summaryrefslogtreecommitdiff
path: root/chromium/v8/src/wasm/wasm-serialization.cc
blob: 8d6adeec0096d6271abd1d10be4367c1a1a25171 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/wasm-serialization.h"

#include "src/codegen/assembler-arch.h"
#include "src/codegen/assembler-inl.h"
#include "src/debug/debug.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/snapshot-data.h"
#include "src/utils/ostreams.h"
#include "src/utils/version.h"
#include "src/wasm/code-space-access.h"
#include "src/wasm/function-compiler.h"
#include "src/wasm/module-compiler.h"
#include "src/wasm/module-decoder.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/wasm-result.h"

namespace v8 {
namespace internal {
namespace wasm {

namespace {
constexpr uint8_t kLazyFunction = 2;
constexpr uint8_t kEagerFunction = 3;
constexpr uint8_t kTurboFanFunction = 4;

// TODO(bbudge) Try to unify the various implementations of readers and writers
// in Wasm, e.g. StreamProcessor and ZoneBuffer, with these.
class Writer {
 public:
  explicit Writer(base::Vector<byte> buffer)
      : start_(buffer.begin()), end_(buffer.end()), pos_(buffer.begin()) {}

  size_t bytes_written() const { return pos_ - start_; }
  byte* current_location() const { return pos_; }
  size_t current_size() const { return end_ - pos_; }
  base::Vector<byte> current_buffer() const {
    return {current_location(), current_size()};
  }

  template <typename T>
  void Write(const T& value) {
    DCHECK_GE(current_size(), sizeof(T));
    WriteUnalignedValue(reinterpret_cast<Address>(current_location()), value);
    pos_ += sizeof(T);
    if (v8_flags.trace_wasm_serialization) {
      StdoutStream{} << "wrote: " << static_cast<size_t>(value)
                     << " sized: " << sizeof(T) << std::endl;
    }
  }

  void WriteVector(const base::Vector<const byte> v) {
    DCHECK_GE(current_size(), v.size());
    if (v.size() > 0) {
      memcpy(current_location(), v.begin(), v.size());
      pos_ += v.size();
    }
    if (v8_flags.trace_wasm_serialization) {
      StdoutStream{} << "wrote vector of " << v.size() << " elements"
                     << std::endl;
    }
  }

  void Skip(size_t size) { pos_ += size; }

 private:
  byte* const start_;
  byte* const end_;
  byte* pos_;
};

class Reader {
 public:
  explicit Reader(base::Vector<const byte> buffer)
      : start_(buffer.begin()), end_(buffer.end()), pos_(buffer.begin()) {}

  size_t bytes_read() const { return pos_ - start_; }
  const byte* current_location() const { return pos_; }
  size_t current_size() const { return end_ - pos_; }
  base::Vector<const byte> current_buffer() const {
    return {current_location(), current_size()};
  }

  template <typename T>
  T Read() {
    DCHECK_GE(current_size(), sizeof(T));
    T value =
        ReadUnalignedValue<T>(reinterpret_cast<Address>(current_location()));
    pos_ += sizeof(T);
    if (v8_flags.trace_wasm_serialization) {
      StdoutStream{} << "read: " << static_cast<size_t>(value)
                     << " sized: " << sizeof(T) << std::endl;
    }
    return value;
  }

  template <typename T>
  base::Vector<const T> ReadVector(size_t size) {
    DCHECK_GE(current_size(), size);
    base::Vector<const byte> bytes{pos_, size * sizeof(T)};
    pos_ += size * sizeof(T);
    if (v8_flags.trace_wasm_serialization) {
      StdoutStream{} << "read vector of " << size << " elements of size "
                     << sizeof(T) << " (total size " << size * sizeof(T) << ")"
                     << std::endl;
    }
    return base::Vector<const T>::cast(bytes);
  }

  void Skip(size_t size) { pos_ += size; }

 private:
  const byte* const start_;
  const byte* const end_;
  const byte* pos_;
};

void WriteHeader(Writer* writer) {
  writer->Write(SerializedData::kMagicNumber);
  writer->Write(Version::Hash());
  writer->Write(static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
  writer->Write(FlagList::Hash());
  DCHECK_EQ(WasmSerializer::kHeaderSize, writer->bytes_written());
}

