1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
|
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2003, 2007, 2008, 2009, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2003 Peter Kelly (pmk@post.com)
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "JSArray.h"
#include "ArrayPrototype.h"
#include "ButterflyInlineMethods.h"
#include "CopiedSpace.h"
#include "CopiedSpaceInlineMethods.h"
#include "CachedCall.h"
#include "Error.h"
#include "Executable.h"
#include "GetterSetter.h"
#include "IndexingHeaderInlineMethods.h"
#include "PropertyNameArray.h"
#include "Reject.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
#include <wtf/OwnPtr.h>
#include <Operations.h>
using namespace std;
using namespace WTF;
namespace JSC {
ASSERT_HAS_TRIVIAL_DESTRUCTOR(JSArray);
const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0, CREATE_METHOD_TABLE(JSArray)};
Butterfly* createArrayButterflyInDictionaryIndexingMode(JSGlobalData& globalData, unsigned initialLength)
{
Butterfly* butterfly = Butterfly::create(
globalData, 0, 0, true, IndexingHeader(), ArrayStorage::sizeFor(0));
ArrayStorage* storage = butterfly->arrayStorage();
storage->setLength(initialLength);
storage->setVectorLength(0);
storage->m_indexBias = 0;
storage->m_sparseMap.clear();
storage->m_numValuesInVector = 0;
return butterfly;
}
void JSArray::setLengthWritable(ExecState* exec, bool writable)
{
ASSERT(isLengthWritable() || !writable);
if (!isLengthWritable() || writable)
return;
enterDictionaryIndexingMode(exec->globalData());
SparseArrayValueMap* map = arrayStorage()->m_sparseMap.get();
ASSERT(map);
map->setLengthIsReadOnly();
}
// Defined in ES5.1 15.4.5.1
bool JSArray::defineOwnProperty(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor, bool throwException)
{
JSArray* array = jsCast<JSArray*>(object);
// 3. If P is "length", then
if (propertyName == exec->propertyNames().length) {
// All paths through length definition call the default [[DefineOwnProperty]], hence:
// from ES5.1 8.12.9 7.a.
if (descriptor.configurablePresent() && descriptor.configurable())
return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property.");
// from ES5.1 8.12.9 7.b.
if (descriptor.enumerablePresent() && descriptor.enumerable())
return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property.");
// a. If the [[Value]] field of Desc is absent, then
// a.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments.
if (descriptor.isAccessorDescriptor())
return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property.");
// from ES5.1 8.12.9 10.a.
if (!array->isLengthWritable() && descriptor.writablePresent() && descriptor.writable())
return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property.");
// This descriptor is either just making length read-only, or changing nothing!
if (!descriptor.value()) {
if (descriptor.writablePresent())
array->setLengthWritable(exec, descriptor.writable());
return true;
}
// b. Let newLenDesc be a copy of Desc.
// c. Let newLen be ToUint32(Desc.[[Value]]).
unsigned newLen = descriptor.value().toUInt32(exec);
// d. If newLen is not equal to ToNumber( Desc.[[Value]]), throw a RangeError exception.
if (newLen != descriptor.value().toNumber(exec)) {
throwError(exec, createRangeError(exec, "Invalid array length"));
return false;
}
// Based on SameValue check in 8.12.9, this is always okay.
if (newLen == array->length()) {
if (descriptor.writablePresent())
array->setLengthWritable(exec, descriptor.writable());
return true;
}
// e. Set newLenDesc.[[Value] to newLen.
// f. If newLen >= oldLen, then
// f.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
// g. Reject if oldLenDesc.[[Writable]] is false.
if (!array->isLengthWritable())
return reject(exec, throwException, "Attempting to change value of a readonly property.");
// h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
// i. Else,
// i.i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
// i.ii. Let newWritable be false.
// i.iii. Set newLenDesc.[[Writable] to true.
// j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
// k. If succeeded is false, return false.
// l. While newLen < oldLen repeat,
// l.i. Set oldLen to oldLen – 1.
// l.ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments.
// l.iii. If deleteSucceeded is false, then
if (!array->setLength(exec, newLen, throwException)) {
// 1. Set newLenDesc.[[Value] to oldLen+1.
// 2. If newWritable is false, set newLenDesc.[[Writable] to false.
// 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments.
// 4. Reject.
if (descriptor.writablePresent())
array->setLengthWritable(exec, descriptor.writable());
return false;
}
// m. If newWritable is false, then
// i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length",
// Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always
// return true.
if (descriptor.writablePresent())
array->setLengthWritable(exec, descriptor.writable());
// n. Return true.
return true;
}
// 4. Else if P is an array index (15.4), then
// a. Let index be ToUint32(P).
unsigned index = propertyName.asIndex();
if (index != PropertyName::NotAnIndex) {
// b. Reject if index >= oldLen and oldLenDesc.[[Writable]] is false.
if (index >= array->length() && !array->isLengthWritable())
return reject(exec, throwException, "Attempting to define numeric property on array with non-writable length property.");
// c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and false as arguments.
