1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/strings.h"
#include "src/execution/isolate-inl.h"
#include "src/objects/fixed-array-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/strings/string-builder-inl.h"
namespace v8 {
namespace internal {
template <typename sinkchar>
void StringBuilderConcatHelper(String special, sinkchar* sink,
FixedArray fixed_array, int array_length) {
DisallowGarbageCollection no_gc;
int position = 0;
for (int i = 0; i < array_length; i++) {
Object element = fixed_array.get(i);
if (element.IsSmi()) {
// Smi encoding of position and length.
int encoded_slice = Smi::ToInt(element);
int pos;
int len;
if (encoded_slice > 0) {
// Position and length encoded in one smi.
pos = StringBuilderSubstringPosition::decode(encoded_slice);
len = StringBuilderSubstringLength::decode(encoded_slice);
} else {
// Position and length encoded in two smis.
Object obj = fixed_array.get(++i);
DCHECK(obj.IsSmi());
pos = Smi::ToInt(obj);
len = -encoded_slice;
}
String::WriteToFlat(special, sink + position, pos, pos + len);
position += len;
} else {
String string = String::cast(element);
int element_length = string.length();
String::WriteToFlat(string, sink + position, 0, element_length);
position += element_length;
}
}
}
template void StringBuilderConcatHelper<uint8_t>(String special, uint8_t* sink,
FixedArray fixed_array,
int array_length);
template void StringBuilderConcatHelper<base::uc16>(String special,
base::uc16* sink,
FixedArray fixed_array,
int array_length);
int StringBuilderConcatLength(int special_length, FixedArray fixed_array,
int array_length, bool* one_byte) {
DisallowGarbageCollection no_gc;
int position = 0;
for (int i = 0; i < array_length; i++) {
int increment = 0;
Object elt = fixed_array.get(i);
if (elt.IsSmi()) {
// Smi encoding of position and length.
int smi_value = Smi::ToInt(elt);
int pos;
int len;
if (smi_value > 0) {
// Position and length encoded in one smi.
pos = StringBuilderSubstringPosition::decode(smi_value);
len = StringBuilderSubstringLength::decode(smi_value);
} else {
// Position and length encoded in two smis.
len = -smi_value;
// Get the position and check that it is a positive smi.
i++;
if (i >= array_length) return -1;
Object next_smi = fixed_array.get(i);
if (!next_smi.IsSmi()) return -1;
pos = Smi::ToInt(next_smi);
if (pos < 0) return -1;
}
DCHECK_GE(pos, 0);
DCHECK_GE(len, 0);
if (pos > special_length || len > special_length - pos) return -1;
increment = len;
} else if (elt.IsString()) {
String element = String::cast(elt);
int element_length = element.length();
increment = element_length;
if (*one_byte && !element.IsOneByteRepresentation()) {
*one_byte = false;
}
} else {
return -1;
}
if (increment > String::kMaxLength - position) {
return kMaxInt; // Provoke throw on allocation.
}
position += increment;
}
return position;
}
FixedArrayBuilder::FixedArrayBuilder(Isolate* isolate, int initial_capacity)
: array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
length_(0),
has_non_smi_elements_(false) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
DCHECK_GT(initial_capacity, 0);
}
FixedArrayBuilder::FixedArrayBuilder(Handle<FixedArray> backing_store)
: array_(backing_store), length_(0), has_non_smi_elements_(false) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
DCHECK_GT(backing_store->length(), 0);
}
bool FixedArrayBuilder::HasCapacity(int elements) {
int length = array_->length();
int required_length = length_ + elements;
return (length >= required_length);
}
void FixedArrayBuilder::EnsureCapacity(Isolate* isolate, int elements) {
int length = array_->length();
int required_length = length_ + elements;
if (length < required_length) {
int new_length = length;
do {
new_length *= 2;
} while (new_length < required_length);
Handle<FixedArray> extended_array =
isolate->factory()->NewFixedArrayWithHoles(new_length);
array_->CopyTo(0, *extended_array, 0, length_);
array_ = extended_array;
}
}
void FixedArrayBuilder::Add(Object value) {
DCHECK(!value.IsSmi());
array_->set(length_, value);
length_++;
has_non_smi_elements_ = true;
}
void FixedArrayBuilder::Add(Smi value) {
DCHECK(value.IsSmi());
array_->set(length_, value);
length_++;
}
int FixedArrayBuilder::capacity() { return array_->length(); }
Handle<JSArray> FixedArrayBuilder::ToJSArray(Handle<JSArray> target_array) {
JSArray::SetContent(target_array, array_);
target_array->set_length(Smi::FromInt(length_));
return target_array;
}
ReplacementStringBuilder::ReplacementStringBuilder(Heap* heap,
Handle<String> subject,
int estimated_part_count)
: heap_(heap),
array_builder_(Isolate::FromHeap(heap), estimated_part_count),
subject_(subject),
character_count_(0),
is_one_byte_(subject->IsOneByteRepresentation()) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
DCHECK_GT(estimated_part_count, 0);
}
void ReplacementStringBuilder::EnsureCapacity(int elements) {
array_builder_.EnsureCapacity(Isolate::FromHeap(heap_), elements);
}
void ReplacementStringBuilder::AddString(Handle<String> string) {
int length = string->length();
DCHECK_GT(length, 0);
AddElement(string);
if (!string->IsOneByteRepresentation()) {
is_one_byte_ = false;
}
IncrementCharacterCount(length);
}
MaybeHandle<String> ReplacementStringBuilder::ToString() {
Isolate* isolate = Isolate::FromHeap(heap_);
if (array_builder_.length() == 0) {
return isolate->factory()->empty_string();
}
Handle<String> joined_string;
if (is_one_byte_) {
Handle<SeqOneByteString> seq;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, seq, isolate->factory()->NewRawOneByteString(character_count_),
String);
DisallowGarbageCollection no_gc;
uint8_t* char_buffer = seq->GetChars(no_gc);
StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(),
array_builder_.length());
joined_string = Handle<String>::cast(seq);
} else {
// Two-byte.