// On Intel, call sites are encoded as a displacement. For linking and for
// serialization/deserialization, we want to store/retrieve a tag (the function
// index). On Intel, that means accessing the raw displacement.
// On ARM64, call sites are encoded as either a literal load or a direct branch.
// Other platforms simply require accessing the target address.
void SetWasmCalleeTag(RelocInfo* rinfo, uint32_t tag) {
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
  DCHECK(rinfo->HasTargetAddressAddress());
  DCHECK(!RelocInfo::IsCompressedEmbeddedObject(rinfo->rmode()));
  WriteUnalignedValue(rinfo->target_address_address(), tag);
#elif V8_TARGET_ARCH_ARM64
  Instruction* instr = reinterpret_cast<Instruction*>(rinfo->pc());
  if (instr->IsLdrLiteralX()) {
    WriteUnalignedValue(rinfo->constant_pool_entry_address(),
                        static_cast<Address>(tag));
  } else {
    DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
    instr->SetBranchImmTarget(
        reinterpret_cast<Instruction*>(rinfo->pc() + tag * kInstrSize));
  }
#else
  Address addr = static_cast<Address>(tag);
  if (rinfo->rmode() == RelocInfo::EXTERNAL_REFERENCE) {
    rinfo->set_target_external_reference(addr, SKIP_ICACHE_FLUSH);
  } else if (rinfo->rmode() == RelocInfo::WASM_STUB_CALL) {
    rinfo->set_wasm_stub_call_address(addr, SKIP_ICACHE_FLUSH);
  } else {
    rinfo->set_target_address(addr, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
  }
#endif
}

uint32_t GetWasmCalleeTag(RelocInfo* rinfo) {
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
  DCHECK(!RelocInfo::IsCompressedEmbeddedObject(rinfo->rmode()));
  return ReadUnalignedValue<uint32_t>(rinfo->target_address_address());
#elif V8_TARGET_ARCH_ARM64
  Instruction* instr = reinterpret_cast<Instruction*>(rinfo->pc());
  if (instr->IsLdrLiteralX()) {
    return ReadUnalignedValue<uint32_t>(rinfo->constant_pool_entry_address());
  } else {
    DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
    return static_cast<uint32_t>(instr->ImmPCOffset() / kInstrSize);
  }
#else
  Address addr;
  if (rinfo->rmode() == RelocInfo::EXTERNAL_REFERENCE) {
    addr = rinfo->target_external_reference();
  } else if (rinfo->rmode() == RelocInfo::WASM_STUB_CALL) {
    addr = rinfo->wasm_stub_call_address();
  } else {
    addr = rinfo->target_address();
  }
  return static_cast<uint32_t>(addr);
#endif
}

constexpr size_t kHeaderSize = sizeof(size_t);  // total code size

constexpr size_t kCodeHeaderSize = sizeof(uint8_t) +  // code kind
                                   sizeof(int) +      // offset of constant pool
                                   sizeof(int) +  // offset of safepoint table
                                   sizeof(int) +  // offset of handler table
                                   sizeof(int) +  // offset of code comments
                                   sizeof(int) +  // unpadded binary size
                                   sizeof(int) +  // stack slots
                                   sizeof(int) +  // tagged parameter slots
                                   sizeof(int) +  // code size
                                   sizeof(int) +  // reloc size
                                   sizeof(int) +  // source positions size
                                   sizeof(int) +  // protected instructions size
                                   sizeof(WasmCode::Kind) +  // code kind
                                   sizeof(ExecutionTier);    // tier

// A List of all isolate-independent external references. This is used to create
// a tag from the Address of an external reference and vice versa.
class ExternalReferenceList {
 public:
  ExternalReferenceList(const ExternalReferenceList&) = delete;
  ExternalReferenceList& operator=(const ExternalReferenceList&) = delete;

  uint32_t tag_from_address(Address ext_ref_address) const {
    auto tag_addr_less_than = [this](uint32_t tag, Address searched_addr) {
      return external_reference_by_tag_[tag] < searched_addr;
    };
    auto it = std::lower_bound(std::begin(tags_ordered_by_address_),
                               std::end(tags_ordered_by_address_),
                               ext_ref_address, tag_addr_less_than);
    DCHECK_NE(std::end(tags_ordered_by_address_), it);
    uint32_t tag = *it;
    DCHECK_EQ(address_from_tag(tag), ext_ref_address);
    return tag;
  }

  Address address_from_tag(uint32_t tag) const {
    DCHECK_GT(kNumExternalReferences, tag);
    return external_reference_by_tag_[tag];
  }

  static const ExternalReferenceList& Get() {
    static ExternalReferenceList list;  // Lazily initialized.
    return list;
  }

 private:
  // Private constructor. There will only be a single instance of this object.
  ExternalReferenceList() {
    for (uint32_t i = 0; i < kNumExternalReferences; ++i) {
      tags_ordered_by_address_[i] = i;
    }
    auto addr_by_tag_less_than = [this](uint32_t a, uint32_t b) {
      return external_reference_by_tag_[a] < external_reference_by_tag_[b];
    };
    std::sort(std::begin(tags_ordered_by_address_),
              std::end(tags_ordered_by_address_), addr_by_tag_less_than);
  }

