ALWAYS_INLINE size_t
sz_s2u(size_t size) {
	if (likely(size <= SC_LOOKUP_MAXCLASS)) {
		return sz_s2u_lookup(size);
	}
	return sz_s2u_compute(size);
}

/*
 * Compute usable size that would result from allocating an object with the
 * specified size and alignment.
 */
JEMALLOC_ALWAYS_INLINE size_t
sz_sa2u(size_t size, size_t alignment) {
	size_t usize;

	assert(alignment != 0 && ((alignment - 1) & alignment) == 0);

	/* Try for a small size class. */
	if (size <= SC_SMALL_MAXCLASS && alignment <= PAGE) {
		/*
		 * Round size up to the nearest multiple of alignment.
		 *
		 * This done, we can take advantage of the fact that for each
		 * small size class, every object is aligned at the smallest
		 * power of two that is non-zero in the base two representation
		 * of the size.  For example:
		 *
		 *   Size |   Base 2 | Minimum alignment
		 *   -----+----------+------------------
		 *     96 |  1100000 |  32
		 *    144 | 10100000 |  32
		 *    192 | 11000000 |  64
		 */
		usize = sz_s2u(ALIGNMENT_CEILING(size, alignment));
		if (usize < SC_LARGE_MINCLASS) {
			return usize;
		}
	}

	/* Large size class.  Beware of overflow. */

	if (unlikely(alignment > SC_LARGE_MAXCLASS)) {
		return 0;
	}

	/* Make sure result is a large size class. */
	if (size <= SC_LARGE_MINCLASS) {
		usize = SC_LARGE_MINCLASS;
	} else {
		usize = sz_s2u(size);
		if (usize < size) {
			/* size_t overflow. */
			return 0;
		}
	}

	/*
	 * Calculate the multi-page mapping that large_palloc() would need in
	 * order to guarantee the alignment.
	 */
	if (usize + sz_large_pad + PAGE_CEILING(alignment) - PAGE < usize) {
		/* size_t overflow. */
		return 0;
	}
	return usize;
}

size_t sz_psz_quantize_floor(size_t size);
size_t sz_psz_quantize_ceil(size_t size);

#endif /* JEMALLOC_INTERNAL_SIZE_H */