// d. Reject if succeeded is false.
// e. If index >= oldLen
// e.i. Set oldLenDesc.[[Value]] to index + 1.
// e.ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true.
// f. Return true.
return array->defineOwnIndexedProperty(exec, index, descriptor, throwException);
}
return array->JSObject::defineOwnNonIndexProperty(exec, propertyName, descriptor, throwException);
}
bool JSArray::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot& slot)
{
JSArray* thisObject = jsCast<JSArray*>(cell);
if (propertyName == exec->propertyNames().length) {
slot.setValue(jsNumber(thisObject->length()));
return true;
}
return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot);
}
bool JSArray::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor)
{
JSArray* thisObject = jsCast<JSArray*>(object);
if (propertyName == exec->propertyNames().length) {
descriptor.setDescriptor(jsNumber(thisObject->length()), thisObject->isLengthWritable() ? DontDelete | DontEnum : DontDelete | DontEnum | ReadOnly);
return true;
}
return JSObject::getOwnPropertyDescriptor(thisObject, exec, propertyName, descriptor);
}
// ECMA 15.4.5.1
void JSArray::put(JSCell* cell, ExecState* exec, PropertyName propertyName, JSValue value, PutPropertySlot& slot)
{
JSArray* thisObject = jsCast<JSArray*>(cell);
if (propertyName == exec->propertyNames().length) {
unsigned newLength = value.toUInt32(exec);
if (value.toNumber(exec) != static_cast<double>(newLength)) {
throwError(exec, createRangeError(exec, ASCIILiteral("Invalid array length")));
return;
}
thisObject->setLength(exec, newLength, slot.isStrictMode());
return;
}
JSObject::put(thisObject, exec, propertyName, value, slot);
}
bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, PropertyName propertyName)
{
JSArray* thisObject = jsCast<JSArray*>(cell);
if (propertyName == exec->propertyNames().length)
return false;
return JSObject::deleteProperty(thisObject, exec, propertyName);
}
static int compareKeysForQSort(const void* a, const void* b)
{
unsigned da = *static_cast<const unsigned*>(a);
unsigned db = *static_cast<const unsigned*>(b);
return (da > db) - (da < db);
}
void JSArray::getOwnNonIndexPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
{
JSArray* thisObject = jsCast<JSArray*>(object);
if (mode == IncludeDontEnumProperties)
propertyNames.add(exec->propertyNames().length);
JSObject::getOwnNonIndexPropertyNames(thisObject, exec, propertyNames, mode);
}
// This method makes room in the vector, but leaves the new space for count slots uncleared.
bool JSArray::unshiftCountSlowCase(JSGlobalData& globalData, bool addToFront, unsigned count)
{
ArrayStorage* storage = ensureArrayStorage(globalData);
Butterfly* butterfly = storage->butterfly();
unsigned propertyCapacity = structure()->outOfLineCapacity();
unsigned propertySize = structure()->outOfLineSize();
// If not, we should have handled this on the fast path.
ASSERT(!addToFront || count > storage->m_indexBias);
// Step 1:
// Gather 4 key metrics:
// * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors).
// * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more.
// * currentCapacity - what is the current size of the vector, including any pre-capacity.
// * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength.
unsigned length = storage->length();
unsigned usedVectorLength = min(storage->vectorLength(), length);
ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
// Check that required vector length is possible, in an overflow-safe fashion.
if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength)
return false;
unsigned requiredVectorLength = usedVectorLength + count;
ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
// The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
ASSERT(storage->vectorLength() <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - storage->vectorLength()) >= storage->m_indexBias);
unsigned currentCapacity = storage->vectorLength() + storage->m_indexBias;
// The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH.
unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_VECTOR_LEN, requiredVectorLength) << 1);
// Step 2:
// We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing one.
void* newAllocBase = 0;
unsigned newStorageCapacity;
// If the current storage array is sufficiently large (but not too large!) then just keep using it.
if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) {
newAllocBase = butterfly->base(structure());
newStorageCapacity = currentCapacity;
} else {
size_t newSize = Butterfly::totalSize(0, propertyCapacity, true, ArrayStorage::sizeFor(desiredCapacity));
if (!globalData.heap.tryAllocateStorage(newSize, &newAllocBase))
return false;
newStorageCapacity = desiredCapacity;
}
// Step 3:
// Work out where we're going to move things to.
// Determine how much of the vector to use as pre-capacity, and how much as post-capacity.
// If we're adding to the end, we'll add all the new space to the end.
// If the vector had no free post-capacity (length >= m_vectorLength), don't give it any.