#define COUNT_EXTERNAL_REFERENCE(name, ...) +1
  static constexpr uint32_t kNumExternalReferencesList =
      EXTERNAL_REFERENCE_LIST(COUNT_EXTERNAL_REFERENCE);
  static constexpr uint32_t kNumExternalReferencesIntrinsics =
      FOR_EACH_INTRINSIC(COUNT_EXTERNAL_REFERENCE);
  static constexpr uint32_t kNumExternalReferences =
      kNumExternalReferencesList + kNumExternalReferencesIntrinsics;
#undef COUNT_EXTERNAL_REFERENCE

  Address external_reference_by_tag_[kNumExternalReferences] = {
#define EXT_REF_ADDR(name, desc) ExternalReference::name().address(),
      EXTERNAL_REFERENCE_LIST(EXT_REF_ADDR)
#undef EXT_REF_ADDR
#define RUNTIME_ADDR(name, ...) \
  ExternalReference::Create(Runtime::k##name).address(),
          FOR_EACH_INTRINSIC(RUNTIME_ADDR)
#undef RUNTIME_ADDR
  };
  uint32_t tags_ordered_by_address_[kNumExternalReferences];
};

static_assert(std::is_trivially_destructible<ExternalReferenceList>::value,
              "static destructors not allowed");

}  // namespace

class V8_EXPORT_PRIVATE NativeModuleSerializer {
 public:
  NativeModuleSerializer(const NativeModule*, base::Vector<WasmCode* const>);
  NativeModuleSerializer(const NativeModuleSerializer&) = delete;
  NativeModuleSerializer& operator=(const NativeModuleSerializer&) = delete;

  size_t Measure() const;
  bool Write(Writer* writer);

 private:
  size_t MeasureCode(const WasmCode*) const;
  void WriteHeader(Writer*, size_t total_code_size);
  void WriteCode(const WasmCode*, Writer*);

  const NativeModule* const native_module_;
  const base::Vector<WasmCode* const> code_table_;
  bool write_called_ = false;
  size_t total_written_code_ = 0;
  int num_turbofan_functions_ = 0;
};

NativeModuleSerializer::NativeModuleSerializer(
    const NativeModule* module, base::Vector<WasmCode* const> code_table)
    : native_module_(module), code_table_(code_table) {
  DCHECK_NOT_NULL(native_module_);
  // TODO(mtrofin): persist the export wrappers. Ideally, we'd only persist
  // the unique ones, i.e. the cache.
}

size_t NativeModuleSerializer::MeasureCode(const WasmCode* code) const {
  if (code == nullptr) return sizeof(uint8_t);
  DCHECK_EQ(WasmCode::kWasmFunction, code->kind());
  if (code->tier() != ExecutionTier::kTurbofan) {
    return sizeof(uint8_t);
  }
  return kCodeHeaderSize + code->instructions().size() +
         code->reloc_info().size() + code->source_positions().size() +
         code->protected_instructions_data().size();
}

size_t NativeModuleSerializer::Measure() const {
  size_t size = kHeaderSize;
  for (WasmCode* code : code_table_) {
    size += MeasureCode(code);
  }
  return size;
}

void NativeModuleSerializer::WriteHeader(Writer* writer,
                                         size_t total_code_size) {
  // TODO(eholk): We need to properly preserve the flag whether the trap
  // handler was used or not when serializing.

  writer->Write(total_code_size);
}

void NativeModuleSerializer::WriteCode(const WasmCode* code, Writer* writer) {
  if (code == nullptr) {
    writer->Write(kLazyFunction);
    return;
  }

  DCHECK_EQ(WasmCode::kWasmFunction, code->kind());
  // Only serialize TurboFan code, as Liftoff code can contain breakpoints or
  // non-relocatable constants.
  if (code->tier() != ExecutionTier::kTurbofan) {
    // We check if the function has been executed already. If so, we serialize
    // it as {kEagerFunction} so that upon deserialization the function will
    // get eagerly compiled with Liftoff (if enabled). If the function has not
    // been executed yet, we serialize it as {kLazyFunction}, and the function
    // will not get compiled upon deserialization.
    NativeModule* native_module = code->native_module();
    uint32_t budget =
        native_module->tiering_budget_array()[declared_function_index(
            native_module->module(), code->index())];
    writer->Write(budget == static_cast<uint32_t>(v8_flags.wasm_tiering_budget)
                      ? kLazyFunction
                      : kEagerFunction);
    return;
  }