Handle<SeqTwoByteString> seq;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, seq, isolate->factory()->NewRawTwoByteString(character_count_),
String);
DisallowGarbageCollection no_gc;
base::uc16* char_buffer = seq->GetChars(no_gc);
StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(),
array_builder_.length());
joined_string = Handle<String>::cast(seq);
}
return joined_string;
}
void ReplacementStringBuilder::AddElement(Handle<Object> element) {
DCHECK(element->IsSmi() || element->IsString());
EnsureCapacity(1);
DisallowGarbageCollection no_gc;
array_builder_.Add(*element);
}
IncrementalStringBuilder::IncrementalStringBuilder(Isolate* isolate)
: isolate_(isolate),
encoding_(String::ONE_BYTE_ENCODING),
overflowed_(false),
part_length_(kInitialPartLength),
current_index_(0) {
// Create an accumulator handle starting with the empty string.
accumulator_ =
Handle<String>::New(ReadOnlyRoots(isolate).empty_string(), isolate);
current_part_ =
factory()->NewRawOneByteString(part_length_).ToHandleChecked();
}
int IncrementalStringBuilder::Length() const {
return accumulator_->length() + current_index_;
}
void IncrementalStringBuilder::Accumulate(Handle<String> new_part) {
Handle<String> new_accumulator;
if (accumulator()->length() + new_part->length() > String::kMaxLength) {
// Set the flag and carry on. Delay throwing the exception till the end.
new_accumulator = factory()->empty_string();
overflowed_ = true;
} else {
new_accumulator =
factory()->NewConsString(accumulator(), new_part).ToHandleChecked();
}
set_accumulator(new_accumulator);
}
void IncrementalStringBuilder::Extend() {
DCHECK_EQ(current_index_, current_part()->length());
Accumulate(current_part());
if (part_length_ <= kMaxPartLength / kPartLengthGrowthFactor) {
part_length_ *= kPartLengthGrowthFactor;
}
Handle<String> new_part;
if (encoding_ == String::ONE_BYTE_ENCODING) {
new_part = factory()->NewRawOneByteString(part_length_).ToHandleChecked();
} else {
new_part = factory()->NewRawTwoByteString(part_length_).ToHandleChecked();
}
// Reuse the same handle to avoid being invalidated when exiting handle scope.
set_current_part(new_part);
current_index_ = 0;
}
MaybeHandle<String> IncrementalStringBuilder::Finish() {
ShrinkCurrentPart();
Accumulate(current_part());
if (overflowed_) {
THROW_NEW_ERROR(isolate_, NewInvalidStringLengthError(), String);
}
return accumulator();
}
// Short strings can be copied directly to {current_part_}.
// Requires the IncrementalStringBuilder to either have two byte encoding or
// the incoming string to have one byte representation "underneath" (The
// one byte check requires the string to be flat).
bool IncrementalStringBuilder::CanAppendByCopy(Handle<String> string) {
constexpr int kMaxStringLengthForCopy = 16;
const bool representation_ok =
encoding_ == String::TWO_BYTE_ENCODING ||
(string->IsFlat() && String::IsOneByteRepresentationUnderneath(*string));
return representation_ok && string->length() <= kMaxStringLengthForCopy &&
CurrentPartCanFit(string->length());
}
void IncrementalStringBuilder::AppendStringByCopy(Handle<String> string) {
DCHECK(CanAppendByCopy(string));
Handle<SeqOneByteString> part =
Handle<SeqOneByteString>::cast(current_part());
{
DisallowGarbageCollection no_gc;
String::WriteToFlat(*string, part->GetChars(no_gc) + current_index_, 0,
string->length());
}
current_index_ += string->length();
DCHECK(current_index_ <= part_length_);
if (current_index_ == part_length_) Extend();
}
void IncrementalStringBuilder::AppendString(Handle<String> string) {
if (CanAppendByCopy(string)) {
AppendStringByCopy(string);
return;
}
ShrinkCurrentPart();
part_length_ = kInitialPartLength; // Allocate conservatively.
Extend(); // Attach current part and allocate new part.
Accumulate(string);
}
} // namespace internal
} // namespace v8
|