// If it did, we calculate the amount that will remain based on an atomic decay - leave the
// vector with half the post-capacity it had previously.
unsigned postCapacity = 0;
if (!addToFront)
postCapacity = max(newStorageCapacity - requiredVectorLength, count);
else if (length < storage->vectorLength()) {
// Atomic decay, + the post-capacity cannot be greater than what is available.
postCapacity = min((storage->vectorLength() - length) >> 1, newStorageCapacity - requiredVectorLength);
// If we're moving contents within the same allocation, the post-capacity is being reduced.
ASSERT(newAllocBase != butterfly->base(structure()) || postCapacity < storage->vectorLength() - length);
}
unsigned newVectorLength = requiredVectorLength + postCapacity;
unsigned newIndexBias = newStorageCapacity - newVectorLength;
Butterfly* newButterfly = Butterfly::fromBase(newAllocBase, newIndexBias, propertyCapacity);
if (addToFront) {
ASSERT(count + usedVectorLength <= newVectorLength);
memmove(newButterfly->arrayStorage()->m_vector + count, storage->m_vector, sizeof(JSValue) * usedVectorLength);
memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0));
} else if ((newAllocBase != butterfly->base(structure())) || (newIndexBias != storage->m_indexBias)) {
memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0));
memmove(newButterfly->arrayStorage()->m_vector, storage->m_vector, sizeof(JSValue) * usedVectorLength);
WriteBarrier<Unknown>* newVector = newButterfly->arrayStorage()->m_vector;
for (unsigned i = requiredVectorLength; i < newVectorLength; i++)
newVector[i].clear();
}
newButterfly->arrayStorage()->setVectorLength(newVectorLength);
newButterfly->arrayStorage()->m_indexBias = newIndexBias;
m_butterfly = newButterfly;
return true;
}
bool JSArray::setLengthWithArrayStorage(ExecState* exec, unsigned newLength, bool throwException, ArrayStorage* storage)
{
unsigned length = storage->length();
// If the length is read only then we enter sparse mode, so should enter the following 'if'.
ASSERT(isLengthWritable() || storage->m_sparseMap);
if (SparseArrayValueMap* map = storage->m_sparseMap.get()) {
// Fail if the length is not writable.
if (map->lengthIsReadOnly())
return reject(exec, throwException, StrictModeReadonlyPropertyWriteError);
if (newLength < length) {
// Copy any keys we might be interested in into a vector.
Vector<unsigned> keys;
keys.reserveCapacity(min(map->size(), static_cast<size_t>(length - newLength)));
SparseArrayValueMap::const_iterator end = map->end();
for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
unsigned index = static_cast<unsigned>(it->key);
if (index < length && index >= newLength)
keys.append(index);
}
// Check if the array is in sparse mode. If so there may be non-configurable
// properties, so we have to perform deletion with caution, if not we can
// delete values in any order.
if (map->sparseMode()) {
qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort);
unsigned i = keys.size();
while (i) {
unsigned index = keys[--i];
SparseArrayValueMap::iterator it = map->find(index);
ASSERT(it != map->notFound());
if (it->value.attributes & DontDelete) {
storage->setLength(index + 1);
return reject(exec, throwException, "Unable to delete property.");
}
map->remove(it);
}
} else {
for (unsigned i = 0; i < keys.size(); ++i)
map->remove(keys[i]);
if (map->isEmpty())
deallocateSparseIndexMap();
}
}
}
if (newLength < length) {
// Delete properties from the vector.
unsigned usedVectorLength = min(length, storage->vectorLength());
for (unsigned i = newLength; i < usedVectorLength; ++i) {
WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
bool hadValue = valueSlot;
valueSlot.clear();
storage->m_numValuesInVector -= hadValue;
}
}
storage->setLength(newLength);
return true;
}
bool JSArray::setLength(ExecState* exec, unsigned newLength, bool throwException)
{
switch (structure()->indexingType()) {
case ArrayClass:
if (!newLength)
return true;
if (newLength >= MIN_SPARSE_ARRAY_INDEX) {
return setLengthWithArrayStorage(
exec, newLength, throwException,
convertContiguousToArrayStorage(exec->globalData()));
}
createInitialContiguous(exec->globalData(), newLength);
return true;
case ArrayWithContiguous:
if (newLength == m_butterfly->publicLength())
return true;
if (newLength >= MAX_ARRAY_INDEX // This case ensures that we can do fast push.