  ++num_turbofan_functions_;
  writer->Write(kTurboFanFunction);
  // Write the size of the entire code section, followed by the code header.
  writer->Write(code->constant_pool_offset());
  writer->Write(code->safepoint_table_offset());
  writer->Write(code->handler_table_offset());
  writer->Write(code->code_comments_offset());
  writer->Write(code->unpadded_binary_size());
  writer->Write(code->stack_slots());
  writer->Write(code->raw_tagged_parameter_slots_for_serialization());
  writer->Write(code->instructions().length());
  writer->Write(code->reloc_info().length());
  writer->Write(code->source_positions().length());
  writer->Write(code->protected_instructions_data().length());
  writer->Write(code->kind());
  writer->Write(code->tier());

  // Get a pointer to the destination buffer, to hold relocated code.
  byte* serialized_code_start = writer->current_buffer().begin();
  byte* code_start = serialized_code_start;
  size_t code_size = code->instructions().size();
  writer->Skip(code_size);
  // Write the reloc info, source positions, and protected code.
  writer->WriteVector(code->reloc_info());
  writer->WriteVector(code->source_positions());
  writer->WriteVector(code->protected_instructions_data());
#if V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_PPC ||      \
    V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_S390X || V8_TARGET_ARCH_RISCV32 || \
    V8_TARGET_ARCH_RISCV64
  // On platforms that don't support misaligned word stores, copy to an aligned
  // buffer if necessary so we can relocate the serialized code.
  std::unique_ptr<byte[]> aligned_buffer;
  if (!IsAligned(reinterpret_cast<Address>(serialized_code_start),
                 kSystemPointerSize)) {
    // 'byte' does not guarantee an alignment but seems to work well enough in
    // practice.
    aligned_buffer.reset(new byte[code_size]);
    code_start = aligned_buffer.get();
  }
#endif
  memcpy(code_start, code->instructions().begin(), code_size);
  // Relocate the code.
  int mask = RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
             RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL) |
             RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
             RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
             RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
  RelocIterator orig_iter(code->instructions(), code->reloc_info(),
                          code->constant_pool(), mask);
  for (RelocIterator iter(
           {code_start, code->instructions().size()}, code->reloc_info(),
           reinterpret_cast<Address>(code_start) + code->constant_pool_offset(),
           mask);
       !iter.done(); iter.next(), orig_iter.next()) {
    RelocInfo::Mode mode = orig_iter.rinfo()->rmode();
    switch (mode) {
      case RelocInfo::WASM_CALL: {
        Address orig_target = orig_iter.rinfo()->wasm_call_address();
        uint32_t tag =
            native_module_->GetFunctionIndexFromJumpTableSlot(orig_target);
        SetWasmCalleeTag(iter.rinfo(), tag);
      } break;
      case RelocInfo::WASM_STUB_CALL: {
        Address target = orig_iter.rinfo()->wasm_stub_call_address();
        uint32_t tag = native_module_->GetRuntimeStubId(target);
        DCHECK_GT(WasmCode::kRuntimeStubCount, tag);
        SetWasmCalleeTag(iter.rinfo(), tag);
      } break;
      case RelocInfo::EXTERNAL_REFERENCE: {
        Address orig_target = orig_iter.rinfo()->target_external_reference();
        uint32_t ext_ref_tag =
            ExternalReferenceList::Get().tag_from_address(orig_target);
        SetWasmCalleeTag(iter.rinfo(), ext_ref_tag);
      } break;
      case RelocInfo::INTERNAL_REFERENCE:
      case RelocInfo::INTERNAL_REFERENCE_ENCODED: {
        Address orig_target = orig_iter.rinfo()->target_internal_reference();
        Address offset = orig_target - code->instruction_start();
        Assembler::deserialization_set_target_internal_reference_at(
            iter.rinfo()->pc(), offset, mode);
      } break;
      default:
        UNREACHABLE();
    }
  }
  // If we copied to an aligned buffer, copy code into serialized buffer.
  if (code_start != serialized_code_start) {
    memcpy(serialized_code_start, code_start, code_size);
  }
  total_written_code_ += code_size;
}

bool NativeModuleSerializer::Write(Writer* writer) {
  DCHECK(!write_called_);
  write_called_ = true;

  size_t total_code_size = 0;
  for (WasmCode* code : code_table_) {
    if (code && code->tier() == ExecutionTier::kTurbofan) {
      DCHECK(IsAligned(code->instructions().size(), kCodeAlignment));
      total_code_size += code->instructions().size();
    }
  }
  WriteHeader(writer, total_code_size);

  for (WasmCode* code : code_table_) {
    WriteCode(code, writer);
  }
  // If not a single function was written, serialization was not successful.
  if (num_turbofan_functions_ == 0) return false;

