summaryrefslogtreecommitdiff
path: root/chromium/v8/src/wasm/jump-table-assembler.cc
blob: db2514791bcb4d7c46238583c053655169e9d041 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/jump-table-assembler.h"

#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler-inl.h"

namespace v8 {
namespace internal {
namespace wasm {

// The implementation is compact enough to implement it inline here. If it gets
// much bigger, we might want to split it in a separate file per architecture.
#if V8_TARGET_ARCH_X64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
                                                 Address lazy_compile_target) {
  // Use a push, because mov to an extended register takes 6 bytes.
  pushq_imm32(func_index);            // 5 bytes
  EmitJumpSlot(lazy_compile_target);  // 5 bytes
}

bool JumpTableAssembler::EmitJumpSlot(Address target) {
  intptr_t displacement = static_cast<intptr_t>(
      reinterpret_cast<byte*>(target) - pc_ - kNearJmpInstrSize);
  if (!is_int32(displacement)) return false;
  near_jmp(displacement, RelocInfo::NONE);  // 5 bytes
  return true;
}

void JumpTableAssembler::EmitFarJumpSlot(Address target) {
  Label data;
  int start_offset = pc_offset();
  jmp(Operand(&data));  // 6 bytes
  Nop(2);               // 2 bytes
  // The data must be properly aligned, so it can be patched atomically (see
  // {PatchFarJumpSlot}).
  DCHECK_EQ(start_offset + kSystemPointerSize, pc_offset());
  USE(start_offset);
  bind(&data);
  dq(target);  // 8 bytes
}

// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
  // The slot needs to be pointer-size aligned so we can atomically update it.
  DCHECK(IsAligned(slot, kSystemPointerSize));
  // Offset of the target is at 8 bytes, see {EmitFarJumpSlot}.
  reinterpret_cast<std::atomic<Address>*>(slot + kSystemPointerSize)
      ->store(target, std::memory_order_relaxed);
  // The update is atomic because the address is properly aligned.
  // Because of cache coherence, the data update will eventually be seen by all
  // cores. It's ok if they temporarily jump to the old target.
}

void JumpTableAssembler::NopBytes(int bytes) {
  DCHECK_LE(0, bytes);
  Nop(bytes);
}

#elif V8_TARGET_ARCH_IA32
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
                                                 Address lazy_compile_target) {
  mov(kWasmCompileLazyFuncIndexRegister, func_index);  // 5 bytes
  jmp(lazy_compile_target, RelocInfo::NONE);           // 5 bytes
}

bool JumpTableAssembler::EmitJumpSlot(Address target) {
  jmp(target, RelocInfo::NONE);
  return true;
}

void JumpTableAssembler::EmitFarJumpSlot(Address target) {
  jmp(target, RelocInfo::NONE);
}

// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
  UNREACHABLE();
}

void JumpTableAssembler::NopBytes(int bytes) {
  DCHECK_LE(0, bytes);
  Nop(bytes);
}

#elif V8_TARGET_ARCH_ARM
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
                                                 Address lazy_compile_target) {
  // Load function index to a register.
  // This generates [movw, movt] on ARMv7 and later, [ldr, constant pool marker,
  // constant] on ARMv6.
  Move32BitImmediate(kWasmCompileLazyFuncIndexRegister, Operand(func_index));
  // EmitJumpSlot emits either [b], [movw, movt, mov] (ARMv7+), or [ldr,
  // constant].
  // In total, this is <=5 instructions on all architectures.
  // TODO(arm): Optimize this for code size; lazy compile is not performance
  // critical, as it's only executed once per function.
  EmitJumpSlot(lazy_compile_target);
}

bool JumpTableAssembler::EmitJumpSlot(Address target) {
  // Note that {Move32BitImmediate} emits [ldr, constant] for the relocation
  // mode used below, we need this to allow concurrent patching of this slot.
  Move32BitImmediate(pc, Operand(target, RelocInfo::WASM_CALL));
  CheckConstPool(true, false);  // force emit of const pool
  return true;
}

void JumpTableAssembler::EmitFarJumpSlot(Address target) {
  // Load from [pc + kInstrSize] to pc. Note that {pc} points two instructions
  // after the currently executing one.
  ldr_pcrel(pc, -kInstrSize);  // 1 instruction
  dd(target);                  // 4 bytes (== 1 instruction)
  STATIC_ASSERT(kInstrSize == kInt32Size);
  STATIC_ASSERT(kFarJumpTableSlotSize == 2 * kInstrSize);
}

// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
  UNREACHABLE();
}

void JumpTableAssembler::NopBytes(int bytes) {
  DCHECK_LE(0, bytes);
  DCHECK_EQ(0, bytes % kInstrSize);
  for (; bytes > 0; bytes -= kInstrSize) {
    nop();
  }
}

#elif V8_TARGET_ARCH_ARM64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
                                                 Address lazy_compile_target) {
  int start = pc_offset();
  CodeEntry();                                             // 0-1 instr
  Mov(kWasmCompileLazyFuncIndexRegister.W(), func_index);  // 1-2 instr
  Jump(lazy_compile_target, RelocInfo::NONE);              // 1 instr
  int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
  DCHECK(nop_bytes == 0 || nop_bytes == kInstrSize);
  if (nop_bytes) nop();
}

bool JumpTableAssembler::EmitJumpSlot(Address target) {
  if (!TurboAssembler::IsNearCallOffset(
          (reinterpret_cast<byte*>(target) - pc_) / kInstrSize)) {
    return false;
  }

  CodeEntry();

  Jump(target, RelocInfo::NONE);
  return true;
}

void JumpTableAssembler::EmitFarJumpSlot(Address target) {
  // This code uses hard-coded registers and instructions (and avoids
  // {UseScratchRegisterScope} or {InstructionAccurateScope}) because this code
  // will only be called for the very specific runtime slot table, and we want
  // to have maximum control over the generated code.
  // Do not reuse this code without validating that the same assumptions hold.
  CodeEntry();  // 0-1 instructions
  constexpr Register kTmpReg = x16;
  DCHECK(TmpList()->IncludesAliasOf(kTmpReg));
  int kOffset = ENABLE_CONTROL_FLOW_INTEGRITY_BOOL ? 3 : 2;
  // Load from [pc + kOffset * kInstrSize] to {kTmpReg}, then branch there.
  ldr_pcrel(kTmpReg, kOffset);  // 1 instruction
  br(kTmpReg);                  // 1 instruction
#ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY
  nop();       // To keep the target below aligned to kSystemPointerSize.
#endif
  dq(target);  // 8 bytes (== 2 instructions)
  STATIC_ASSERT(2 * kInstrSize == kSystemPointerSize);
  const int kSlotCount = ENABLE_CONTROL_FLOW_INTEGRITY_BOOL ? 6 : 4;
  STATIC_ASSERT(kFarJumpTableSlotSize == kSlotCount * kInstrSize);
}

// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
  // See {EmitFarJumpSlot} for the offset of the target (16 bytes with
  // CFI enabled, 8 bytes otherwise).
  int kTargetOffset =
      ENABLE_CONTROL_FLOW_INTEGRITY_BOOL ? 4 * kInstrSize : 2 * kInstrSize;
  // The slot needs to be pointer-size aligned so we can atomically update it.
  DCHECK(IsAligned(slot + kTargetOffset, kSystemPointerSize));
  reinterpret_cast<std::atomic<Address>*>(slot + kTargetOffset)
      ->store(target, std::memory_order_relaxed);
  // The data update is guaranteed to be atomic since it's a properly aligned
  // and stores a single machine word. This update will eventually be observed
  // by any concurrent [ldr] on the same address because of the data cache
  // coherence. It's ok if other cores temporarily jump to the old target.
}

void JumpTableAssembler::NopBytes(int bytes) {
  DCHECK_LE(0, bytes);
  DCHECK_EQ(0, bytes % kInstrSize);
  for (; bytes > 0; bytes -= kInstrSize) {
    nop();
  }
}