|| (newLength >= MIN_SPARSE_ARRAY_INDEX
&& !isDenseEnoughForVector(newLength, countElementsInContiguous(m_butterfly)))) {
return setLengthWithArrayStorage(
exec, newLength, throwException,
convertContiguousToArrayStorage(exec->globalData()));
}
if (newLength > m_butterfly->publicLength()) {
ensureContiguousLength(exec->globalData(), newLength);
return true;
}
for (unsigned i = m_butterfly->publicLength(); i-- > newLength;)
m_butterfly->contiguous()[i].clear();
m_butterfly->setPublicLength(newLength);
return true;
case ArrayWithArrayStorage:
case ArrayWithSlowPutArrayStorage:
return setLengthWithArrayStorage(exec, newLength, throwException, arrayStorage());
default:
CRASH();
return false;
}
}
JSValue JSArray::pop(ExecState* exec)
{
switch (structure()->indexingType()) {
case ArrayClass:
return jsUndefined();
case ArrayWithContiguous: {
unsigned length = m_butterfly->publicLength();
if (!length--)
return jsUndefined();
ASSERT(length < m_butterfly->vectorLength());
JSValue value = m_butterfly->contiguous()[length].get();
if (value) {
m_butterfly->contiguous()[length].clear();
m_butterfly->setPublicLength(length);
return value;
}
break;
}
case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: {
ArrayStorage* storage = m_butterfly->arrayStorage();
unsigned length = storage->length();
if (!length) {
if (!isLengthWritable())
throwTypeError(exec, StrictModeReadonlyPropertyWriteError);
return jsUndefined();
}
unsigned index = length - 1;
if (index < storage->vectorLength()) {
WriteBarrier<Unknown>& valueSlot = storage->m_vector[index];
if (valueSlot) {
--storage->m_numValuesInVector;
JSValue element = valueSlot.get();
valueSlot.clear();
ASSERT(isLengthWritable());
storage->setLength(index);
return element;
}
}
break;
}
default:
CRASH();
return JSValue();
}
unsigned index = getArrayLength() - 1;
// Let element be the result of calling the [[Get]] internal method of O with argument indx.
JSValue element = get(exec, index);
if (exec->hadException())
return jsUndefined();
// Call the [[Delete]] internal method of O with arguments indx and true.
if (!deletePropertyByIndex(this, exec, index)) {
throwTypeError(exec, "Unable to delete property.");
return jsUndefined();
}
// Call the [[Put]] internal method of O with arguments "length", indx, and true.
setLength(exec, index, true);
// Return element.
return element;
}
// Push & putIndex are almost identical, with two small differences.
// - we always are writing beyond the current array bounds, so it is always necessary to update m_length & m_numValuesInVector.
// - pushing to an array of length 2^32-1 stores the property, but throws a range error.
void JSArray::push(ExecState* exec, JSValue value)
{
switch (structure()->indexingType()) {
case ArrayClass: {
putByIndexBeyondVectorLengthWithArrayStorage(exec, 0, value, true, createInitialArrayStorage(exec->globalData()));
break;
}
case ArrayWithContiguous: {
unsigned length = m_butterfly->publicLength();
ASSERT(length <= m_butterfly->vectorLength());
if (length < m_butterfly->vectorLength()) {
m_butterfly->contiguous()[length].set(exec->globalData(), this, value);
m_butterfly->setPublicLength(length + 1);
return;
}
if (length > MAX_ARRAY_INDEX) {
methodTable()->putByIndex(this, exec, length, value, true);
if (!exec->hadException())
throwError(exec, createRangeError(exec, "Invalid array length"));
return;
}
putByIndexBeyondVectorLengthContiguousWithoutAttributes(exec, length, value);
return;
}
case ArrayWithSlowPutArrayStorage: {
unsigned oldLength = length();
if (attemptToInterceptPutByIndexOnHole(exec, oldLength, value, true)) {
if (!exec->hadException() && oldLength < 0xFFFFFFFFu)
setLength(exec, oldLength + 1, true);
return;
}
// Fall through.
}
case ArrayWithArrayStorage: {
ArrayStorage* storage = m_butterfly->arrayStorage();
// Fast case - push within vector, always update m_length & m_numValuesInVector.
unsigned length = storage->length();
if (length < storage->vectorLength()) {
storage->m_vector[length].set(exec->globalData(), this, value);
storage->setLength(length + 1);
++storage->m_numValuesInVector;
return;
}
// Pushing to an array of invalid length (2^31-1) stores the property, but throws a range error.
if (storage->length() > MAX_ARRAY_INDEX) {
methodTable()->putByIndex(this, exec, storage->length(), value, true);
// Per ES5.1 15.4.4.7 step 6 & 15.4.5.1 step 3.d.
if (!exec->hadException())
throwError(exec, createRangeError(exec, "Invalid array length"));
return;
}
// Handled the same as putIndex.
putByIndexBeyondVectorLengthWithArrayStorage(exec, storage->length(), value, true, storage);
break;
}
default:
ASSERT_NOT_REACHED();
}
}
bool JSArray::shiftCountWithArrayStorage(unsigned startIndex, unsigned count, ArrayStorage* storage)
{
unsigned oldLength = storage->length();
ASSERT(count <= oldLength);
// If the array contains holes or is otherwise in an abnormal state,
// use the generic algorithm in ArrayPrototype.