  // Make sure that the serialized total code size was correct.
  CHECK_EQ(total_written_code_, total_code_size);

  return true;
}

WasmSerializer::WasmSerializer(NativeModule* native_module)
    : native_module_(native_module),
      code_table_(native_module->SnapshotCodeTable()) {}

size_t WasmSerializer::GetSerializedNativeModuleSize() const {
  NativeModuleSerializer serializer(native_module_,
                                    base::VectorOf(code_table_));
  return kHeaderSize + serializer.Measure();
}

bool WasmSerializer::SerializeNativeModule(base::Vector<byte> buffer) const {
  NativeModuleSerializer serializer(native_module_,
                                    base::VectorOf(code_table_));
  size_t measured_size = kHeaderSize + serializer.Measure();
  if (buffer.size() < measured_size) return false;

  Writer writer(buffer);
  WriteHeader(&writer);

  if (!serializer.Write(&writer)) return false;
  DCHECK_EQ(measured_size, writer.bytes_written());
  return true;
}

struct DeserializationUnit {
  base::Vector<const byte> src_code_buffer;
  std::unique_ptr<WasmCode> code;
  NativeModule::JumpTablesRef jump_tables;
};

class DeserializationQueue {
 public:
  void Add(std::vector<DeserializationUnit> batch) {
    DCHECK(!batch.empty());
    base::MutexGuard guard(&mutex_);
    queue_.emplace(std::move(batch));
  }

  std::vector<DeserializationUnit> Pop() {
    base::MutexGuard guard(&mutex_);
    if (queue_.empty()) return {};
    auto batch = std::move(queue_.front());
    queue_.pop();
    return batch;
  }

  std::vector<DeserializationUnit> PopAll() {
    base::MutexGuard guard(&mutex_);
    if (queue_.empty()) return {};
    auto units = std::move(queue_.front());
    queue_.pop();
    while (!queue_.empty()) {
      units.insert(units.end(), std::make_move_iterator(queue_.front().begin()),
                   std::make_move_iterator(queue_.front().end()));
      queue_.pop();
    }
    return units;
  }

  size_t NumBatches() const {
    base::MutexGuard guard(&mutex_);
    return queue_.size();
  }

 private:
  mutable base::Mutex mutex_;
  std::queue<std::vector<DeserializationUnit>> queue_;
};

class V8_EXPORT_PRIVATE NativeModuleDeserializer {
 public:
  explicit NativeModuleDeserializer(NativeModule*);
  NativeModuleDeserializer(const NativeModuleDeserializer&) = delete;
  NativeModuleDeserializer& operator=(const NativeModuleDeserializer&) = delete;

  bool Read(Reader* reader);

  base::Vector<const int> lazy_functions() {
    return base::VectorOf(lazy_functions_);
  }

  base::Vector<const int> eager_functions() {
    return base::VectorOf(eager_functions_);
  }

 private:
  friend class DeserializeCodeTask;

  void ReadHeader(Reader* reader);
  DeserializationUnit ReadCode(int fn_index, Reader* reader);
  void CopyAndRelocate(const DeserializationUnit& unit);
  void Publish(std::vector<DeserializationUnit> batch);

  NativeModule* const native_module_;
#ifdef DEBUG
  bool read_called_ = false;
#endif

  // Updated in {ReadCode}.
  size_t remaining_code_size_ = 0;
  base::Vector<byte> current_code_space_;
  NativeModule::JumpTablesRef current_jump_tables_;
  std::vector<int> lazy_functions_;
  std::vector<int> eager_functions_;
};

class DeserializeCodeTask : public JobTask {
 public:
  DeserializeCodeTask(NativeModuleDeserializer* deserializer,
                      DeserializationQueue* reloc_queue)
      : deserializer_(deserializer), reloc_queue_(reloc_queue) {}

  void Run(JobDelegate* delegate) override {
    CodeSpaceWriteScope code_space_write_scope(deserializer_->native_module_);
    bool finished = false;
    while (!finished) {
      // Repeatedly publish everything that was copied already.
      finished = TryPublishing(delegate);

      auto batch = reloc_queue_->Pop();
      if (batch.empty()) break;
      for (const auto& unit : batch) {
        deserializer_->CopyAndRelocate(unit);
      }
      publish_queue_.Add(std::move(batch));
      ResetPKUPermissionsForThreadSpawning pku_reset_scope;
      delegate->NotifyConcurrencyIncrease();
    }
  }