#elif V8_TARGET_ARCH_S390X
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
                                                 Address lazy_compile_target) {
  // Load function index to r7. 6 bytes
  lgfi(kWasmCompileLazyFuncIndexRegister, Operand(func_index));
  // Jump to {lazy_compile_target}. 6 bytes or 12 bytes
  mov(r1, Operand(lazy_compile_target, RelocInfo::CODE_TARGET));
  b(r1);  // 2 bytes
}

bool JumpTableAssembler::EmitJumpSlot(Address target) {
  mov(r1, Operand(target, RelocInfo::CODE_TARGET));
  b(r1);
  return true;
}

void JumpTableAssembler::EmitFarJumpSlot(Address target) {
  JumpToInstructionStream(target);
}

// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
  UNREACHABLE();
}

void JumpTableAssembler::NopBytes(int bytes) {
  DCHECK_LE(0, bytes);
  DCHECK_EQ(0, bytes % 2);
  for (; bytes > 0; bytes -= 2) {
    nop(0);
  }
}

#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
                                                 Address lazy_compile_target) {
  int start = pc_offset();
  li(kWasmCompileLazyFuncIndexRegister, func_index);  // max. 2 instr
  // Jump produces max. 4 instructions for 32-bit platform
  // and max. 6 instructions for 64-bit platform.
  Jump(lazy_compile_target, RelocInfo::NONE);
  int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
  DCHECK_EQ(nop_bytes % kInstrSize, 0);
  for (int i = 0; i < nop_bytes; i += kInstrSize) nop();
}

bool JumpTableAssembler::EmitJumpSlot(Address target) {
  PatchAndJump(target);
  return true;
}

void JumpTableAssembler::EmitFarJumpSlot(Address target) {
  JumpToInstructionStream(target);
}

// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
  UNREACHABLE();
}

void JumpTableAssembler::NopBytes(int bytes) {
  DCHECK_LE(0, bytes);
  DCHECK_EQ(0, bytes % kInstrSize);
  for (; bytes > 0; bytes -= kInstrSize) {
    nop();
  }
}

#elif V8_TARGET_ARCH_PPC64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
                                                 Address lazy_compile_target) {
  int start = pc_offset();
  // Load function index to register. max 5 instrs
  mov(kWasmCompileLazyFuncIndexRegister, Operand(func_index));
  // Jump to {lazy_compile_target}. max 5 instrs
  mov(r0, Operand(lazy_compile_target));
  mtctr(r0);
  bctr();
  int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
  DCHECK_EQ(nop_bytes % kInstrSize, 0);
  for (int i = 0; i < nop_bytes; i += kInstrSize) nop();
}

bool JumpTableAssembler::EmitJumpSlot(Address target) {
  mov(r0, Operand(target));
  mtctr(r0);
  bctr();
  return true;
}

void JumpTableAssembler::EmitFarJumpSlot(Address target) {
  JumpToInstructionStream(target);
}

// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
  UNREACHABLE();
}

void JumpTableAssembler::NopBytes(int bytes) {
  DCHECK_LE(0, bytes);
  DCHECK_EQ(0, bytes % 4);
  for (; bytes > 0; bytes -= 4) {
    nop(0);
  }
}

#elif V8_TARGET_ARCH_RISCV64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
                                                 Address lazy_compile_target) {
  int start = pc_offset();
  li(kWasmCompileLazyFuncIndexRegister, func_index);  // max. 2 instr
  // Jump produces max. 8 instructions (include constant pool and j)
  Jump(lazy_compile_target, RelocInfo::NONE);
  int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
  DCHECK_EQ(nop_bytes % kInstrSize, 0);
  for (int i = 0; i < nop_bytes; i += kInstrSize) nop();
}

bool JumpTableAssembler::EmitJumpSlot(Address target) {
  PatchAndJump(target);
  return true;
}

void JumpTableAssembler::EmitFarJumpSlot(Address target) {
  UseScratchRegisterScope temp(this);
  Register rd = temp.Acquire();
  auipc(rd, 0);
  ld(rd, rd, 4 * kInstrSize);
  Jump(rd);
  nop();
  dq(target);
}

// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
  UNREACHABLE();
}

void JumpTableAssembler::NopBytes(int bytes) {
  DCHECK_LE(0, bytes);
  DCHECK_EQ(0, bytes % kInstrSize);
  for (; bytes > 0; bytes -= kInstrSize) {
    nop();
  }
}

#else
#error Unknown architecture.
#endif

}  // namespace wasm
}  // namespace internal
}  // namespace v8