if (oldLength != storage->m_numValuesInVector || inSparseIndexingMode() || shouldUseSlowPut(structure()->indexingType()))
return false;
if (!oldLength)
return true;
unsigned length = oldLength - count;
storage->m_numValuesInVector -= count;
storage->setLength(length);
unsigned vectorLength = storage->vectorLength();
if (!vectorLength)
return true;
if (startIndex >= vectorLength)
return true;
if (startIndex + count > vectorLength)
count = vectorLength - startIndex;
unsigned usedVectorLength = min(vectorLength, oldLength);
vectorLength -= count;
storage->setVectorLength(vectorLength);
if (vectorLength) {
if (startIndex < usedVectorLength - (startIndex + count)) {
if (startIndex) {
memmove(
storage->m_vector + count,
storage->m_vector,
sizeof(JSValue) * startIndex);
}
m_butterfly = m_butterfly->shift(structure(), count);
storage = m_butterfly->arrayStorage();
storage->m_indexBias += count;
} else {
memmove(
storage->m_vector + startIndex,
storage->m_vector + startIndex + count,
sizeof(JSValue) * (usedVectorLength - (startIndex + count)));
for (unsigned i = usedVectorLength - count; i < usedVectorLength; ++i)
storage->m_vector[i].clear();
}
}
return true;
}
bool JSArray::shiftCountWithAnyIndexingType(ExecState* exec, unsigned startIndex, unsigned count)
{
ASSERT(count > 0);
switch (structure()->indexingType()) {
case ArrayClass:
return true;
case ArrayWithContiguous: {
unsigned oldLength = m_butterfly->publicLength();
ASSERT(count <= oldLength);
// We may have to walk the entire array to do the shift. We're willing to do
// so only if it's not horribly slow.
if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX)
return shiftCountWithArrayStorage(startIndex, count, convertContiguousToArrayStorage(exec->globalData()));
unsigned end = oldLength - count;
for (unsigned i = startIndex; i < end; ++i) {
// Storing to a hole is fine since we're still having a good time. But reading
// from a hole is totally not fine, since we might have to read from the proto
// chain.
JSValue v = m_butterfly->contiguous()[i + count].get();
if (UNLIKELY(!v)) {
// The purpose of this path is to ensure that we don't make the same
// mistake in the future: shiftCountWithArrayStorage() can't do anything
// about holes (at least for now), but it can detect them quickly. So
// we convert to array storage and then allow the array storage path to
// figure it out.
return shiftCountWithArrayStorage(startIndex, count, convertContiguousToArrayStorage(exec->globalData()));
}
// No need for a barrier since we're just moving data around in the same vector.
// This is in line with our standing assumption that we won't have a deletion
// barrier.
m_butterfly->contiguous()[i].setWithoutWriteBarrier(v);
}
for (unsigned i = end; i < oldLength; ++i)
m_butterfly->contiguous()[i].clear();
m_butterfly->setPublicLength(oldLength - count);
return true;
}
case ArrayWithArrayStorage:
case ArrayWithSlowPutArrayStorage:
return shiftCountWithArrayStorage(startIndex, count, arrayStorage());
default:
CRASH();
return false;
}
}
// Returns true if the unshift can be handled, false to fallback.
bool JSArray::unshiftCountWithArrayStorage(ExecState* exec, unsigned startIndex, unsigned count, ArrayStorage* storage)
{
unsigned length = storage->length();
ASSERT(startIndex <= length);
// If the array contains holes or is otherwise in an abnormal state,
// use the generic algorithm in ArrayPrototype.
if (length != storage->m_numValuesInVector || storage->inSparseMode() || shouldUseSlowPut(structure()->indexingType()))
return false;
bool moveFront = !startIndex || startIndex < length / 2;
unsigned vectorLength = storage->vectorLength();
if (moveFront && storage->m_indexBias >= count) {
m_butterfly = storage->butterfly()->unshift(structure(), count);
storage = m_butterfly->arrayStorage();
storage->m_indexBias -= count;
storage->setVectorLength(vectorLength + count);
} else if (!moveFront && vectorLength - length >= count)
storage = storage->butterfly()->arrayStorage();
else if (unshiftCountSlowCase(exec->globalData(), moveFront, count))
storage = arrayStorage();
else {
throwOutOfMemoryError(exec);
return true;
}
WriteBarrier<Unknown>* vector = storage->m_vector;
if (startIndex) {
if (moveFront)
memmove(vector, vector + count, startIndex * sizeof(JSValue));
else if (length - startIndex)
memmove(vector + startIndex + count, vector + startIndex, (length - startIndex) * sizeof(JSValue));
}
for (unsigned i = 0; i < count; i++)
vector[i + startIndex].clear();
return true;
}
bool JSArray::unshiftCountWithAnyIndexingType(ExecState* exec, unsigned startIndex, unsigned count)
{
switch (structure()->indexingType()) {
case ArrayClass:
// We could handle this. But it shouldn't ever come up, so we won't.
return false;
case ArrayWithContiguous: {
unsigned oldLength = m_butterfly->publicLength();
// We may have to walk the entire array to do the unshift. We're willing to do so
// only if it's not horribly slow.