  size_t GetMaxConcurrency(size_t /* worker_count */) const override {
    // Number of copy&reloc batches, plus 1 if there is also something to
    // publish.
    bool publish = publishing_.load(std::memory_order_relaxed) == false &&
                   publish_queue_.NumBatches() > 0;
    return reloc_queue_->NumBatches() + (publish ? 1 : 0);
  }

 private:
  bool TryPublishing(JobDelegate* delegate) {
    // Publishing is sequential, so only start publishing if no one else is.
    if (publishing_.exchange(true, std::memory_order_relaxed)) return false;

    WasmCodeRefScope code_scope;
    while (true) {
      bool yield = false;
      while (!yield) {
        auto to_publish = publish_queue_.PopAll();
        if (to_publish.empty()) break;
        deserializer_->Publish(std::move(to_publish));
        yield = delegate->ShouldYield();
      }
      publishing_.store(false, std::memory_order_relaxed);
      if (yield) return true;
      // After finishing publishing, check again if new work arrived in the mean
      // time. If so, continue publishing.
      if (publish_queue_.NumBatches() == 0) break;
      if (publishing_.exchange(true, std::memory_order_relaxed)) break;
      // We successfully reset {publishing_} from {false} to {true}.
    }
    return false;
  }

  NativeModuleDeserializer* const deserializer_;
  DeserializationQueue* const reloc_queue_;
  DeserializationQueue publish_queue_;
  std::atomic<bool> publishing_{false};
};

NativeModuleDeserializer::NativeModuleDeserializer(NativeModule* native_module)
    : native_module_(native_module) {}

bool NativeModuleDeserializer::Read(Reader* reader) {
  DCHECK(!read_called_);
#ifdef DEBUG
  read_called_ = true;
#endif

  ReadHeader(reader);
  uint32_t total_fns = native_module_->num_functions();
  uint32_t first_wasm_fn = native_module_->num_imported_functions();

  WasmCodeRefScope wasm_code_ref_scope;

  DeserializationQueue reloc_queue;

  // Create a new job without any workers; those are spawned on
  // {NotifyConcurrencyIncrease}.
  std::unique_ptr<JobHandle> job_handle = V8::GetCurrentPlatform()->CreateJob(
      TaskPriority::kUserVisible,
      std::make_unique<DeserializeCodeTask>(this, &reloc_queue));

  // Choose a batch size such that we do not create too small batches (>=100k
  // code bytes), but also not too many (<=100 batches).
  constexpr size_t kMinBatchSizeInBytes = 100000;
  size_t batch_limit =
      std::max(kMinBatchSizeInBytes, remaining_code_size_ / 100);

  std::vector<DeserializationUnit> batch;
  size_t batch_size = 0;
  CodeSpaceWriteScope code_space_write_scope(native_module_);
  for (uint32_t i = first_wasm_fn; i < total_fns; ++i) {
    DeserializationUnit unit = ReadCode(i, reader);
    if (!unit.code) continue;
    batch_size += unit.code->instructions().size();
    batch.emplace_back(std::move(unit));
    if (batch_size >= batch_limit) {
      reloc_queue.Add(std::move(batch));
      DCHECK(batch.empty());
      batch_size = 0;
      ResetPKUPermissionsForThreadSpawning pku_reset_scope;
      job_handle->NotifyConcurrencyIncrease();
    }
  }

  // We should have read the expected amount of code now, and should have fully
  // utilized the allocated code space.
  DCHECK_EQ(0, remaining_code_size_);
  DCHECK_EQ(0, current_code_space_.size());

  if (!batch.empty()) {
    reloc_queue.Add(std::move(batch));
    ResetPKUPermissionsForThreadSpawning pku_reset_scope;
    job_handle->NotifyConcurrencyIncrease();
  }

  // Wait for all tasks to finish, while participating in their work.
  job_handle->Join();

  return reader->current_size() == 0;
}

void NativeModuleDeserializer::ReadHeader(Reader* reader) {
  remaining_code_size_ = reader->Read<size_t>();
}

DeserializationUnit NativeModuleDeserializer::ReadCode(int fn_index,
                                                       Reader* reader) {
  uint8_t code_kind = reader->Read<uint8_t>();
  if (code_kind == kLazyFunction) {
    lazy_functions_.push_back(fn_index);
    return {};
  }
  if (code_kind == kEagerFunction) {
    eager_functions_.push_back(fn_index);
    return {};
  }

  int constant_pool_offset = reader->Read<int>();
  int safepoint_table_offset = reader->Read<int>();
  int handler_table_offset = reader->Read<int>();
  int code_comment_offset = reader->Read<int>();
  int unpadded_binary_size = reader->Read<int>();
  int stack_slot_count = reader->Read<int>();
  uint32_t tagged_parameter_slots = reader->Read<uint32_t>();
  int code_size = reader->Read<int>();
  int reloc_size = reader->Read<int>();
  int source_position_size = reader->Read<int>();
  int protected_instructions_size = reader->Read<int>();
  WasmCode::Kind kind = reader->Read<WasmCode::Kind>();
  ExecutionTier tier = reader->Read<ExecutionTier>();

  DCHECK(IsAligned(code_size, kCodeAlignment));
  DCHECK_GE(remaining_code_size_, code_size);
  if (current_code_space_.size() < static_cast<size_t>(code_size)) {
    // Allocate the next code space. Don't allocate more than 90% of
    // {kMaxCodeSpaceSize}, to leave some space for jump tables.
    constexpr size_t kMaxReservation =
        RoundUp<kCodeAlignment>(WasmCodeAllocator::kMaxCodeSpaceSize * 9 / 10);
    size_t code_space_size = std::min(kMaxReservation, remaining_code_size_);
    std::tie(current_code_space_, current_jump_tables_) =
        native_module_->AllocateForDeserializedCode(code_space_size);
    DCHECK_EQ(current_code_space_.size(), code_space_size);
    DCHECK(current_jump_tables_.is_valid());
  }

  DeserializationUnit unit;
  unit.src_code_buffer = reader->ReadVector<byte>(code_size);
  auto reloc_info = reader->ReadVector<byte>(reloc_size);
  auto source_pos = reader->ReadVector<byte>(source_position_size);
  auto protected_instructions =
      reader->ReadVector<byte>(protected_instructions_size);

  base::Vector<uint8_t> instructions =
      current_code_space_.SubVector(0, code_size);
  current_code_space_ += code_size;
  remaining_code_size_ -= code_size;

  unit.code = native_module_->AddDeserializedCode(
      fn_index, instructions, stack_slot_count, tagged_parameter_slots,
      safepoint_table_offset, handler_table_offset, constant_pool_offset,
      code_comment_offset, unpadded_binary_size, protected_instructions,
      reloc_info, source_pos, kind, tier);
  unit.jump_tables = current_jump_tables_;
  return unit;
}

void NativeModuleDeserializer::CopyAndRelocate(
    const DeserializationUnit& unit) {
  memcpy(unit.code->instructions().begin(), unit.src_code_buffer.begin(),
         unit.src_code_buffer.size());

  // Relocate the code.
  int mask = RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
             RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL) |
             RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
             RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
             RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
  for (RelocIterator iter(unit.code->instructions(), unit.code->reloc_info(),
                          unit.code->constant_pool(), mask);
       !iter.done(); iter.next()) {
    RelocInfo::Mode mode = iter.rinfo()->rmode();
    switch (mode) {
      case RelocInfo::WASM_CALL: {
        uint32_t tag = GetWasmCalleeTag(iter.rinfo());
        Address target =
            native_module_->GetNearCallTargetForFunction(tag, unit.jump_tables);
        iter.rinfo()->set_wasm_call_address(target, SKIP_ICACHE_FLUSH);
        break;
      }
      case RelocInfo::WASM_STUB_CALL: {
        uint32_t tag = GetWasmCalleeTag(iter.rinfo());
        DCHECK_LT(tag, WasmCode::kRuntimeStubCount);
        Address target = native_module_->GetNearRuntimeStubEntry(
            static_cast<WasmCode::RuntimeStubId>(tag), unit.jump_tables);
        iter.rinfo()->set_wasm_stub_call_address(target, SKIP_ICACHE_FLUSH);
        break;
      }
      case RelocInfo::EXTERNAL_REFERENCE: {
        uint32_t tag = GetWasmCalleeTag(iter.rinfo());
        Address address = ExternalReferenceList::Get().address_from_tag(tag);
        iter.rinfo()->set_target_external_reference(address, SKIP_ICACHE_FLUSH);
        break;
      }
      case RelocInfo::INTERNAL_REFERENCE:
      case RelocInfo::INTERNAL_REFERENCE_ENCODED: {
        Address offset = iter.rinfo()->target_internal_reference();
        Address target = unit.code->instruction_start() + offset;
        Assembler::deserialization_set_target_internal_reference_at(
            iter.rinfo()->pc(), target, mode);
        break;
      }
      default:
        UNREACHABLE();
    }
  }