if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX)
return unshiftCountWithArrayStorage(exec, startIndex, count, convertContiguousToArrayStorage(exec->globalData()));
ensureContiguousLength(exec->globalData(), oldLength + count);
for (unsigned i = oldLength; i-- > startIndex;) {
JSValue v = m_butterfly->contiguous()[i].get();
if (UNLIKELY(!v))
return unshiftCountWithArrayStorage(exec, startIndex, count, convertContiguousToArrayStorage(exec->globalData()));
m_butterfly->contiguous()[i + count].setWithoutWriteBarrier(v);
}
// NOTE: we're leaving being garbage in the part of the array that we shifted out
// of. This is fine because the caller is required to store over that area, and
// in contiguous mode storing into a hole is guaranteed to behave exactly the same
// as storing over an existing element.
return true;
}
case ArrayWithArrayStorage:
case ArrayWithSlowPutArrayStorage:
return unshiftCountWithArrayStorage(exec, startIndex, count, arrayStorage());
default:
CRASH();
return false;
}
}
static int compareNumbersForQSort(const void* a, const void* b)
{
double da = static_cast<const JSValue*>(a)->asNumber();
double db = static_cast<const JSValue*>(b)->asNumber();
return (da > db) - (da < db);
}
static int compareByStringPairForQSort(const void* a, const void* b)
{
const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
return codePointCompare(va->second, vb->second);
}
template<IndexingType indexingType>
void JSArray::sortNumericVector(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ASSERT(indexingType == ArrayWithContiguous || indexingType == ArrayWithArrayStorage);
unsigned lengthNotIncludingUndefined;
unsigned newRelevantLength;
compactForSorting<indexingType>(
lengthNotIncludingUndefined,
newRelevantLength);
WriteBarrier<Unknown>* data = indexingData<indexingType>();
if (indexingType == ArrayWithArrayStorage && arrayStorage()->m_sparseMap.get()) {
throwOutOfMemoryError(exec);
return;
}
if (!lengthNotIncludingUndefined)
return;
bool allValuesAreNumbers = true;
for (size_t i = 0; i < newRelevantLength; ++i) {
if (!data[i].isNumber()) {
allValuesAreNumbers = false;
break;
}
}
if (!allValuesAreNumbers)
return sort(exec, compareFunction, callType, callData);
// For numeric comparison, which is fast, qsort is faster than mergesort. We
// also don't require mergesort's stability, since there's no user visible
// side-effect from swapping the order of equal primitive values.
qsort(data, newRelevantLength, sizeof(WriteBarrier<Unknown>), compareNumbersForQSort);
return;
}
void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ASSERT(!inSparseIndexingMode());
switch (structure()->indexingType()) {
case ArrayClass:
return;
case ArrayWithContiguous:
sortNumericVector<ArrayWithContiguous>(exec, compareFunction, callType, callData);
return;
case ArrayWithArrayStorage:
sortNumericVector<ArrayWithArrayStorage>(exec, compareFunction, callType, callData);
return;
default:
CRASH();
return;
}
}
template<IndexingType indexingType>
void JSArray::sortCompactedVector(ExecState* exec, WriteBarrier<Unknown>* begin, unsigned relevantLength)
{
if (!relevantLength)
return;
JSGlobalData& globalData = exec->globalData();
// Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
// This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
// buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
// random or otherwise changing results, effectively making compare function inconsistent.
Vector<ValueStringPair> values(relevantLength);
if (!values.begin()) {
throwOutOfMemoryError(exec);
return;
}
Heap::heap(this)->pushTempSortVector(&values);
bool isSortingPrimitiveValues = true;
for (size_t i = 0; i < relevantLength; i++) {
JSValue value = begin[i].get();
ASSERT(!value.isUndefined());
values[i].first = value;
isSortingPrimitiveValues = isSortingPrimitiveValues && value.isPrimitive();
}
// FIXME: The following loop continues to call toString on subsequent values even after
// a toString call raises an exception.
for (size_t i = 0; i < relevantLength; i++)
values[i].second = values[i].first.toWTFStringInline(exec);
if (exec->hadException()) {
Heap::heap(this)->popTempSortVector(&values);
return;
}
// FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
// than O(N log N).
#if HAVE(MERGESORT)
if (isSortingPrimitiveValues)
qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
else
mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#else
// FIXME: The qsort library function is likely to not be a stable sort.
// ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#endif
// If the toString function changed the length of the array or vector storage,
// increase the length to handle the orignal number of actual values.
switch (indexingType) {
case ArrayWithContiguous:
ensureContiguousLength(globalData, relevantLength);
break;
case ArrayWithArrayStorage:
if (arrayStorage()->vectorLength() < relevantLength) {
increaseVectorLength(exec->globalData(), relevantLength);
begin = arrayStorage()->m_vector;
}
if (arrayStorage()->length() < relevantLength)
arrayStorage()->setLength(relevantLength);
break;
default:
CRASH();
}
for (size_t i = 0; i < relevantLength; i++)
begin[i].set(globalData, this, values[i].first);
Heap::heap(this)->popTempSortVector(&values);
}
void JSArray::sort(ExecState* exec)
{
ASSERT(!inSparseIndexingMode());
switch (structure()->indexingType()) {
case ArrayClass:
return;
case ArrayWithContiguous: {
unsigned lengthNotIncludingUndefined;
unsigned newRelevantLength;
compactForSorting<ArrayWithContiguous>(
lengthNotIncludingUndefined, newRelevantLength);
sortCompactedVector<ArrayWithContiguous>(
exec, m_butterfly->contiguous(), lengthNotIncludingUndefined);
return;
}
case ArrayWithArrayStorage: {
unsigned lengthNotIncludingUndefined;
unsigned newRelevantLength;
compactForSorting<ArrayWithArrayStorage>(
lengthNotIncludingUndefined, newRelevantLength);
ArrayStorage* storage = m_butterfly->arrayStorage();
ASSERT(!storage->m_sparseMap);
sortCompactedVector<ArrayWithArrayStorage>(
exec, storage->m_vector, lengthNotIncludingUndefined);
return;
}
default:
ASSERT_NOT_REACHED();
}
}
struct AVLTreeNodeForArrayCompare {
JSValue value;
// Child pointers. The high bit of gt is robbed and used as the
// balance factor sign. The high bit of lt is robbed and used as
// the magnitude of the balance factor.
int32_t gt;
int32_t lt;
};
struct AVLTreeAbstractorForArrayCompare {
typedef int32_t handle; // Handle is an index into m_nodes vector.
typedef JSValue key;
typedef int32_t size;
Vector<AVLTreeNodeForArrayCompare> m_nodes;
ExecState* m_exec;
JSValue m_compareFunction;
CallType m_compareCallType;
const CallData* m_compareCallData;
OwnPtr<CachedCall> m_cachedCall;
handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
int get_balance_factor(handle h)
{
if (m_nodes[h].gt & 0x80000000)
return -1;
return static_cast<unsigned>(m_nodes[h].lt) >> 31;
}
void set_balance_factor(handle h, int bf)
{
if (bf == 0) {
m_nodes[h].lt &= 0x7FFFFFFF;
m_nodes[h].gt &= 0x7FFFFFFF;
} else {
m_nodes[h].lt |= 0x80000000;
if (bf < 0)
m_nodes[h].gt |= 0x80000000;
else
m_nodes[h].gt &= 0x7FFFFFFF;
}
}
int compare_key_key(key va, key vb)
{
ASSERT(!va.isUndefined());
ASSERT(!vb.isUndefined());
if (m_exec->hadException())
return 1;
double compareResult;
if (m_cachedCall) {
m_cachedCall->setThis(jsUndefined());
m_cachedCall->setArgument(0, va);
m_cachedCall->setArgument(1, vb);
compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
} else {
MarkedArgumentBuffer arguments;
arguments.append(va);
arguments.append(vb);
compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, jsUndefined(), arguments).toNumber(m_exec);
}
return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
}
int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
static handle null() { return 0x7FFFFFFF; }
};
template<IndexingType indexingType>
void JSArray::sortVector(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ASSERT(!inSparseIndexingMode());
ASSERT(indexingType == structure()->indexingType());
// FIXME: This ignores exceptions raised in the compare function or in toNumber.
// The maximum tree depth is compiled in - but the caller is clearly up to no good
// if a larger array is passed.
ASSERT(m_butterfly->publicLength() <= static_cast<unsigned>(std::numeric_limits<int>::max()));
if (m_butterfly->publicLength() > static_cast<unsigned>(std::numeric_limits<int>::max()))
return;
unsigned usedVectorLength = relevantLength<indexingType>();
unsigned nodeCount = usedVectorLength;
if (!nodeCount)
return;
AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
tree.abstractor().m_exec = exec;
tree.abstractor().m_compareFunction = compareFunction;
tree.abstractor().m_compareCallType = callType;
tree.abstractor().m_compareCallData = &callData;
tree.abstractor().m_nodes.grow(nodeCount);
if (callType == CallTypeJS)
tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, jsCast<JSFunction*>(compareFunction), 2));
if (!tree.abstractor().m_nodes.begin()) {
throwOutOfMemoryError(exec);
return;
}
// FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
// right out from under us while we're building the tree here.
unsigned numDefined = 0;
unsigned numUndefined = 0;
// Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
for (; numDefined < usedVectorLength; ++numDefined) {
if (numDefined > m_butterfly->vectorLength())
break;
JSValue v = currentIndexingData()[numDefined].get();
if (!v || v.isUndefined())
break;
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
if (i > m_butterfly->vectorLength())
break;
JSValue v = currentIndexingData()[i].get();
if (v) {
if (v.isUndefined())
++numUndefined;
else {
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
++numDefined;
}
}
}
unsigned newUsedVectorLength = numDefined + numUndefined;
// The array size may have changed. Figure out the new bounds.
unsigned newestUsedVectorLength = currentRelevantLength();
unsigned elementsToExtractThreshold = min(min(newestUsedVectorLength, numDefined), static_cast<unsigned>(tree.abstractor().m_nodes.size()));
unsigned undefinedElementsThreshold = min(newestUsedVectorLength, newUsedVectorLength);
unsigned clearElementsThreshold = min(newestUsedVectorLength, usedVectorLength);
// Copy the values back into m_storage.
AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
iter.start_iter_least(tree);
JSGlobalData& globalData = exec->globalData();
for (unsigned i = 0; i < elementsToExtractThreshold; ++i) {
currentIndexingData()[i].set(globalData, this, tree.abstractor().m_nodes[*iter].value);
++iter;
}
// Put undefined values back in.
for (unsigned i = elementsToExtractThreshold; i < undefinedElementsThreshold; ++i)
currentIndexingData()[i].setUndefined();
// Ensure that unused values in the vector are zeroed out.
for (unsigned i = undefinedElementsThreshold; i < clearElementsThreshold; ++i)
currentIndexingData()[i].clear();
if (hasArrayStorage(structure()->indexingType()))
arrayStorage()->m_numValuesInVector = newUsedVectorLength;
}
void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ASSERT(!inSparseIndexingMode());
switch (structure()->indexingType()) {
case ArrayClass:
return;
case ArrayWithContiguous:
sortVector<ArrayWithContiguous>(exec, compareFunction, callType, callData);
return;
case ArrayWithArrayStorage:
sortVector<ArrayWithArrayStorage>(exec, compareFunction, callType, callData);
return;
default:
ASSERT_NOT_REACHED();
}
}
void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
{
unsigned i = 0;
unsigned vectorEnd;
WriteBarrier<Unknown>* vector;
switch (structure()->indexingType()) {
case ArrayClass:
return;
case ArrayWithContiguous: {
vectorEnd = m_butterfly->publicLength();
vector = m_butterfly->contiguous();
break;
}
case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: {
ArrayStorage* storage = m_butterfly->arrayStorage();
vector = storage->m_vector;
vectorEnd = min(storage->length(), storage->vectorLength());
break;
}
default:
CRASH();
vector = 0;
vectorEnd = 0;
break;
}
for (; i < vectorEnd; ++i) {
WriteBarrier<Unknown>& v = vector[i];
if (!v)
break;
args.append(v.get());
}
for (; i < length(); ++i)
args.append(get(exec, i));
}
void JSArray::copyToArguments(ExecState* exec, CallFrame* callFrame, uint32_t length)
{
unsigned i = 0;
WriteBarrier<Unknown>* vector;
unsigned vectorEnd;
ASSERT(length == this->length());
switch (structure()->indexingType()) {
case ArrayClass:
return;
case ArrayWithContiguous: {
vector = m_butterfly->contiguous();
vectorEnd = m_butterfly->publicLength();
break;
}
case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: {
ArrayStorage* storage = m_butterfly->arrayStorage();
vector = storage->m_vector;
vectorEnd = min(length, storage->vectorLength());
break;
}
default:
CRASH();
vector = 0;
vectorEnd = 0;
break;
}
for (; i < vectorEnd; ++i) {
WriteBarrier<Unknown>& v = vector[i];
if (!v)
break;
callFrame->setArgument(i, v.get());
}
for (; i < length; ++i)
callFrame->setArgument(i, get(exec, i));
}
template<IndexingType indexingType>
void JSArray::compactForSorting(unsigned& numDefined, unsigned& newRelevantLength)
{
ASSERT(!inSparseIndexingMode());
ASSERT(indexingType == structure()->indexingType());
unsigned myRelevantLength = relevantLength<indexingType>();
numDefined = 0;
unsigned numUndefined = 0;
for (; numDefined < myRelevantLength; ++numDefined) {
JSValue v = indexingData<indexingType>()[numDefined].get();
if (!v || v.isUndefined())
break;
}
for (unsigned i = numDefined; i < myRelevantLength; ++i) {
JSValue v = indexingData<indexingType>()[i].get();
if (v) {
if (v.isUndefined())
++numUndefined;
else
indexingData<indexingType>()[numDefined++].setWithoutWriteBarrier(v);
}
}
newRelevantLength = numDefined + numUndefined;
if (hasArrayStorage(indexingType))
ASSERT(!arrayStorage()->m_sparseMap);
for (unsigned i = numDefined; i < newRelevantLength; ++i)
indexingData<indexingType>()[i].setUndefined();
for (unsigned i = newRelevantLength; i < myRelevantLength; ++i)
indexingData<indexingType>()[i].clear();
if (hasArrayStorage(indexingType))
arrayStorage()->m_numValuesInVector = newRelevantLength;
}
} // namespace JSC
|