  // Finally, flush the icache for that code.
  FlushInstructionCache(unit.code->instructions().begin(),
                        unit.code->instructions().size());
}

void NativeModuleDeserializer::Publish(std::vector<DeserializationUnit> batch) {
  DCHECK(!batch.empty());
  std::vector<std::unique_ptr<WasmCode>> codes;
  codes.reserve(batch.size());
  for (auto& unit : batch) {
    codes.emplace_back(std::move(unit).code);
  }
  auto published_codes = native_module_->PublishCode(base::VectorOf(codes));
  for (auto* wasm_code : published_codes) {
    wasm_code->MaybePrint();
    wasm_code->Validate();
  }
}

bool IsSupportedVersion(base::Vector<const byte> header) {
  if (header.size() < WasmSerializer::kHeaderSize) return false;
  byte current_version[WasmSerializer::kHeaderSize];
  Writer writer({current_version, WasmSerializer::kHeaderSize});
  WriteHeader(&writer);
  return memcmp(header.begin(), current_version, WasmSerializer::kHeaderSize) ==
         0;
}

MaybeHandle<WasmModuleObject> DeserializeNativeModule(
    Isolate* isolate, base::Vector<const byte> data,
    base::Vector<const byte> wire_bytes_vec,
    base::Vector<const char> source_url) {
  if (!IsWasmCodegenAllowed(isolate, isolate->native_context())) return {};
  if (!IsSupportedVersion(data)) return {};

  // Make the copy of the wire bytes early, so we use the same memory for
  // decoding, lookup in the native module cache, and insertion into the cache.
  auto owned_wire_bytes = base::OwnedVector<uint8_t>::Of(wire_bytes_vec);

  // TODO(titzer): module features should be part of the serialization format.
  WasmEngine* wasm_engine = GetWasmEngine();
  WasmFeatures enabled_features = WasmFeatures::FromIsolate(isolate);
  ModuleResult decode_result = DecodeWasmModule(
      enabled_features, owned_wire_bytes.start(), owned_wire_bytes.end(), false,
      i::wasm::kWasmOrigin, isolate->counters(), isolate->metrics_recorder(),
      isolate->GetOrRegisterRecorderContextId(isolate->native_context()),
      DecodingMethod::kDeserialize, wasm_engine->allocator());
  if (decode_result.failed()) return {};
  std::shared_ptr<WasmModule> module = std::move(decode_result).value();
  CHECK_NOT_NULL(module);

  auto shared_native_module = wasm_engine->MaybeGetNativeModule(
      module->origin, owned_wire_bytes.as_vector(), isolate);
  if (shared_native_module == nullptr) {
    const bool dynamic_tiering = v8_flags.wasm_dynamic_tiering;
    const bool include_liftoff = !dynamic_tiering;
    size_t code_size_estimate =
        wasm::WasmCodeManager::EstimateNativeModuleCodeSize(
            module.get(), include_liftoff, DynamicTiering{dynamic_tiering});
    shared_native_module = wasm_engine->NewNativeModule(
        isolate, enabled_features, std::move(module), code_size_estimate);
    // We have to assign a compilation ID here, as it is required for a
    // potential re-compilation, e.g. triggered by
    // {TierDownAllModulesPerIsolate}. The value is -2 so that it is different
    // than the compilation ID of actual compilations, and also different than
    // the sentinel value of the CompilationState.
    shared_native_module->compilation_state()->set_compilation_id(-2);
    shared_native_module->SetWireBytes(std::move(owned_wire_bytes));

    NativeModuleDeserializer deserializer(shared_native_module.get());
    Reader reader(data + WasmSerializer::kHeaderSize);
    bool error = !deserializer.Read(&reader);
    if (error) {
      wasm_engine->UpdateNativeModuleCache(error, &shared_native_module,
                                           isolate);
      return {};
    }
    shared_native_module->compilation_state()->InitializeAfterDeserialization(
        deserializer.lazy_functions(), deserializer.eager_functions());
    wasm_engine->UpdateNativeModuleCache(error, &shared_native_module, isolate);
  }

  Handle<Script> script =
      wasm_engine->GetOrCreateScript(isolate, shared_native_module, source_url);
  Handle<WasmModuleObject> module_object =
      WasmModuleObject::New(isolate, shared_native_module, script);

  // Finish the Wasm script now and make it public to the debugger.
  isolate->debug()->OnAfterCompile(script);

  // Log the code within the generated module for profiling.
  shared_native_module->LogWasmCodes(isolate, *script);

  return module_object;
}

}  // namespace wasm
}  // namespace internal
}  // namespace v8